
Distributed Message Service for Kafka

Best Practices

Issue 01

Date 2024-11-27

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Kafka Best Practices..1

2 Improving Kafka Message Processing Efficiency... 3

3 Optimizing Consumer Polling.. 6

4 Interconnecting Logstash to Kafka to Produce and Consume Messages................ 14

5 Using MirrorMaker to Synchronize Data Across Clusters..22

6 Handling Message Accumulation..26

7 Handling Service Overload... 28

8 Handling Uneven Service Data.. 30

9 Configuring Message Accumulation Monitoring...32

Distributed Message Service for Kafka
Best Practices Contents

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Kafka Best Practices

This section summarizes best practices of Distributed Message Service (DMS) for
Kafka in common scenarios. Each practice is given a description and procedure.

Table 1-1 Kafka best practices

Best Practice Description

Improving Kafka Message
Processing Efficiency

This document provides producers and
consumers with message suggestions, improving
the efficiency and reliability of message sending
and consumption.

Optimizing Consumer
Polling

This document describes how to optimize
consumer polling in scenarios where real-time
message consumption is not required, saving
resources when there are few or no messages.

Interconnecting Logstash
to Kafka to Produce and
Consume Messages

Kafka instances are available as the input and
output sources of Logstash. This document
describes how to connect Logstash to Kafka
instances for message production and
consumption.

Using MirrorMaker to
Synchronize Data Across
Clusters

MirrorMaker can mirror data from a source
cluster to a target cluster. This document
describes how to use MirrorMaker to synchronize
data between two Kafka instances
unidirectionally or bidirectionally.

Handling Message
Accumulation

This document describes the causes of message
stacking and the handling measures.

Handling Service Overload This document describes the causes of high CPU
usage and full disk space and the handling
measures.

Handling Uneven Service
Data

This document describes the causes of
unbalanced service data and the handling
measures.

Distributed Message Service for Kafka
Best Practices 1 Kafka Best Practices

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Best Practice Description

Configuring Message
Accumulation Monitoring

This document describes how to generate an
alarm when the number of stacked messages
exceeds a specified threshold. In this way, you
can be aware of the service running status in
time by SMS or email.

Distributed Message Service for Kafka
Best Practices 1 Kafka Best Practices

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2 Improving Kafka Message Processing
Efficiency

During message sending and consumption, Distributed Message Service (DMS) for
Kafka, producers, and consumers collaborate to ensure service reliability. In
addition, efficiency and accuracy of message sending and consumption improves
when developers make proper use of DMS for Kafka topics.

Best practices for message producers and consumers are as follows:

Acknowledging Message Production and Consumption
Message Production

The producer decides whether to re-send a message based on the DMS for Kafka
response.

The producer waits for the sending result or asynchronous callback function to
determine if the message is successfully sent. If an exception occurs when sending
the message, the producer will not receive a success response and must decide
whether to re-send the message. If a success response is received, it indicates that
the message has been stored in DMS for Kafka.

Message consumption

The consumer acknowledges successful message consumption.

The produced messages are sequentially stored in DMS for Kafka. During
consumption, messages stored in DMS for Kafka are obtained in sequence.
Consumers obtain messages, consume them, and record the status (successful or
failed). The status is then submitted to DMS for Kafka.

During this process, the message consumption status may not be successfully
submitted due to an exception. In this case, the corresponding messages will be
re-obtained by the consumer in the next message consumption request.

Idempotent Transferring of Message Production and Consumption
To guarantee lossless messaging, DMS for Kafka implements a series of reliability
measures. For example, the message synchronization storage mechanism is used
to prevent the system and server from being restarted or powered off. The ACK

Distributed Message Service for Kafka
Best Practices 2 Improving Kafka Message Processing Efficiency

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

mechanism is used to deal with exceptions that occur during message
transmission.

Considering extreme conditions such as network exceptions, you can use DMS for
Kafka to design idempotent message transferring in addition to acknowledging
message production and consumption.

● If message sending cannot be acknowledged, the producer needs to re-send
the message.

● After obtaining a message that has been processed, the consumer needs to
notify DMS for Kafka that consumption is successful and ensure that the
message is not processed repeatedly.

Producing and Consuming Messages in Batches

It is recommended that messages be sent and consumed in batches to improve
efficiency.

Figure 2-1 Messages being produced and consumed in batches

Figure 2-2 Messages being produced and consumed one by one

When consuming messages in batches, consumers need to process and
acknowledge messages in the sequence of receiving messages. Therefore, when a
message in the batch fails to be consumed, the consumer does not need to
consume the remaining messages, and can directly submit consumption
acknowledgment of the successfully consumed messages.

Distributed Message Service for Kafka
Best Practices 2 Improving Kafka Message Processing Efficiency

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Using Consumer Groups to Facilitate O&M
You can use DMS for Kafka as a message management system. Reading message
content from topics is helpful to fault locating and service debugging.

When problems occur during message production and consumption, you can
create different consumer groups to locate and analyze problems or debug
services for interconnecting with other services. To ensure that other services can
continue to process messages in topics, you can create a new consumer group to
consume and analyze the messages.

Distributed Message Service for Kafka
Best Practices 2 Improving Kafka Message Processing Efficiency

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

3 Optimizing Consumer Polling

Overview
Scenario

In the native Kafka SDK provided by DMS for Kafka, consumers can customize the
duration for pulling messages. To pull messages for a long time, consumers only
need to set the parameter of the poll(long) method to a proper value. However,
such persistent connections may cause pressure on the client and the server,
especially when the number of partitions is large and multiple threads are enabled
for each consumer.

As shown in Figure 3-1, the topic contains multiple partitions, and multiple
consumers in the consumer group consume the resources at the same time. Each
thread is in a persistent connection. When there are few or no messages in the
topic, the connection persists, and all consumers pull messages continuously,
which causes a waste of resources.

Figure 3-1 Multi-thread consumption of Kafka consumers

Distributed Message Service for Kafka
Best Practices 3 Optimizing Consumer Polling

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Solution

When multiple threads are enabled for concurrent access, if there is no message in
the topic, only one thread is required to poll for messages in each partition. When
a message is found by the polling thread, other threads can be woken up to
consume the message for quick responses, as shown in Figure 3-2.

This solution is applicable to scenarios with low requirements on real-time
message consumption. If quasi-real-time message consumption is required, it is
recommended that all consumers be in the active state.

Figure 3-2 Optimized multi-thread consumption solution

NO TE

The number of consumers and the number of partitions are not necessarily the same. The
poll (long) method of Kafka helps implement the functions such as message acquisition,
partition balancing, and heartbeat detection between consumers and Kafka brokers.
Therefore, in scenarios where the requirements on real-time message consumption are low
and there is a small number of messages, some consumers can be in the wait state.

Sample Code

NO TICE

The following describes only the code related to wake-up and sleep of the
consumer thread. To run the entire demo, download the complete sample code
package and refer to the Developer Guide for deploying and running the code.

● Sample code for consuming messages:
package com.huawei.dms.kafka;

Distributed Message Service for Kafka
Best Practices 3 Optimizing Consumer Polling

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://dms-demos.obs.cn-north-1.myhuaweicloud.com/BestPractice_PollOptmize.zip
https://dms-demos.obs.cn-north-1.myhuaweicloud.com/BestPractice_PollOptmize.zip
https://support.huaweicloud.com/eu/devg-kafka/Kafka-summary.html

import java.io.IOException;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.log4j.Logger;

public class DmsKafkaConsumeDemo
{
 private static Logger logger = Logger.getLogger(DmsKafkaProduceDemo.class);

 public static void WorkerFunc(int workerId, KafkaConsumer<String, String> kafkaConsumer)
throws IOException
 {
 Properties consumerConfig = Config.getConsumerConfig();
 RecordReceiver receiver = new RecordReceiver(workerId, kafkaConsumer,
consumerConfig.getProperty("topic"));
 while (true)
 {
 ConsumerRecords<String, String> records = receiver.receiveMessage();
 Iterator<ConsumerRecord<String, String>> iter = records.iterator();
 while (iter.hasNext())
 {
 ConsumerRecord<String, String> cr = iter.next();
 System.out.println("Thread" + workerId + " recievedrecords" + cr.value());
 logger.info("Thread" + workerId + " recievedrecords" + cr.value());

 }

 }
 }

 public static KafkaConsumer<String, String> getConsumer() throws IOException
 {
 Properties consumerConfig = Config.getConsumerConfig();

 consumerConfig.put("ssl.truststore.location", Config.getTrustStorePath());
 System.setProperty("java.security.auth.login.config", Config.getSaslConfig());

 KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(consumerConfig);
 kafkaConsumer.subscribe(Arrays.asList(consumerConfig.getProperty("topic")),
 new ConsumerRebalanceListener()
 {
 @Override
 public void onPartitionsRevoked(Collection<TopicPartition> arg0)
 {

 }

 @Override
 public void onPartitionsAssigned(Collection<TopicPartition> tps)
 {

 }
 });
 return kafkaConsumer;
 }

 public static void main(String[] args) throws IOException
 {

 // Create a consumer for the current consumer group.
 final KafkaConsumer<String, String> consumer1 = getConsumer();

Distributed Message Service for Kafka
Best Practices 3 Optimizing Consumer Polling

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

 Thread thread1 = new Thread(new Runnable()
 {
 public void run()
 {
 try
 {
 WorkerFunc(1, consumer1);
 }
 catch (IOException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 });
 final KafkaConsumer<String, String> consumer2 = getConsumer();

 Thread thread2 = new Thread(new Runnable()
 {
 public void run()
 {
 try
 {
 WorkerFunc(2, consumer2);
 }
 catch (IOException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 });
 final KafkaConsumer<String, String> consumer3 = getConsumer();

 Thread thread3 = new Thread(new Runnable()
 {
 public void run()
 {
 try
 {
 WorkerFunc(3, consumer3);
 }
 catch (IOException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 });

 // Start threads.
 thread1.start();
 thread2.start();
 thread3.start();

 try
 {
 Thread.sleep(5000);
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
 //Add threads.
 try
 {
 thread1.join();
 thread2.join();
 thread3.join();

Distributed Message Service for Kafka
Best Practices 3 Optimizing Consumer Polling

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
 }
}

● Sample code for managing consumer threads:
The sample code provides only simple design ideas. Developers can optimize
the thread wake-up and sleep mechanisms based on actual scenarios.

NO TE

topicName is the name of the topic.
package com.huawei.dms.kafka;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import org.apache.log4j.Logger;

public class RecordReceiver
{
 private static Logger logger = Logger.getLogger(DmsKafkaProduceDemo.class);

 // Interval time of polling
 public static final int WAIT_SECONDS = 10 * 1000;

 protected static final Map<String, Object> sLockObjMap = new HashMap<String, Object>();

 protected static Map<String, Boolean> sPollingMap = new ConcurrentHashMap<String,
Boolean>();

 protected Object lockObj;

 protected String topicName;

 protected KafkaConsumer<String, String> kafkaConsumer;

 protected int workerId;

 public RecordReceiver(int id, KafkaConsumer<String, String> kafkaConsumer, String queue)
 {
 this.kafkaConsumer = kafkaConsumer;
 this.topicName = queue;
 this.workerId = id;

 synchronized (sLockObjMap)
 {
 lockObj = sLockObjMap.get(topicName);
 if (lockObj == null)
 {
 lockObj = new Object();
 sLockObjMap.put(topicName, lockObj);
 }
 }
 }

 public boolean setPolling()
 {
 synchronized (lockObj)
 {
 Boolean ret = sPollingMap.get(topicName);

Distributed Message Service for Kafka
Best Practices 3 Optimizing Consumer Polling

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

 if (ret == null || !ret)
 {
 sPollingMap.put(topicName, true);
 return true;
 }
 return false;
 }
 }

 // Wake up all threads.
 public void clearPolling()
 {
 synchronized (lockObj)
 {
 sPollingMap.put(topicName, false);
 lockObj.notifyAll();
 System.out.println("Everyone WakeUp and Work!");
 logger.info("Everyone WakeUp and Work!");
 }
 }

 public ConsumerRecords<String, String> receiveMessage()
 {
 boolean polling = false;
 while (true)
 {
 // Check the poll status of threads and hibernate the threads when necessary.
 synchronized (lockObj)
 {
 Boolean p = sPollingMap.get(topicName);
 if (p != null && p)
 {
 try
 {
 System.out.println("Thread" + workerId + " Have a nice sleep!");
 logger.info("Thread" + workerId +" Have a nice sleep!");
 polling = false;
 lockObj.wait();
 }
 catch (InterruptedException e)
 {
 System.out.println("MessageReceiver Interrupted! topicName is " + topicName);
 logger.error("MessageReceiver Interrupted! topicName is "+topicName);

 return null;
 }
 }
 }

 // Start to consume and wake up other threads when necessary.
 try
 {
 ConsumerRecords<String, String> Records = null;
 if (!polling)
 {
 Records = kafkaConsumer.poll(100);
 if (Records.count() == 0)
 {
 polling = true;
 continue;
 }
 }
 else
 {
 if (setPolling())
 {
 System.out.println("Thread" + workerId + " Polling!");
 logger.info("Thread " + workerId + " Polling!");
 }

Distributed Message Service for Kafka
Best Practices 3 Optimizing Consumer Polling

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

 else
 {
 continue;
 }
 do
 {
 System.out.println("Thread" + workerId + " KEEP Poll records!");
 logger.info("Thread" + workerId + " KEEP Poll records!");
 try
 {
 Records = kafkaConsumer.poll(WAIT_SECONDS);
 }
 catch (Exception e)
 {
 System.out.println("Exception Happened when polling records: " + e);
 logger.error("Exception Happened when polling records: " + e);

 }
 } while (Records.count()==0);
 clearPolling();
 }
 // Acknowledge message consumption.
 kafkaConsumer.commitSync();
 return Records;
 }
 catch (Exception e)
 {
 System.out.println("Exception Happened when poll records: " + e);
 logger.error("Exception Happened when poll records: " + e);
 }
 }
 }
}

Running Result
[2018-01-25 22:40:51,841] INFO Thread 2 Polling! (com.huawei.dms.kafka.DmsKafkaProduceDemo:119)
[2018-01-25 22:40:51,841] INFO Thread2 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:40:52,122] INFO Everyone WakeUp and Work!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:69)
[2018-01-25 22:40:52,169] INFO Thread2 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:40:52,169] INFO Thread2 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:40:52,216] INFO Thread2 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:40:52,325] INFO Thread 2 Polling! (com.huawei.dms.kafka.DmsKafkaProduceDemo:119)
[2018-01-25 22:40:52,325] INFO Thread2 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:40:54,947] INFO Thread1 Have a nice sleep!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:87)
[2018-01-25 22:40:54,979] INFO Thread3 Have a nice sleep!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:87)
[2018-01-25 22:41:32,347] INFO Thread2 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:41:42,353] INFO Thread2 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:41:47,816] INFO Everyone WakeUp and Work!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:69)
[2018-01-25 22:41:47,847] INFO Thread2 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:47,925] INFO Thread 3 Polling! (com.huawei.dms.kafka.DmsKafkaProduceDemo:119)
[2018-01-25 22:41:47,925] INFO Thread1 Have a nice sleep!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:87)
[2018-01-25 22:41:47,925] INFO Thread3 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:41:47,957] INFO Thread2 Have a nice sleep!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:87)

Distributed Message Service for Kafka
Best Practices 3 Optimizing Consumer Polling

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

[2018-01-25 22:41:48,472] INFO Everyone WakeUp and Work!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:69)
[2018-01-25 22:41:48,503] INFO Thread3 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:48,518] INFO Thread1 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:48,550] INFO Thread2 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:48,597] INFO Thread1 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:48,659] INFO Thread 2 Polling! (com.huawei.dms.kafka.DmsKafkaProduceDemo:119)
[2018-01-25 22:41:48,659] INFO Thread2 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:41:48,675] INFO Thread3 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:48,675] INFO Everyone WakeUp and Work!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:69)
[2018-01-25 22:41:48,706] INFO Thread 1 Polling! (com.huawei.dms.kafka.DmsKafkaProduceDemo:119)
[2018-01-25 22:41:48,706] INFO Thread1 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)

Distributed Message Service for Kafka
Best Practices 3 Optimizing Consumer Polling

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

4 Interconnecting Logstash to Kafka to
Produce and Consume Messages

Overview

Scenario

Logstash is a free and open server-side data processing pipeline that integrates
data from multiple sources, converts it, and then sends it to the specified storage.
Kafka is a high-throughput distributed message pub/sub system. It is one of the
input and output sources of Logstash. The following describes how to interconnect
Logstash with a Kafka instance.

Principle

● The following figure shows Kafka as an output source of Logstash.

Figure 4-1 Kafka as an output source of Logstash

Logstash collects data from the database and sends the data to the Kafka
instance for storage. Using a Kafka instance as the Logstash output source
can store a large amount of data thanks to the high throughput of Kafka.

● The following figure shows Kafka as an input source of Logstash.

Figure 4-2 Kafka as an input source of Logstash

The log collection client sends data to the Kafka instance. Logstash pulls data
from the Kafka instance based on its performance. Using a Kafka instance as
the Logstash input source can prevent the impact of burst traffic on Logstash,
and decouple the log collection client from Logstash to ensure system
stability.

Distributed Message Service for Kafka
Best Practices

4 Interconnecting Logstash to Kafka to Produce and
Consume Messages

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Restrictions
Logstash 7.5 and later versions support Kafka Integration Plugin which includes
the Kafka input plugin and Kafka output plugin. Kafka input plugin reads data
from topics of Kafka instances, and Kafka output plugin writes data to topics of
Kafka instances. Table 4-1 lists the version mapping between Logstash, Kafka
Integration Plugin, and Kafka clients. Ensure that the Kafka client version is
later than or equal to the Kafka instance version.

Table 4-1 Version mapping

Logstash Version Kafka Integration
Plugin Version

Kafka Client Version

8.3–8.8 10.12.0 2.8.1

8.0–8.2 10.9.0–10.10.0 2.5.1

7.12–7.17 10.7.4–10.9.0 2.5.1

7.8–7.11 10.2.0–10.7.1 2.4

7.6–7.7 10.0.1 2.3.0

7.5 10.0.0 2.1.0

Prerequisites
Make the following preparation before implementation.

● Download Logstash.
● Prepare a Windows host, install JDK v1.8.111 or later and Git Bash on the

host, and configure related environment variables.
● Create a Kafka instance and a topic, and obtain the instance information.

If both public access and SASL authentication are disabled for the Kafka
instance, obtain the information listed in Table 4-2.

Table 4-2 Kafka instance information (public access and SASL authentication
disabled)

Paramete
r

How to Obtain

Instance
address
(private
network)

View it in the Connection area on the instance details page.

Topic
name

On the Kafka console, click your instance. In the left navigation
pane, choose Topics to view the topic name.
The following uses topic-logstash as an example.

Distributed Message Service for Kafka
Best Practices

4 Interconnecting Logstash to Kafka to Produce and
Consume Messages

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://www.elastic.co/guide/en/logstash/8.6/installing-logstash.html
https://www.oracle.com/java/technologies/downloads/#java8
https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180604013.html
https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180604018.html

If public access is disabled and SASL authentication is enabled for the Kafka
instance, obtain the information listed in Table 4-3.

Table 4-3 Kafka instance information (public access disabled and SASL
authentication enabled)

Paramete
r

How to Obtain

Instance
address
(private
network)

View it in the Connection area on the instance details page.

SASL
mechanis
m

View it in the Connection area on the instance details page.

Security
protocol

View it in the Connection area on the instance details page.

Certificate Click Download next to SSL Certificate in the Connection
area on the instance details page. Download and decompress
the package to obtain the client certificate file
client.truststore.jks.

SASL
username
and
password

On the Kafka console, click your instance. In the left navigation
pane, choose Users to view the username. If you have
forgotten the password, click Reset Password.

Topic
name

On the Kafka console, click your instance. In the left navigation
pane, choose Topics to view the topic name.
The following uses topic-logstash as an example.

If public access is enabled and SASL authentication is disabled for the Kafka
instance, obtain the information listed in Table 4-4.

Table 4-4 Kafka instance information (public access enabled and SASL
authentication disabled)

Paramete
r

How to Obtain

Instance
address
(public
network)

View it in the Connection area on the instance details page.

Topic
name

On the Kafka console, click your instance. In the left navigation
pane, choose Topics to view the topic name.
The following uses topic-logstash as an example.

Distributed Message Service for Kafka
Best Practices

4 Interconnecting Logstash to Kafka to Produce and
Consume Messages

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

If both public access and SASL authentication are enabled for the Kafka
instance, obtain the information listed in Table 4-5.

Table 4-5 Kafka instance information (public access and SASL authentication
enabled)

Paramete
r

How to Obtain

Instance
address
(public
network)

View it in the Connection area on the instance details page.

SASL
mechanis
m

View it in the Connection area on the instance details page.

Security
protocol

View it in the Connection area on the instance details page.

Certificate Click Download next to SSL Certificate in the Connection
area on the instance details page. Download and decompress
the package to obtain the client certificate file
client.truststore.jks.

SASL
username
and
password

On the Kafka console, click your instance. In the left navigation
pane, choose Users to view the username. If you have
forgotten the password, click Reset Password.

Topic
name

On the Kafka console, click your instance. In the left navigation
pane, choose Topics to view the topic name.
The following uses topic-logstash as an example.

Procedure (Kafka Instance as the Logstash Output Source)

Step 1 On the Windows host, decompress the Logstash package, go to the config folder,
and create the output.conf configuration file.

Figure 4-3 Creating the output.conf configuration file

Distributed Message Service for Kafka
Best Practices

4 Interconnecting Logstash to Kafka to Produce and
Consume Messages

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Step 2 Add the following content to the output.conf file:
input {
 stdin {}
}
output {
 kafka {
 bootstrap_servers => "ip1:port1,ip2:port2,ip3:port3"
 topic_id => "topic-logstash"

 # If SASL authentication is disabled, comment out the following options:
 # If the SASL mechanism is PLAIN, configure as follows:
 sasl_mechanism => "PLAIN"
 sasl_jaas_config => "org.apache.kafka.common.security.plain.PlainLoginModule required
username='username' password='password';"

 # If the SASL mechanism is SCRAM-SHA-512, configure as follows:
 sasl_mechanism => "SCRAM-SHA-512"
 sasl_jaas_config => "org.apache.kafka.common.security.scram.ScramLoginModule required
username='username' password='password';"

 # If the security protocol is SASL_SSL, configure as follows:
 security_protocol => "SASL_SSL"
 ssl_truststore_location => "C:\\Users\\Desktop\\logstash-8.8.1\\config\\client.jks"
 ssl_truststore_password => "dms@kafka"
 ssl_endpoint_identification_algorithm => ""

 # If the security protocol is SASL_PLAINTEXT, configure as follows:
 security_protocol => "SASL_PLAINTEXT"
 }
}

Description:

● bootstrap_servers: private or public network connection address of the Kafka
instance obtained in Prerequisites.

● topic_id: topic name obtained in Prerequisites.
● sasl_mechanism: SASL authentication mechanism.
● sasl_jaas_config: SASL JAAS configuration file. Change the SASL username

and password to the ones obtained in Prerequisites as required.
● security_protocol: security protocol used by the Kafka instance.
● ssl_truststore_location: location where the SSL certificate is stored.
● ssl_truststore_password: server certificate password, which must be set to

dms@kafka and cannot be changed.
● ssl_endpoint_identification_algorithm: Indicates whether to verify the

certificate domain name. If this option is left blank, the certificate domain
name is not verified. In this example, leave it blank.

For more information about Kafka output plugin options, see Kafka output
plugin.

Step 3 Open Git Bash in the root directory of the Logstash folder and run the following
command to start Logstash:
./bin/logstash -f ./config/output.conf

If the message "Successfully started Logstash API endpoint" is displayed, Logstash
has been started.

Distributed Message Service for Kafka
Best Practices

4 Interconnecting Logstash to Kafka to Produce and
Consume Messages

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://www.elastic.co/guide/en/logstash/8.6/plugins-outputs-kafka.html#plugins-outputs-kafka-options
https://www.elastic.co/guide/en/logstash/8.6/plugins-outputs-kafka.html#plugins-outputs-kafka-options

Figure 4-4 Starting Logstash

Step 4 In Logstash, produce messages, as shown in the following figure.

Figure 4-5 Producing messages

Step 5 Go to the Kafka console and click your instance.

Step 6 In the left navigation pane, choose Message Query.

Step 7 Select topic-logstash from the Topic Name drop-down list box and click Search
to query messages.

Figure 4-6 Querying messages

As shown in Figure 4-6, the Kafka output plugin of Logstash has written data to
topic-logstash of the Kafka instance.

----End

Procedure (Kafka Instance as the Logstash Input Source)

Step 1 On the Windows host, decompress the Logstash package, go to the config folder,
and create the input.conf configuration file.

Distributed Message Service for Kafka
Best Practices

4 Interconnecting Logstash to Kafka to Produce and
Consume Messages

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Figure 4-7 Creating the input.conf configuration file

Step 2 Add the following content to the input.conf file to connect to the Kafka instance:
input {
 kafka {
 bootstrap_servers => "ip1:port1,ip2:port2,ip3:port3"
 group_id => "logstash_group"
 topic_id => "topic-logstash"
 auto_offset_reset => "earliest"

 # If SASL authentication is disabled, comment out the following options:
 #If the SASL mechanism is PLAIN, configure as follows:
 sasl_mechanism => "PLAIN"
 sasl_jaas_config => "org.apache.kafka.common.security.plain.PlainLoginModule required
username='username' password='password';"

 # If the SASL mechanism is SCRAM-SHA-512, configure as follows:
 sasl_mechanism => "SCRAM-SHA-512"
 sasl_jaas_config => "org.apache.kafka.common.security.scram.ScramLoginModule required
username='username' password='password';"

 # If the security protocol is SASL_SSL, configure as follows:
 security_protocol => "SASL_SSL"
 ssl_truststore_location => "C:\\Users\\Desktop\\logstash-8.8.1\\config\\client.jks"
 ssl_truststore_password => "dms@kafka"
 ssl_endpoint_identification_algorithm => ""

 # If the security protocol is SASL_PLAINTEXT, configure as follows:
 security_protocol => "SASL_PLAINTEXT"
 }
}
output {
 stdout{codec=>rubydebug}
}

Description:

● bootstrap_servers: private or public network connection address of the Kafka
instance obtained in Prerequisites.

● group_id: consumer group name.
● topic_id: topic name obtained in Prerequisites.
● auto_offset_reset: consumers' consumption policy. The value latest indicates

that the offset is automatically reset to the latest. The value earliest indicates
that the offset is automatically reset to the earliest. The value none indicates
that an exception is thrown to the consumer. This parameter is set to earliest
in this example.

● sasl_mechanism: SASL authentication mechanism.
● sasl_jaas_config: SASL JAAS configuration file. Change the SASL username

and password to the ones obtained in Prerequisites as required.

Distributed Message Service for Kafka
Best Practices

4 Interconnecting Logstash to Kafka to Produce and
Consume Messages

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

● security_protocol: security protocol used by the Kafka instance.
● ssl_truststore_location: location where the SSL certificate is stored.
● ssl_truststore_password: server certificate password, which must be set to

dms@kafka and cannot be changed.
● ssl_endpoint_identification_algorithm: Indicates whether to verify the

certificate domain name. If this option is left blank, the certificate domain
name is not verified. In this example, leave it blank.

For more information about Kafka input plugin options, see Kafka input plugin.

Step 3 Open Git Bash in the root directory of the Logstash folder and run the following
command to start Logstash:
./bin/logstash -f ./config/input.conf

After Logstash is started successfully, the Kafka input plugin automatically reads
data from topic-logstash of the Kafka instance, as shown in the following figure.

Figure 4-8 Logstash reading data from topic-logstash

----End

Distributed Message Service for Kafka
Best Practices

4 Interconnecting Logstash to Kafka to Produce and
Consume Messages

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://www.elastic.co/guide/en/logstash/8.6/plugins-inputs-kafka.html#plugins-inputs-kafka-options

5 Using MirrorMaker to Synchronize Data
Across Clusters

Overview

Scenario

In the following scenarios, MirrorMaker can be used to synchronize data between
different Kafka clusters to ensure the availability and reliability of the clusters:

● Backup and disaster recovery: An enterprise has multiple data centers. To
prevent service unavailability caused by a fault in one data center, cluster data
is synchronously backed up in multiple data centers.

● Cluster migration: As enterprises migrate services to the cloud, data in on-
premises clusters must be synchronized with that in cloud clusters to ensure
service continuity.

Principle

MirrorMaker can be used to mirror data from the source cluster to the target
cluster. As shown in Figure 5-1, in essence, MirrorMaker first consumes data from
the source cluster and then produces the consumed data to the target cluster. For
more information about MirrorMaker, see Mirroring data between clusters.

Figure 5-1 How MirrorMaker works

Restrictions
● The IP addresses and port numbers of the nodes in the source cluster cannot

be the same as those of the nodes in the target cluster. Otherwise, data will
be replicated infinitely in a topic.

● Use MirrorMaker to synchronize data between at least two clusters. If there is
only one cluster, data will be replicated infinitely in a topic.

Distributed Message Service for Kafka
Best Practices

5 Using MirrorMaker to Synchronize Data Across
Clusters

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

https://kafka.apache.org/documentation/?spm=a2c4g.11186623.0.0.c82870aav6G9no#basic_ops_mirror_maker

Procedure

Step 1 Buy an ECS that can communicate with the source and target clusters. For details,
see the Purchasing an ECS.

Step 2 Log in to the ECS, install JDK, and add the following contents to .bash_profile in
the home directory to configure the environment variables JAVA_HOME and
PATH. In this command, /opt/java/jdk1.8.0_151 is the JDK installation path.
Change it to the path where you install JDK.
export JAVA_HOME=/opt/java/jdk1.8.0_151
export PATH=$JAVA_HOME/bin:$PATH

Run the source .bash_profile command for the modification to take effect.

NO TE

Use Oracle JDK instead of ECS's default JDK (for example, OpenJDK), because ECS's default
JDK may not be suitable. Obtain Oracle JDK 1.8.111 or later from Oracle's official website.

Step 3 Download the binary software package of Kafka 3.3.1.
wget https://archive.apache.org/dist/kafka/3.3.1/kafka_2.12-3.3.1.tgz

Step 4 Decompress the binary software package.
tar -zxvf kafka_2.12-3.3.1.tgz

Step 5 Go to the binary software package directory and specify the IP addresses and
ports of the source and target clusters and other parameters in the connect-
mirror-maker.properties configuration file in the config directory.
Specify two clusters.
clusters = A, B
A.bootstrap.servers = A_host1:A_port, A_host2:A_port, A_host3:A_port
B.bootstrap.servers = B_host1:B_port, B_host2:B_port, B_host3:B_port

Specify the data synchronization direction. The data can be synchronized unidirectionally or bidirectionally.
A->B.enabled = true

Specify the topics to be synchronized. Regular expressions are supported. By default, all topics are
replicated, for example, foo-.*.
A->B.topics = .*

If the following two configurations are enabled, clusters A and B replicate data with each other.
#B->A.enabled = true
#B->A.topics = .*

Specify the number of replicas. If multiple topics need to be synchronized and their replica quantities are
different, create topics with the same name and replica quantity before starting MirrorMaker.
replication.factor=3

Specify the consumer offset synchronization direction (unidirectionally or bidirectionally).
A->B.sync.group.offsets.enabled=true

############################# Internal Topic Settings #############################
The replication factor for mm2 internal topics "heartbeats", "B.checkpoints.internal" and
"mm2-offset-syncs.B.internal"
In the test environment, the value can be 1. In the production environment, it is recommended that the
value be greater than 1, for example, 3.
checkpoints.topic.replication.factor=3
heartbeats.topic.replication.factor=3
offset-syncs.topic.replication.factor=3

The replication factor for connect internal topics "mm2-configs.B.internal", "mm2-offsets.B.internal" and
"mm2-status.B.internal"
In the test environment, the value can be 1. In the production environment, it is recommended that the
value be greater than 1, for example, 3.

Distributed Message Service for Kafka
Best Practices

5 Using MirrorMaker to Synchronize Data Across
Clusters

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://support.huaweicloud.com/eu/qs-ecs/ecs_02_0009.html
https://www.oracle.com/java/technologies/downloads/#java8

offset.storage.replication.factor=3
status.storage.replication.factor=3
config.storage.replication.factor=3

customize as needed
replication.policy.separator = _
sync.topic.acls.enabled = false
emit.heartbeats.interval.seconds = 5

Step 6 In the binary software package directory, start MirrorMaker to synchronize data.
./bin/connect-mirror-maker.sh config/connect-mirror-maker.properties

Step 7 (Optional) If a topic is created in the source cluster after MirrorMaker has been
started, and the topic data needs to be synchronized, restart MirrorMaker. For
details about how to restart MirrorMaker, see Step 6. You can also add
configurations listed in Table 5-1 to periodically synchronize new topics without
restarting MirrorMaker. refresh.topics.interval.seconds is mandatory. Other
parameters are optional.

Table 5-1 MirrorMaker configurations

Parameter Default Value Description

sync.topic.configs.enabled true Whether to monitor the
source cluster for
configuration changes.

sync.topic.acls.enabled true Whether to monitor the
source cluster for ACL
changes.

emit.heartbeats.enabled true Whether to let the connector
send heartbeats periodically.

emit.heartbeats.interval.s
econds

5 seconds Heartbeat frequency.

emit.checkpoints.enabled true Whether to let the connector
periodically send the
consumer offset information.

emit.checkpoints.interval.s
econds

5 seconds Checkpoint frequency.

refresh.topics.enabled true Whether to let the connector
periodically check for new
topics.

refresh.topics.interval.seco
nds

5 seconds Frequency of checking for new
topics in the source cluster.

refresh.groups.enabled true Whether to let the connector
periodically check for new
consumer groups.

refresh.groups.interval.sec
onds

5 seconds Frequency of checking for new
consumer groups in the source
cluster.

Distributed Message Service for Kafka
Best Practices

5 Using MirrorMaker to Synchronize Data Across
Clusters

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Parameter Default Value Description

replication.policy.class org.apache.kafka.c
onnect.mirror.Defa
ultReplicationPoli-
cy

Use LegacyReplicationPolicy to
imitate MirrorMaker of an
earlier version.

heartbeats.topic.retention.
ms

One day Used when heartbeat topics
are created for the first time.

checkpoints.topic.retentio
n.ms

One day Used when checkpoint topics
are created for the first time.

offset.syncs.topic.retentio
n.ms

max long Used when offset sync topics
are created for the first time.

----End

Verifying Data Synchronization

Step 1 View the topic list in the target cluster to check whether there are source topics.

NO TE

Topic names in the target cluster have a prefix (for example, A.) added to the source topic
name. This is a MirrorMaker configuration for preventing cyclic topic backup.

Step 2 Produce and consume messages in the source cluster, view the consumption
progress in the target cluster, and check whether data has been synchronized from
the source cluster to the target cluster.

If the target cluster is a Huawei Cloud Kafka instance, view the consumption
progress on the Consumer Groups page.

----End

Distributed Message Service for Kafka
Best Practices

5 Using MirrorMaker to Synchronize Data Across
Clusters

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

6 Handling Message Accumulation

Overview

Kafka divides each topic into multiple partitions for distributed message storage.
Within the same consumer group, each consumer can consume multiple partitions
at the same time, but each partition can be consumed by only one consumer at a
time.

Unprocessed messages accumulate if the client's consumption is slower than the
server's sending. Accumulated messages cannot be consumed in time.

Causes of accumulation

The following are some main causes:

● Producers produce messages too fast for consumers to keep up.
● Incapable consumers (low concurrency and long processing) cause lower

efficiency of consumption than production.
● Abnormal consumers (faulty and network error) cannot consume messages.
● Improper topic partitions, or no consumption in new partitions.
● Frequent topic rebalancing reduces consumption efficiency.

Solution

Accumulation can be avoided by the consumer, producer, and server.

● Consumer

Distributed Message Service for Kafka
Best Practices 6 Handling Message Accumulation

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

– Add consumers (for consumption concurrency) based on actual needs.
Use the same number of consumers as the number of partitions, or
ensure that the number of partitions is an integer multiple of the number
of consumers.

– Speed up consumption by optimizing the consumer processing logic (less
complicated computing, API invoking, and database reading).

– Increase the number of messages in each poll: Polling/Processing speed
should be equal to or higher than the production speed.

● Producer
Attach a random suffix to each message key so that messages can be evenly
distributed in partitions.

NO TE

In actual scenarios, attaching a random suffix to each message key compromises
global message sequence. Decide whether a suffix is required by your service.

● Server
– Set the number of topic partitions properly. Add partitions without

affecting processing efficiency.
– Stop production when messages are accumulating or forward them to

other topics.

Distributed Message Service for Kafka
Best Practices 6 Handling Message Accumulation

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

7 Handling Service Overload

Overview
High CPU usage and full disks indicate overloaded Kafka services.

● High CPU usage leads to low system performance and high risk of hardware
damage.

● If a disk is full, the Kafka log content stored on it goes offline. Then, the disk's
partition replicas cannot be read or written, reducing partition availability and
fault tolerance. The leader partition switches to another broker, adding load
to the broker.

Causes of high CPU usage

● There are too many data operation threads: num.io.threads,
num.network.threads, and num.replica.fetchers.

● Improper partitions. One broker carries all production and consumption
services.

Causes of full disk

● Current disk space no longer meets the needs of the rapidly increasing service
data volume.

● Unbalanced broker disk usage. The produced messages are all in one
partition, taking up the partition's disk.

● The time to live (TTL) set for a topic is too long. Old data takes too much disk
space.

Solution
Handling high CPU usage:

● Optimize the parameters configuration for threads num.io.threads,
num.network.threads, and num.replica.fetchers.
– Set the number of num.io.threads and the number of

num.network.threads threads to multiples of the disk quantity. Do not
exceed the number of CPU cores

– Set the number of num.replica.fetchers threads to smaller than or equal
to 5.

Distributed Message Service for Kafka
Best Practices 7 Handling Service Overload

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

● Set topic partitions properly. Set the number of partitions to multiples of the
number of brokers.

● Attach a random suffix to each message key so that messages can be evenly
distributed in partitions.

NO TE

In actual scenarios, attaching a random suffix to each message key compromises
global message sequence. Decide whether a suffix is required by your service.

Handling full disk:

● Increase the disk space.
● Migrate partitions from the full disk to other disks on the broker.
● Set proper topic TTL for less occupation of old data.
● If CPU resources are sufficient, compress the data with compression

algorithms.
Common compression algorithms include ZIP, gzip, Sappy, and LZ4. You need
to consider the data compression rate and duration when selecting
compression algorithms. Generally, an algorithm with a higher compression
rate consumes more time. For systems with high performance requirements,
select algorithms with quick compression, such as LZ4. For systems with high
compression rate requirements, select algorithms with high compression rate,
such as gzip.
Configure the compression.type parameter on producers to specify a
compression algorithm.
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "all");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// Enable GZIP.
props.put("compression.type", "gzip");

Producer<String, String> producer = new KafkaProducer<>(props);

Distributed Message Service for Kafka
Best Practices 7 Handling Service Overload

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

8 Handling Uneven Service Data

Overview

Kafka divides each topic into multiple partitions for distributed message storage.
Each partition has one or more replicas distributed on different brokers. Each
replica stores a copy of full data. Messages are synchronized among replicas. The
following figure shows the relationships between topics, partitions, replicas, and
brokers.

Uneven service data among brokers and partitions may happen, leading to low
performance of Kafka clusters and low resource utilization.

Causes of uneven service data

● The traffic of some topics is much heavier than that of others.
● Producers specified partitions when sending messages, leaving unspecified

partitions empty.
● Producers specified message keys to send messages to specific partitions.
● The system re-implements flawed partition allocation policies.

Distributed Message Service for Kafka
Best Practices 8 Handling Uneven Service Data

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

● There are new Kafka brokers with no partitions allocated.
● Cluster changes lead to switches and migration of leader replicas, causing

data on some brokers to increase.

Solution
Handling uneven service data:

● Optimize the topic design. For a topic with considerable data, the data can be
split across topics.

● Producers evenly send messages across partitions.
● When creating topics, distribute leader replicas across brokers.
● Kafka features partition reassignment. You can reassign replicas to different

brokers to balance load among brokers. For details, see Reassigning
Partitions.

Distributed Message Service for Kafka
Best Practices 8 Handling Uneven Service Data

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

https://support.huaweicloud.com/eu/usermanual-kafka/kafka_ug_0023.html
https://support.huaweicloud.com/eu/usermanual-kafka/kafka_ug_0023.html

9 Configuring Message Accumulation
Monitoring

Overview
Unprocessed messages accumulate if the client's consumption is slower than the
server's sending. Accumulated messages cannot be consumed in time.

Configure alarm rules so that you will be notified when the number of
accumulated messages in a consumer group exceeds the threshold. The procedure
described in this section can also be applied to setting alarm rules for other
metrics.

Prerequisites
You have purchased a Kafka instance, created a topic, and there are available
messages.

Procedure

Step 1 Log in to the console of DMS for Kafka. Click the instance to be configured with
an alarm rule.

Step 2 In the left navigation pane, choose Monitoring And Alarm > Details.

Step 3 On the By Consumer Group tab page, select the consumer group for which you
want to create an alarm rule.

Distributed Message Service for Kafka
Best Practices 9 Configuring Message Accumulation Monitoring

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180413002.html
https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180413002.html
https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180604013.html
https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180604018.html

Figure 9-1 Selecting a consumer group

Step 4 Hover the mouse pointer over Consumer Available Messages and click .

Figure 9-2 Consumer available messages chart

Step 5 On the Create Alarm Rule page, enter Name. The alarm name can contain only
letters, digits, underscores (_), and hyphens (-).

Figure 9-3 Configuring the basic information of the alarm rule

Step 6 On the Create Alarm Rule page, configure Monitoring Scope. Retain the current
settings.

Distributed Message Service for Kafka
Best Practices 9 Configuring Message Accumulation Monitoring

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Step 7 On the Create Alarm Rule page, configure Alarm Policy.

Figure 9-4 Configuring the alarm policy

Alarm policy: A major alarm is generated if the number of raw data records is
greater than or equal to 10,000 for one consecutive time. The alarm is notified
once a day.

Step 8 On the Create Alarm Rule page, click Create Notification Policy.

Step 9 Set the notification policy and click OK.

Figure 9-5 Creating a notification policy

Table 9-1 Notification policy parameters

Parameter Description

Language Select a language for the notification policy.

Distributed Message Service for Kafka
Best Practices 9 Configuring Message Accumulation Monitoring

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Parameter Description

Name Set the name of the notification policy.

Alarm Severity Select Major.

Notification
Cause

Select Alarm triggered which indicates that a notification is
sent when an alarm is triggered.

Recipients Select Topic subscription and click Create an SMN topic.
On the SMN console, create a topic and add a
subscription. After the alarm notification topic is created,
go back to the Create Alarm Rule page, click to make
the created topic available for selection.
NOTE

After the subscription is added, the corresponding subscription
endpoint will receive a subscription notification. You need to
confirm the subscription so that the endpoint can receive alarm
notifications.

Days Retain the default settings. That is, if an alarm is triggered,
a notification is sent every day.

Notification
Window

Cloud Eye sends notifications only within the validity period
specified in the alarm rule. Retain the default settings.

Notification
Templates

Select Default.

Step 10 After the notification policy is created, the Create Alarm Rule page is displayed.

Step 11 Click next to Notification Policies and select the new policy from the drop-
down list box.

Figure 9-6 Setting a notification policy

Step 12 Click Create.

After the alarm rule is created, you can view it on the Alarm Management >
Alarm Rules page.

Distributed Message Service for Kafka
Best Practices 9 Configuring Message Accumulation Monitoring

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

https://support.huaweicloud.com/eu/usermanual-ces/en-us_topic_0085216039.html
https://support.huaweicloud.com/eu/usermanual-ces/en-us_topic_0084572343.html
https://support.huaweicloud.com/eu/usermanual-ces/en-us_topic_0084572343.html

Figure 9-7 Viewing the new alarm rule

----End

Distributed Message Service for Kafka
Best Practices 9 Configuring Message Accumulation Monitoring

Issue 01 (2024-11-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

	Contents
	1 Kafka Best Practices
	2 Improving Kafka Message Processing Efficiency
	3 Optimizing Consumer Polling
	4 Interconnecting Logstash to Kafka to Produce and Consume Messages
	5 Using MirrorMaker to Synchronize Data Across Clusters
	6 Handling Message Accumulation
	7 Handling Service Overload
	8 Handling Uneven Service Data
	9 Configuring Message Accumulation Monitoring

