
Distributed Message Service for RocketMQ

Best Practices

Issue 01

Date 2025-05-06

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Overview..1

2 Deduplicating Messages Through Message Idempotence...2

3 Classifying Messages with Topic and Tag..4

4 Ensuring Subscription Consistency..7

5 Handling Message Accumulation..10

6 Configuring Message Accumulation Monitoring...13

Distributed Message Service for RocketMQ
Best Practices Contents

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Overview

This section summarizes best practices of RocketMQ in common scenarios. Each
practice is given a description and procedure.

Table 1-1 RocketMQ best practices

Best Practice Description

Deduplicating
Messages Through
Message
Idempotence

To avoid service exceptions caused by repeated message
consumption, RocketMQ consumers receive a message
and perform idempotent processing based on a unique
key. This document contains the concept, scenario, and
implementation of idempotent messages.

Classifying Messages
with Topic and Tag

RocketMQ classifies services by topic or tag. Topics are
superior to tags. This document describes how to filter
messages by topic and tag.

Ensuring
Subscription
Consistency

Messages may be consumed repeatedly or missed due
to disordered consumption logic caused by inconsistent
subscriptions. This document describes the concept,
principle, and implementation of subscription
consistency.

Handling Message
Accumulation

This document describes the causes and solutions of
message stack.

Configuring
Message
Accumulation
Monitoring

This document describes how to configure RocketMQ
alarm rules on Cloud Eye. Cloud Eye can monitor the
real-time instance running status and key service
metrics, and notify exceptions in time. In this way, you
are aware of risks in the production environment.

Distributed Message Service for RocketMQ
Best Practices 1 Overview

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

2 Deduplicating Messages Through
Message Idempotence

Overview
In RocketMQ service processes, an idempotent message process refers to a
situation where a message is re-sent and consumed for multiple times and each
consumption result is the same, having no negative effects on services.
Idempotent messages ensure consistency in the final processing results. Services
are not affected no matter how many times a message is re-sent.

Take paying as an example. Assume that a user selects a product, makes payment,
and receives multiple bills due to unstable Internet connection. The bills are all
paid. However, the billing should take place only once and the merchant should
generate only one order placement. In this case, idempotent messages can be
used to avoid the repetition.

In actual applications, messages are re-sent because of intermittent network
disconnections and client faults during message production or consumption.
Message repetition can be classified into two scenarios.

● A producer repeatedly sends a message:
If a producer successfully sends a message to the server but does not receive
a successful response due to an intermittent network disconnection, the
producer determines that the message failed to be sent and tries resending
the message. In this case, the server receives two messages of the same
content. Consumers consume two messages of the same content.

● A consumer repeatedly consumes a message:
A message is successfully delivered to a consumer and processed. If the server
does not receive a response from the consumer due to an intermittent
network disconnection, the server determines that the message failed to be
delivered. To ensure that the message is consumed at least once, the server
retries delivering the message. As a result, the consumer consumes two
messages of the same content.

Implementation
Messages with different IDs may have the same content, so the ID cannot be used
as the unique identifier. RocketMQ supports idempotent messages by using the

Distributed Message Service for RocketMQ
Best Practices

2 Deduplicating Messages Through Message
Idempotence

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

message key (unique service identifier) to identify messages. The sample code for
configuring a message key is as follows:

Message message = new Message();
message.setKey("Order_id"); // Set the message key, which can be the unique service identifier such as
the order placement ID.
SentResult sendResult = mqProducer.send(message);

When a producer sends a message, the message has a unique key. When
consuming the message, a consumer reads the unique message identifier (such as
the order placement ID) with getKeys(). The service logic can implement
idempotence with the unique identifier.

Distributed Message Service for RocketMQ
Best Practices

2 Deduplicating Messages Through Message
Idempotence

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

3 Classifying Messages with Topic and Tag

Overview
Topics are the basic logical unit of messages in message production and
consumption. Each topic contains several messages and each message belongs to
only one topic.

Tags are used to identify message of different types. Messages for different
purposes in the same business unit can have different tags in the same topic. Tags
ensure the clarity and coherency of code and facilitate query in RocketMQ.
Consumers can implement different consumption logic for different topics based
on tags to achieve better scalability.

Messages are first classified into topics and then with tags as shown in the
following figure.

Scenario

Use topics and tags properly to ensure clear and efficient service structure. You
can decide how to use topics and tags based on your needs.

● Message type: RocketMQ messages include normal, ordered, scheduled/
delayed, and transactional messages. Different types of messages should be
classified with topics, not tags.

● Message priority: Messages of a high priority should be in topics different
from those with a low priority.

● Service relationship: Messages from unrelated services should be classified in
topics. Messages from closely related services should be sent to the same
topic, and classified with tags based on subtypes or sequence.

Implementation
Take logistics transportation as an example. Order messages of fresh goods and
other goods are of different types, so they can be classified by two topics:

Distributed Message Service for RocketMQ
Best Practices 3 Classifying Messages with Topic and Tag

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Topic_Common and Topic_Fresh. For each message type, you can use different
tags to identify order destination provinces.

● Topic: Topic_Common
– Tag = Province_A
– Tag = Province_B

● Topic: Topic_Fresh
– Tag = Province_A
– Tag = Province_B

The following is message production sample code for a common goods order sent
to province A:

Message msg = new Message("Topic_Common", "Province_A" /* Tag */, ("Order_id " +
i).getBytes(RemotingHelper.DEFAULT_CHARSET));

The following is subscription sample code for a fresh goods order sent to province
A and province B:

consumer.subscribe("Topic_Fresh", "Province_A || Province_B");

Different Consumers Consume Different Tags
Different consumers may consume messages with different tags in the same topic.
For different tags in the same topic, improper consumer group settings lead to
chaotic consumption.

For example, there are Tags A and B in Topic A. Consumer A subscribes to Tag A.
Consumer B subscribes to Tag B.

If Consumers A and B are in the same consumer group, messages with Tag A are
evenly sent to Consumers A and B. Consumer B did not subscribe to Tag A, so it
filters out messages with Tag A. As a result, some Tag A messages are not
consumed.

Figure 3-1 Incorrect consumer group settings

To solve this problem, configure Consumers A and B with different consumer
groups.

Distributed Message Service for RocketMQ
Best Practices 3 Classifying Messages with Topic and Tag

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Figure 3-2 Correct consumer group settings

Distributed Message Service for RocketMQ
Best Practices 3 Classifying Messages with Topic and Tag

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

4 Ensuring Subscription Consistency

Overview
A consistent subscription indicates that all topics and tags subscribed by all
consumers in the same consumer group are the same. An inconsistent subscription
causes disordered consumption logic and even message losses.

Principle

RocketMQ assigns message queues for each topic. The more queues, the higher
the consumption concurrency. In distributed application scenarios, multiple
consumers in the same consumer group jointly consume messages from all
queues in a topic. Queues are assigned by consumer group and evenly assigned to
the consumers in a consumer group, regardless of whether a consumer has
subscribed to the topic. Each consumer is assigned some queues of a topic. Each
queue is assigned to only one consumer.

Correct Subscription

In distributed application scenarios, all the consumers in a consumer group have
the same consumer group ID. They must subscribe to the same topic and tag
(consistent subscription) to ensure correct consumption logic and no message
losses.

● Consumers in the same consumer group must subscribe to the same topic.
For example, assume that Consumers A and B are in Consumer Group 1 and
Consumer A subscribes to Topics A and B. Then, Consumer B must also
subscribe to both Topics A and B, and cannot subscribe to only Topic A or B or
even Topic C.

● The tags in the topic subscribed by consumers in the same consumer group
must be the same, including the tag quantity and sequence. For example,
assume that Consumers A and B are in Consumer Group 2. Consumer A
subscribes to Tag A||Tag B in Topic A. Then, when subscribing to Topic A,
Consumer B must also subscribe to Tag A||Tag B, and cannot subscribe only to
Tag A or B or Tag B||Tag A.

Distributed Message Service for RocketMQ
Best Practices 4 Ensuring Subscription Consistency

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Figure 4-1 Correct subscription consistency setting

A consistent subscription ensures message consumption in the same consumer
group work properly, avoiding disordered message logic or message losses.
Producers should classify messages properly for consumers to correct subscription
to tags. Consumers should ensure consistent subscriptions.

Incorrect Subscription

● Consumers in the same consumer group subscribe to different topics.
For example, assume that Consumers A and B are in Consumer Group 1.
Consumer A subscribes to Topic A but Consumer B subscribes to Topic B.
When producers send messages to Topic A, the messages are evenly sent to
Consumers A and B by queue. Consumer B has not subscribed to Topic A, so it
filters out messages from Topic A (Queue 2 in Topic A in Figure 4-2), leaving
them unconsumed.

Figure 4-2 Incorrect topic subscriptions

● Consumers in the same consumer group subscribe to different tags of the
same topic.
For example, assume that Consumers A and B are in Consumer Group 1.
Consumer A subscribes to Tag A and Topic A. Consumer B subscribes to Tag B

Distributed Message Service for RocketMQ
Best Practices 4 Ensuring Subscription Consistency

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

and Topic A. When producer A sends messages to Tag A in Topic A, messages
with Tag A are evenly sent to Consumers A and B by queue. Consumer B has
not subscribed to Tag A, so it filters out messages with Tag A (Tag A in Queue
2 in Figure 4-3), leaving them unconsumed.

Figure 4-3 Incorrect tag subscriptions

Implementation
● Subscriptions to One Tag of One Topic

Consumers 1, 2, and 3 in Consumer Group 1 all subscribe to Tag_A and
Topic_A. They have consistent subscriptions, meaning that their subscription
code is the same. The sample code is as follows:
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("Group1");
consumer.subscribe("Topic_A", "Tag_A");

● Subscriptions to Multiple Tags of One Topic
Consumers 1, 2, and 3 in Consumer Group 1 all subscribe to Tag_A and Tag_B
of Topic_A. The sequence is Tag_A||Tag_B. The consumers have consistent
subscriptions, meaning that their subscription code is the same. The sample
code is as follows:
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("Group1");
consumer.subscribe("Topic_A", "Tag_A||Tag_B");

● Subscriptions to Multiple Tags of Multiple Topics
Consumers 1, 2, and 3 in Consumer Group 1 all subscribe to Topic_A (no
specified tag) and Topic_B (Tag_A and Tag_B). The sequence is Tag_A||Tag_B.
The consumers have consistent subscriptions, meaning that their subscription
code is the same. The sample code is as follows:
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("Group1");
consumer.subscribe("Topic_A", "*");
consumer.subscribe("Topic_B", "Tag_A||Tag_B");

Distributed Message Service for RocketMQ
Best Practices 4 Ensuring Subscription Consistency

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

5 Handling Message Accumulation

Overview
Message accumulation is common in RocketMQ services. Unprocessed messages
accumulate if the client's consumption is slower than the server's sending.
Accumulated messages cannot be consumed in time. Service systems with high
requirements on real-time consumption cannot afford even a short message delay
caused by message accumulation. Message accumulation causes are as follows:

● Messages are not consumed in time because message production is faster
than consumption. Messages accumulate and consumption cannot be
restored automatically.

● The service system logic is time-consuming, causing low consumption
efficiency.

Message Consumption Process

Figure 5-1 Message consumption process

The message consumption process consists of two phases:

● Message pull
Clients pull messages from servers in batches and store the messages to local
cache queues. In this phase, no messages accumulate because throughput is
high on the intranet.

● Message consumption
Clients submit the cached messages to consumption threads, wait for the
service consumption logic to process the messages, and receive the processing
result. The consumption capability in this phase depends on the consumption
duration and concurrency. The overall message throughput is affected if the

Distributed Message Service for RocketMQ
Best Practices 5 Handling Message Accumulation

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

service logic is complicated and spends a long time on a single message. Low
message throughput causes local cache queues on the client to reach the
upper limit. Messages are no longer pulled from the server, resulting in
accumulation.
Therefore, whether messages accumulate depends on the consumption
capability of the client, and the consumption capability depends on the
consumption duration and concurrency. Consumption time is prior to its
concurrency. Users should ensure timely consumption before considering its
concurrency.

Consumption Duration

Consumption duration is mainly affected by the service code, specially, the internal
CPU computational code and the external I/O operational code. If there is no
complex recursion or loop code, internal CPU computing duration can be ignored.
Instead, you should focus on external I/O operations.

External I/O operations are as follows:

● Read/Write operations on external databases such as remote MySQL
databases.

● Read/Write operations on external caches such as remote Redis.
● Invocations of downstream systems. For example, Dubbo invokes remote RPC

and Spring Cloud invokes downstream HTTP APIs.

Learning about the downstream invoking logic helps you understand the duration
of each invocation to determine whether the I/O operation duration in the service
logic is proper. In general, faulty services or limited capacity in downstream
systems causes longer consumption duration. Service faults can arise from
network bandwidth issues as well as system errors.

Consumption Concurrency

The consumption concurrency on the client depends on number of clients (or
consumers in a consumer group) and number of threads per client. The
consumption concurrency of normal, scheduled/delayed, transactional, and
ordered messages is calculated as follows.

Message Type Concurrency Formula

Normal Number of threads per client ×
Number of clients

Scheduled/Delayed

Transactional

Ordered Min (Number of threads per client ×
Number of clients, Number of queues)

Note: The number of threads per client should be adjusted carefully. A large
number of threads increases thread switch overhead.

An ideal calculation model for optimal number of threads per client: C ×
(T1+T2)/T1.

Distributed Message Service for RocketMQ
Best Practices 5 Handling Message Accumulation

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

C indicates the number of vCPUs per broker. T1 indicates the internal CPU
computation duration. T2 indicates the external I/O operation duration. Thread
switch overhead is ignored. I/O operations consume no CPU resources. A thread
should have sufficient messages and memory for processing.

The model of calculating the maximum number of threads is only an ideal
scenario. In actual scenarios, gradually increase threads based on the actual effect.

Implementation
To avoid unexpected message accumulation, the consumption duration should be
accounted for and concurrency should be set properly in the design of service
logic.

● Accounting for consumption duration
Perform pressure test to obtain the consumption duration. Analyze and
optimize time-consuming service logic code. Pay attention to:
– Whether the computation of the consumption logic is too complex, and

whether any complex recursions or loops exist in the code.
– Whether I/O operations are necessary in the consumption logic and

whether local caches can be used instead.
– Whether the complicated, time-consuming operations in the consumption

logic can be asynchronously processed.
● Setting consumption concurrency

Consumption concurrency calculation can be adjusted with the following
methods:

a. Obtain the ideal number of threads using a formula. Then, select a
number smaller than the ideal number as the initial value. Increase
threads per client gradually to find an optimal number of consumption
threads and message throughput per client.

b. Calculate the number of clients needed based on the upstream and
downstream traffic peaks: Number of clients = Traffic peak/Message
throughput per client.

Distributed Message Service for RocketMQ
Best Practices 5 Handling Message Accumulation

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

6 Configuring Message Accumulation
Monitoring

Overview

Unprocessed messages accumulate if the client's consumption is slower than the
server's sending. Accumulated messages cannot be consumed in time.

Configure alarm rules so that you will be notified when the number of
accumulated messages in a consumer group exceeds the threshold. The procedure
described in this section can also be applied to setting alarm rules for other
metrics.

Prerequisites

You have purchased a RocketMQ instance, created a topic, and there are
available messages.

Procedure

The screenshots in this section use the RocketMQ 5.x basic edition as an example.

Step 1 Log in to the DMS for RocketMQ console and click the desired instance.

Step 2 In the left navigation pane, choose Monitoring And Alarm > Monitoring.

Step 3 On the By Consumer Group tab page, select the consumer group for which you
want to create an alarm rule.

Figure 6-1 Selecting a consumer group

Step 4 Hover the mouse pointer over Consumer Available Messages and click .

Distributed Message Service for RocketMQ
Best Practices 6 Configuring Message Accumulation Monitoring

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/eu/usermanual-hrm/hrm-ug-018.html
https://support.huaweicloud.com/eu/usermanual-hrm/hrm-ug-018.html
https://support.huaweicloud.com/eu/usermanual-hrm/hrm-ug-002.html
https://support.huaweicloud.com/eu/usermanual-hrm/hrm-ug-008.html

Figure 6-2 Consumer available messages chart

Step 5 On the Create Alarm Rule page, configure the basic information of the alarm
rule. The alarm name can contain only letters, digits, underscores (_), and hyphens
(-).

Figure 6-3 Configuring the basic information of the alarm rule

Step 6 Configure the alarm policy.

Alarm policy: A major alarm is generated if the number of raw data records is
greater than or equal to 10,000 for one consecutive time. The alarm is notified
once a day.

Figure 6-4 Configuring the alarm policy

Step 7 Configure the alarm notification.
● Alarm Notification: Enable this option.
● Notification Object: Select a cloud account contact or a created alarm

notification topic. An alarm notification topic contains the mobile number or
email address receiving the notification.

Distributed Message Service for RocketMQ
Best Practices 6 Configuring Message Accumulation Monitoring

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

If no alarm notification topics are available, click Create an SMN topic. On
the SMN console, create a topic and add a subscription. After the alarm
notification topic is created, go back to the Create Alarm Rule page, click
to make the created topic available for selection.

NO TE

After the subscription is added, the corresponding subscription endpoint will receive a
subscription notification. You need to confirm the subscription so that the endpoint
can receive alarm notifications.

Figure 6-5 Creating an alarm notification topic

Figure 6-6 Adding a subscription

● Validity Period: Cloud Eye sends notifications only within the validity period
specified in the alarm rule.

● Trigger Condition: condition for triggering an alarm notification. Generated
alarm and Cleared alarm are available.

Distributed Message Service for RocketMQ
Best Practices 6 Configuring Message Accumulation Monitoring

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/eu/usermanual-ces/en-us_topic_0085216039.html
https://support.huaweicloud.com/eu/usermanual-ces/en-us_topic_0084572343.html

Step 8 Configure the enterprise project and tag.

Figure 6-7 Configuring the enterprise project and tag.

● Enterprise Project: enterprise project with which the alarm rule is associated.
Only users who have the permissions of the enterprise project can view and
manage the alarm rule.

● Tag: tags are used to identify cloud resources. When you have many cloud
resources of the same type, you can use tags to classify cloud resources by
dimension (for example, usage, owner, or environment).

Step 9 Click Create.

After the alarm rule is created, you can view it on the Alarm Management >
Alarm Rules page.

----End

Distributed Message Service for RocketMQ
Best Practices 6 Configuring Message Accumulation Monitoring

Issue 01 (2025-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

	Contents
	1 Overview
	2 Deduplicating Messages Through Message Idempotence
	3 Classifying Messages with Topic and Tag
	4 Ensuring Subscription Consistency
	5 Handling Message Accumulation
	6 Configuring Message Accumulation Monitoring

