
FunctionGraph

Best Practices

Issue 01

Date 2024-08-21

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Compressing Images... 1
1.1 Introduction... 1
1.2 Preparation.. 2
1.3 Building a Program... 3
1.4 Adding an Event Source.. 5
1.5 Compressing Images.. 6

2 Watermarking Images..8
2.1 Introduction... 8
2.2 Preparation.. 8
2.3 Building a Program...10
2.4 Adding an Event Source..12
2.5 Watermarking Images...13

3 Integrating with CTS to Analyze Login/Logout Security... 15
3.1 Introduction.. 15
3.2 Preparation.. 16
3.3 Building a Program...17
3.4 Adding an Event Source..17
3.5 Processing Operation Records.. 18

4 Building an HTTP Function with Spring Boot.. 19

5 Creating a FunctionGraph Backend API That Uses a Custom Authorizer................23
5.1 Introduction.. 23
5.2 Resource Planning.. 23
5.3 Building a Program...24
5.4 Adding an Event Source..29
5.5 Debugging and Calling the API..30

6 Building an HTTP Function with Go... 32

FunctionGraph
Best Practices Contents

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Compressing Images

1.1 Introduction
The best practice for FunctionGraph guides you through image compressing based
on a function.

Scenarios
● Upload images to a specified Object Storage Service (OBS) bucket.
● Compress each uploaded image.
● Upload the processed images to another specified OBS bucket.

NO TE

1. This tutorial uses two different OBS buckets.
2. The function you create must be in the same region (default region) as the OBS

buckets.

Procedure
● Create two buckets on the OBS console.
● Create a function with an OBS trigger.
● Upload an image to one of the buckets.
● The function is triggered to compress the image.
● The function uploads the processed image to the other bucket.

NO TE

After you complete this tutorial, your account will have the following resources:
1. Two OBS buckets (respectively used for storing uploaded and processed images)
2. A thumbnail image creation function (fss_examples_image_thumbnail)
3. An OBS trigger used for associating the function with the OBS buckets

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

1.2 Preparation
Before creating a function and adding an event source, you need to create two
OBS buckets to respectively store uploaded and compressed images.

After creating the OBS buckets, you must create an agency to delegate
FunctionGraph to access OBS resources.

Creating OBS Buckets

Precautions

● The function and the source and destination buckets for storing images must
be in the same region.

● Use two different OBS buckets. If only one bucket is used, the function will be
executed infinitely. (When an image is uploaded to the bucket, the function is
triggered to process the image and store the processed image into the bucket
again. In this way, the function executes endlessly.)

Procedure

Step 1 Log in to the OBS console, and click Create Bucket.

Step 2 On the Create Bucket page, set the bucket information.
● For Region, select a region.
● For Bucket Name, enter your-bucket-input.
● For Data Redundancy Policy, select Single-AZ storage.
● For Default Storage Class, select Standard.
● For Bucket Policies, select Private.
● Server-Side Encryption: Select Disable.
● For Direct Reading, select Disable.

Retain the default values for other parameters and click Create Now.

Step 3 Repeat Step 2 to create the destination bucket.

Name the destination bucket as your-bucket-output, and select the same region
and storage class as those of the source bucket.

Step 4 View your-bucket-input and your-bucket-output in the bucket list.

----End

Creating an Agency

Step 1 In the left navigation pane of the management console, choose Management &
Governance > Identity and Access Management to go to the IAM console. Then
choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://console.eu.huaweicloud.com/obs/

● For Agency Name, enter serverless_trust.

● For Agency Type, select Cloud service.

● For Cloud Service, select FunctionGraph.

● For Validity Period, select Unlimited.

● Enter a description.

Step 4 Click Next. On the Select Policy/Role page, select Tenant Administrator and
click Next.

NO TE

Users with the Tenant Administrator permission can perform any operations on all cloud
resources of the enterprise.

Step 5 Select an authorization scope that meets your service requirements, and click OK.

----End

1.3 Building a Program
Download fss_examples_image_thumbnail.zip (SHA-256 verification package)
to create an image compressing function from scratch.

Creating a Deployment Package

This example uses a Python function to compress images. For details about
function development, see Developing Functions in Python. Figure 1-1 shows
the sample code directory. The service code is not described.

Figure 1-1 Sample code directory

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_examples_image_thumbnail.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_examples_image_thumbnail.zip.sha256
https://support.huaweicloud.com/eu/devg-functiongraph/functiongraph_02_0420.html

Under the directory, index.py is a handler file. The following code is a snippet of
the handler file. Parameter output_bucket is the address for storing compressed
images and must be configured when you create a function.
def handler(event, context):
 ak = context.getAccessKey()
 sk = context.getSecretKey()
 if ak == "" or sk == "":
 context.getLogger().error('Failed to access OBS because no temporary '
 'AK, SK, or token has been obtained. Please '
 'set an agency.')
 return 'Failed to access OBS because no temporary AK, SK, or token ' \
 'has been obtained. Please set an agency. '

 obs_endpoint = context.getUserData('obs_endpoint')
 if not obs_endpoint:
 return 'obs_endpoint is not configured'

 output_bucket = context.getUserData('output_bucket')
 if not output_bucket:
 return 'output_bucket is not configured'

 compress_handler = ThumbnailHandler(context)
 records = event.get("Records", None)
 return compress_handler.run(records[0])

Creating a Function
When creating a function, specify an agency with OBS access permissions so that
FunctionGraph can invoke the OBS service.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Click Create from scratch and configure the function information.

After setting the basic information, click Create Function.
● Function Type: Select Event Function.
● For Function Name, enter fss_examples_image_thumbnail.
● For Agency, select serverless_trust created in Creating an Agency.
● For Runtime, select Python3.6

Step 4 On the fss_examples_image_thumbnail details page, configure the following
information:

1. On the Code tab, choose Upload > Local ZIP, upload the sample code
fss_examples_image_thumbnail.zip.

2. Choose Configuration > Basic Settings, set the following parameters, and
click Save.
– For Memory, select 256.
– For Execution Timeout, enter 40.
– For Handler, retain the default value index.handler.
– For App, retain the default value default.
– For Description, enter Image compressing.

3. Choose Configuration > Environment Variables, set environment variables,
and click Save.

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://console.eu.huaweicloud.com/functiongraph/

output_bucket: the output bucket parameter defined in index.py. Set the
value to your-bucket-output, the bucket created in Creating OBS Buckets.
obs_endpoint: the bucket address parameter defined in index.py. Set the
value to obs.region.myhuaweicloud.com.

Table 1-1 Environment variable description

Environment Variable Description

obs_endpoint OBS endpoint.

output_bucket OBS bucket for storing output
images.

----End

Selecting a Dependency

The sample code depends on the Pillow package, which should be imported as
dependencies. The procedure is as follows:

Step 1 Go to the fss_examples_image_thumbnail details page, click the Code tab, and
click Add in the Dependencies area at the bottom.

Step 2 Add public dependency pillow-7.1.2.

Figure 1-2 Adding dependencies

----End

NO TE

You do not need to configure the reference after adding a dependency, as it is
preconfigured in the function code of the demo package.

1.4 Adding an Event Source
After creating the OBS buckets and function, you can add an event source to the
function by creating an OBS trigger. Perform the following procedure:

Step 1 On the fss_examples_image_thumbnail page, choose Configuration > Triggers,
and click Create Trigger.

Step 2 Select Object Storage Service (OBS) for Trigger Type, and set the trigger
information, as shown in Figure 1-3.
● For Bucket Name, select your-bucket-input created in Creating OBS

Buckets.
● For Events, select Put and Post.

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Figure 1-3 Creating a trigger

Step 3 Click OK.

NO TE

After the OBS trigger is created, when an image is uploaded or updated to bucket your-
bucket-input, an event is generated to trigger the function.

----End

1.5 Compressing Images
When an image is uploaded or updated to bucket your-bucket-input, an event is
generated to trigger the function. The function compresses the image and stores
the compressed one into bucket your-bucket-output.

Uploading an Image to Generate an Event
Log in to the OBS console, go to the object page of the your-bucket-input
bucket, and upload the image.jpg image, as shown in Figure 1-4.

Figure 1-4 Uploading an image

NO TE

The size of the original image.jpg file exceeds 28 KB.

Triggering the Function
After the image is uploaded to bucket your-bucket-input, OBS generates an event
to trigger the image compressing function. The function compresses the image
and stores the compressed one into bucket your-bucket-output. You can view
running logs of the function on the Logs tab page.

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://console.eu.huaweicloud.com/obs/

Go to the Objects page of the your-bucket-output bucket and view the size of
the compressed image.

Figure 1-5 Compressing the image

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

2 Watermarking Images

2.1 Introduction
The best practice for FunctionGraph guides you through image watermarking
based on a function.

Scenarios
● Upload images to a specified OBS bucket.
● Watermark each uploaded image.
● Upload the processed images to another specified OBS bucket.

NO TE

1. This tutorial uses two different OBS buckets.
2. The function you create must be in the same region (default region) as the OBS

buckets.

Procedure
● Create two buckets on the OBS console.
● Create a function with an OBS trigger.
● Upload an image to one of the buckets.
● The function is triggered to watermark the image.
● The function uploads the processed image to the other bucket.

NO TE

After you complete the operations in this tutorial, your account will have the following
resources:
1. Two OBS buckets (respectively used for storing uploaded and processed images)
2. An image watermarking function
3. An OBS trigger used for associating the function with the OBS buckets

2.2 Preparation

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Before creating a function and adding an event source, you need to create two
OBS buckets to respectively store uploaded and watermarked images.

After creating the OBS buckets, you must create an agency to delegate
FunctionGraph to access OBS resources.

Creating OBS Buckets

Precautions

● The function and the source and destination buckets for storing images must
be in the same region.

● Use two different OBS buckets. If only one bucket is used, the function will be
executed infinitely. (When an image is uploaded to the bucket, the function is
triggered to process the image and store the processed image into the bucket
again. In this way, the function executes endlessly.)

Procedure

Step 1 Log in to the OBS console, and click Create Bucket.

Step 2 On the Create Bucket page, set the bucket information.
● For Region, select a region.
● For Data Redundancy Policy, select Single-AZ storage.
● For Bucket Name, enter hugb-bucket-input.
● For Default Storage Class, select Standard.
● For Bucket Policies, select Private.
● For Server-Side Encryption: select Disable
● For Direct Reading, select Disable.

Click Create Now.

Step 3 Repeat Step 2 to create the destination bucket.

Name the destination bucket as hugb-bucket-output, and select the same region
and storage class as those of the source bucket.

Step 4 View hugb-bucket-input and hugb-bucket-output in the bucket list.

----End

Creating an Agency

Step 1 In the left navigation pane of the management console, choose Management &
Governance > Identity and Access Management to go to the IAM console. Then
choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.
● For Agency Name, enter serverless_trust.
● For Agency Type, select Cloud service.
● For Cloud Service, select FunctionGraph.

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://console.eu.huaweicloud.com/obs/

● For Validity Period, select Unlimited.
● Enter a description.

Step 4 Click Next. On the Select Policy/Role page, select Tenant Administrator and
click Next.

NO TE

Users with the Tenant Administrator permission can perform any operations on all cloud
resources of the enterprise.

Step 5 Select an authorization scope that meets your service requirements, and click OK.

----End

2.3 Building a Program
Download watermark.zip to create an image watermarking function from
scratch.

Creating a Deployment Package
This example uses a Python function to watermark images. For details about
function development, see Developing Functions in Python. Figure 2-1 shows
the sample code directory. The service code is not described.

Figure 2-1 Sample code directory

Under the directory, index.py is a handler file. The following code is a snippet of
the handler file. Parameter obs_output_bucket is the address for storing
watermarked images and must be configured when you create a function.

def handler(event, context):
 srcBucket, srcObjName = getObjInfoFromObsEvent(event)
 outputBucket = context.getUserData('obs_output_bucket')

 client = newObsClient(context)
 # download file uploaded by user from obs
 localFile = "/tmp/" + srcObjName
 downloadFile(client, srcBucket, srcObjName, localFile)

 outFileName, outFile = watermark_image(localFile, srcObjName)
 # Upload converted files to a new OBS bucket.
 uploadFileToObs(client, outputBucket, outFileName, outFile)

 return 'OK'

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/watermark.zip
https://support.huaweicloud.com/eu/devg-functiongraph/functiongraph_02_0420.html

Creating a Function
When creating a function, specify an agency with OBS access permissions so that
FunctionGraph can invoke the OBS service.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Click Create from scratch and configure the function information.

After setting the basic information, click Create.
● Function Type: Select Event Function.
● For Function Name, enter fss_examples_image_watermark.
● For Agency, select serverless_trust created in Creating an Agency.
● For Runtime, select Python 3.6.

Step 4 Go to the fss_examples_image_watermark details page, click the Code tab, click
Add in the Dependencies area at the bottom, and add the public dependency
pillow-7.1.2.

Figure 2-2 Adding a dependency

Step 5 On the fss_examples_image_watermark details page, configure the following
information:
1. On the Code tab, choose Upload > Local ZIP, upload the sample code

watermark.zip.
2. Choose Configuration > Basic Settings, set the following parameters, and

click Save.
– For Memory, select 128.
– For Execution Timeout, enter 3.
– For Handler, retain the default value index.handler.
– For App, retain the default value default.
– For Description, enter Image watermarking.

3. Choose Configuration > Environment Variables, set environment variables,
and click Save. The following figure is for reference only. Replace the
following values with the actual values.
obs_output_bucket: the output bucket parameter defined in index.py. Set the
value to hugb-bucket-output, the bucket created in Creating OBS Buckets
for storing watermarked images.
obs_region: region where the OBS bucket obs_output_bucket resides, for
example, eu-west-101.

Figure 2-3 Adding environment variables

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://console.eu.huaweicloud.com/functiongraph/

Table 2-1 Environment variable description

Environment Variable Description

obs_region Region to which the OBS bucket
belongs. The value must be the
same as the region to which the
function belongs.

obs_output_bucket OBS bucket for storing watermarked
images.

----End

2.4 Adding an Event Source
After creating the OBS buckets and function, you can add an event source to the
function by creating an OBS trigger. Perform the following procedure:

Step 1 On the fss_examples_image_watermark page, click the Triggers tab and click
Create Trigger.

Step 2 Select OBS for Trigger Type, and set the trigger information, as shown in Figure
2-4.

For Bucket Name, select hugb-bucket-input created in Creating OBS Buckets.

For Events, select Put and Post.

Figure 2-4 Creating an OBS trigger

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Step 3 Click OK.

NO TE

After the OBS trigger is created, when an image is uploaded or updated to bucket hugb-
bucket-input, an event is generated to trigger the function.

----End

2.5 Watermarking Images
When an image is uploaded or updated to bucket hugb-bucket-input, an event is
generated to trigger the function. The function watermarks the image and stores
the watermarked one into bucket hugb-bucket-output.

Uploading an Image to Generate an Event
Log in to the OBS console, go to the object page of the hugb-bucket-input
bucket, and upload the image.jpg image, as shown in Figure 2-5.

Figure 2-5 Uploading an image

Triggering the Function
After the image is uploaded to bucket hugb-bucket-input, OBS generates an
event to trigger the image watermarking function. The function watermarks the
image and stores the watermarked one into bucket hugb-bucket-output. You can
view running logs of fss_examples_image_watermark on the Logs tab page.

The Objects page of the bucket hugb-bucket-output displays the watermarked
image image.jpg, as shown in Figure 2-6. In the Operation column, click
Download to download the image and view the watermarking effect, as shown in
Figure 2-7.

Figure 2-6 Output image

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://console.eu.huaweicloud.com/obs/

Figure 2-7 Watermarked image

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

3 Integrating with CTS to Analyze Login/
Logout Security

3.1 Introduction
Scenarios

Collect real-time records of operations on cloud resources.

Create a Cloud Trace Service (CTS) trigger to obtain records of subscribed cloud
resource operations; analyze and process the operation records, and report alarms.

Use SMN to push alarm messages to service personnel by SMS message or email.
The processing workflow is shown in Figure 3-1.

Figure 3-1 Processing workflow

Values
● Quickly analyzes operation records collected by CTS and filters out operations

from specified IP addresses.

FunctionGraph
Best Practices

3 Integrating with CTS to Analyze Login/Logout
Security

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

● Processes and analyzes data in response to log events in a serverless
architecture, which features automatic scaling, no operation and
maintenance, and pay-per-use billing.

● Sends alarm notifications through SMN.

3.2 Preparation

Enabling CTS

Configure a tracker on CTS, as shown in Figure 3-2. For details, see Configuring a
Tracker.

Figure 3-2 Configuring a tracker

Creating an Agency

Step 1 Log in to the IAM console, and choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.
● For Agency Name, enter serverless_trust.
● For Agency Type, select Cloud service.
● For Cloud Service, select FunctionGraph.
● For Validity Period, select Unlimited.
● For Description, enter a description.

Step 4 Click Next. On the Select Policy/Role page, select Tenant Administrator and
click Next.

NO TE

Users with the Tenant Administrator permission can perform any operations on all cloud
resources of the enterprise.

Step 5 Click OK.

----End

Pushing Alarm Messages
● Create a topic named cts_test on the SMN console. For details, see Creating

a Topic.
● Add subscriptions to the cts_test topic to push alarm messages. For details,

see Adding a Subscription.

FunctionGraph
Best Practices

3 Integrating with CTS to Analyze Login/Logout
Security

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/eu/usermanual-cts/cts_03_0002.html
https://support.huaweicloud.com/eu/usermanual-cts/cts_03_0002.html
https://console.eu.huaweicloud.com/iam/
https://support.huaweicloud.com/eu/usermanual-smn/en-us_topic_0043961401.html
https://support.huaweicloud.com/eu/usermanual-smn/en-us_topic_0043961401.html
https://support.huaweicloud.com/eu/usermanual-smn/en-us_topic_0043961402.html

NO TE

Alarm messages of a subscribed topic can be pushed through emails, SMS messages,
and HTTP/HTTPS.
In this example, when operation log events trigger the specified function, the function
filters operations that are performed by users not in the IP address whitelist, and
pushes alarm messages to the subscription endpoints.

3.3 Building a Program
Download index.zip to create an alarm log analysis function from scratch.

Creating a Function
Create a function by uploading the sample code package to extract logs. Select
the Python 2.7 runtime and the agency serverless_trust created in Creating an
Agency. For details about how to create a function, see Creating an Event
Function.

This function analyzes received operation records, filters logins or logouts from
unauthorized IP addresses using a whitelist, and sends alarms under a specified
SMN topic. This function can be used to build an account security monitoring
service.

Setting Environment Variables
On the Configuration tab page of the function details page, set the environment
variables listed in Table 3-1.

Table 3-1 Environment variables

Environment Variable Description

SMN_Topic SMN topic.

RegionName Region name.

IP IP address whitelist.

Set the environment variables by following the procedure in Environment
Variables.

3.4 Adding an Event Source
Create a CTS trigger, as shown in Figure 3-3.

FunctionGraph
Best Practices

3 Integrating with CTS to Analyze Login/Logout
Security

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/index.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_logstore_warning.zip
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_0154.html
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_0154.html

Figure 3-3 Creating a CTS trigger

CTS records the logins and logouts of users on IAM.

3.5 Processing Operation Records
The function runs in response to account logins and logouts to filter those not
from the IP address whitelist, and sends a message or email through SMN, as
shown in Figure 3-4.

Figure 3-4 Email notification

The email contains the unauthorized IP address and user operation (login or
logout).

On the Monitoring tab page of the function, check the number of invocations, as
shown in Figure 3-5.

Figure 3-5 Function metrics

FunctionGraph
Best Practices

3 Integrating with CTS to Analyze Login/Logout
Security

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

4 Building an HTTP Function with Spring
Boot

Introduction
This chapter describes how to deploy services on FunctionGraph using Spring Boot.

Usually, you may build Spring Boot applications using SpringInitializr or IntelliJ
IDEA. This chapter uses the Spring.io project in https://spring.io/guides/gs/rest-
service/ as an example to deploy an HTTP function on FunctionGraph.

Procedure
To deploy an existing project to FunctionGraph, change the listening port of the
project to 8000, and create a file named bootstrap in the same directory as the
JAR file to include the command for executing the JAR file.

In this example, a Maven project created using IntelliJ IDEA is used.

Building a Code Package

1. Open the Spring Boot project and click package in the Maven area to
generate a JAR file.

Figure 4-1 Generating a JAR file

FunctionGraph
Best Practices 4 Building an HTTP Function with Spring Boot

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://start.spring.io/
https://spring.io/guides/gs/rest-service/
https://spring.io/guides/gs/rest-service/

2. Set the web port to 8000 (do not change this port) using the
application.properties file or specify the port during startup. HTTP functions
only support this port.

Figure 4-2 Configuring port 8000

3. Create a file named bootstrap in the same directory as the JAR file, and enter
the startup parameters.
/opt/function/runtime/java11/rtsp/jre/bin/java -jar -Dfile.encoding=utf-8 /opt/function/code/rest-
service-complete-0.0.1-SNAPSHOT.jar

4. Compress the JAR file and bootstrap file into a ZIP package.

Creating an HTTP Function and Uploading Code

Create an HTTP function and upload the ZIP file. For details, see Creating an
HTTP Function.

Verifying the Result

● Using a test event

a. On the function details page, select a version and click Configure Test
Event.

b. On the Configure Test Event page, select the event template apig-
event-template, and modify the path and pathParameters parameters
in the template to construct a simple GET request.

c. Click Create.
d. Click Test to obtain the response.

When debugging a function, increase the memory size and timeout,
for example, increase them to 512 MB and 5s.

● Using an APIG trigger

a. Create an APIG trigger by referring to Using an APIG Trigger. Set the
authentication mode to None for debugging.

b. Copy the generated URL, add the request parameter greeting?
name=fg_user to the end of the URL (see Figure 4-3), and access the
URL using a browser. The response shown in the following figure is
displayed.

FunctionGraph
Best Practices 4 Building an HTTP Function with Spring Boot

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1442.html#section2
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1442.html#section2
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1813.html

Figure 4-3 Invoking the function

The default APIG trigger URL is in the format "Domain name/Function
name". In this example, the URL is https://your_host.com/
springboot_demo, where the function name springboot_demo is the
first part of the path. If you send a GET request for https://
your_host.com/springboot_demo/greeting, the request address received
by Spring Boot contains springboot_demo/greeting. If you have
uploaded an existing project, you cannot access your own services
because the path contains a function name. To prevent this from
happening, use either of the following methods to annotate or remove
the function name:

▪ Method 1: Modify the mapping address in the code. For example,
add the first part of the default path to the GetMapping or class
annotation.

Figure 4-4 Modifying the mapping address

▪ Method 2: Click the trigger name to go to the APIG console, and
delete the function name in the path.

FAQ
1. What Directories Are Accessible to My Code?

An uploaded code package is stored in the /opt/function/code/ directory of
the function (runtime environments, compute resources, or containers).
However, the directory can only be read and cannot be written. If some data
must be written to the function during code running and logged locally, or
your dependency is written by default to the directory where the JAR file is
located, use the /tmp directory.

2. How Are My Logs Collected and Output?
Function instances that have not received any requests during a specific
period of time will be deleted together with their local logs. You will be
unable to view the function logs during function running. Therefore, in

FunctionGraph
Best Practices 4 Building an HTTP Function with Spring Boot

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

addition to writing logs to your local host, output logs to the console by
setting the output target of Log4j to System.out or by using the print
function.
Logs output to the console will be collected. If you have enabled LTS, the logs
will also be stored in LTS for near real-time analysis.
Suggestion: Enable LTS, and click Go to LTS to view and analyze logs on the
Real-Time Logs tab page.

3. What Permissions Does My Code Have?
Similar to common event functions, code does not have the root permission.
Code or commands requiring this permission cannot be executed in HTTP
functions.

4. How Do I Package Spring Boot Projects of Multiple Modules?
Configure the following to package these Spring Boot projects.
<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <mainClass>com.example.YourServiceMainClass</mainClass>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

FunctionGraph
Best Practices 4 Building an HTTP Function with Spring Boot

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1834.html#section1

5 Creating a FunctionGraph Backend API
That Uses a Custom Authorizer

5.1 Introduction
In addition to IAM and app authentication, APIG also supports custom
authentication with your own system, which can better adapt to your business
capabilities.

This chapter guides you through the process of creating a FunctionGraph API that
uses a custom authorizer.

Solution
● Log in to the FunctionGraph console, and create a function for custom

authentication.
● Create a service function.
● Create an API group on the APIG console.
● Create an API and configure a custom authorizer and a FunctionGraph

backend for it.
● Debug the API.

NO TE

After you complete the operations in this tutorial, your Huawei Cloud account will
have the following resources:

1. An API group storing APIs

2. A custom authentication function

3. A service function

4. An API with a custom authorizer and a FunctionGraph backend

5.2 Resource Planning
Ensure that the following resources are in the same region.

FunctionGraph
Best Practices

5 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Table 5-1 Resource planning

Resource Quantity

API group 1

Custom
authentication
function

1

Service function 1

API 1

5.3 Building a Program

Creating an API group

Before creating a function and adding an event source, create an API group to
store and manage APIs.

NO TE

Before enabling APIG functions, buy a gateway by referring to section "Buying a Gateway".

Step 1 Log in to the APIG console, choose API Management > API Groups in the
navigation pane, and click Create API Group in the upper right.

Step 2 Select Create Directly, set the group information, and click OK.
● Name: Enter a group name, for example, APIGroup_test.
● Description: Enter a description about the group.

----End

Creating a Custom Authentication Function

Frontend custom authentication means APIG uses a function to authenticate
received API requests. To authenticate API requests by using your own system,
create a frontend custom authorizer in APIG. Create a FunctionGraph function
with the required authentication information. Then use it to authenticate APIs in
APIG.

This section uses the header parameter event["headers"] as an example. For the
description about request parameters, see Request Parameter Code Example.

Step 1 In the left navigation pane of the management console, choose Compute >
FunctionGraph to go to the FunctionGraph console. Then choose Functions >
Function List in the navigation pane.

Step 2 Click Create Function.

Step 3 Set the function information, and click Create Function.
● Template: Select Create from scratch.

FunctionGraph
Best Practices

5 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

● Function Type: Select Event Function.
● Function Name: Enter a function name, for example, apig-test.
● Agency: Select Use no agency.
● Runtime: Select Python 2.7.

Step 4 On the function details page that is displayed, click the Code tab and copy the
example request parameter code to the online editor, and click Deploy.

Step 5 Click Configure Test Event, and select an event template. Modify the template as
required, and click Create. In this example, add "auth":"abc" to "headers".

Figure 5-1 Configuring a test event

Step 6 Click Test. If the result is Execution successful, the function is successfully
created.

Figure 5-2 Viewing the execution result

----End

Creating a Custom Authorizer
Create a custom authorizer in APIG and connect it to the frontend custom
authentication function.

Step 1 In the left navigation pane of the management console, choose Middleware >
API Gateway to go to the APIG console. In the navigation pane, choose API
Management > API Policies. On the Custom Authorizers tab, click Create
Custom Authorizer.

Step 2 Configure basic information about the custom authorizer according to the
following figure.

FunctionGraph
Best Practices

5 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

● Name: Enter a name, for example, Authorizer_test.
● Type: Select Frontend.
● Function URN: Select apig-test.

Figure 5-3 Creating a custom authorizer

Step 3 Click OK.

----End

Creating a Backend Service Function

APIG supports FunctionGraph backends. After you create a FunctionGraph
backend API, APIG will trigger the relevant function, and the function execution
result will be returned to APIG.

Step 1 Create a service function by referring to Creating a Custom Authentication
Function. The function name must be unique.

Step 2 On the Code tab of the function details page, copy the following code to the
online editor, and click Deploy.
-*- coding:utf-8 -*-
import json
def handler (event, context):
 body = "<html><title>Functiongraph Demo</title><body><p>Hello, FunctionGraph!</p></body></html>"
 print(body)

FunctionGraph
Best Practices

5 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

 return {
 "statusCode":200,
 "body":body,
 "headers": {
 "Content-Type": "text/html",
 },
 "isBase64Encoded": False
 }

----End

Request Parameter Code Example

The following are the requirements you must meet when developing
FunctionGraph functions. Python 2.7 is used as an example.

The function must have a clear API definition. Example:

def handler (event, context)

● handler: name of the entry point function. The name must be consistent with
that you define when creating a function.

● event: event parameter defined in JSON format for the function.

● context: runtime information provided for executing the function. For details,
see SDK APIs.

event supports three types of request parameters in the following formats:

● Header parameter: event["headers"]["Parameter name"]

● Query string: event["queryStringParameters"]["Parameter name"]

● Custom user data: event["user_data"]

The three types of request parameters obtained by the function are mapped to the
custom authentication parameters defined in APIG.

● Header parameter: Corresponds to the identity source specified in Header for
custom authentication. The parameter value is transferred when the API that
uses custom authentication is called.

● Query string: Corresponds to the identity source specified in Query for custom
authentication. The parameter value is transferred when the API that uses
custom authentication is called.

● Custom user data: Corresponds to the user data for custom authentication.
The parameter value is specified when the custom authorizer is created.

● The function response cannot be greater than 1 MB and must be in the
following format:
{ "statusCode":200,
 "body": "{\"status\": \"allow\", \"context\": {\"user\": \"abc\"}}"
 }

The body field is a character string, which is JSON-decoded as follows:

{
 "status": "allow/deny",
 "context": {
 "user": "abc"
 }
}

FunctionGraph
Best Practices

5 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/eu/devg-functiongraph/functiongraph_02_0420.html#section2

The status field is mandatory and is used to identify the authentication result. The
authentication result can only be allow or deny. allow indicates that the
authentication is successful, and deny indicates that the authentication fails.

The context field is optional and can only be key-value pairs. The key value
cannot be a JSON object or an array.

The context field contains custom user data. After successful authentication, the
user data is mapped to the backend parameters. The parameter name in context
is case-sensitive and must be the same as the system parameter name. The
parameter name must start with a letter and can contain 1 to 32 characters,
including letters, digits, hyphens (-), and underscores (_).

Example Header Parameter

-*- coding:utf-8 -*-
import json
def handler(event, context):
 if event["headers"].get("auth")=='abc':
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"success"
 }
 })
 }
 else:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

Example Query String

-*- coding:utf-8 -*-
import json
def handler(event, context):
 if event["queryStringParameters"].get("test")=='abc':
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"abcd"
 }
 })
 }
 else:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

Example User Data

-*- coding:utf-8 -*-
import json
def handler(event, context):
 if event.get("user_data")=='abc':

FunctionGraph
Best Practices

5 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"abcd"
 }
 })
 }
 else:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

5.4 Adding an Event Source

Creating an API

After creating an API group, custom authentication function, and backend
function, create a FunctionGraph backend API that uses a custom authorizer by
performing the following steps:

Step 1 Log in to the APIG console, choose API Management > APIs in the navigation
pane, and click Create API in the upper right.

Step 2 Configure the basic information according to Figure 5-4 and Figure 5-5.

● API Name: Enter a name, for example, API_test.

● Group: Select API group APIGroup_test.

● URL: Set Method to ANY, Protocol to HTTPS, and Path to /testAPI.

● Gateway Response: Select default.

● Authentication Mode: Select Custom.

● Custom Authorizer: Select Authorizer_test.

Figure 5-4 Configuring frontend definition

FunctionGraph
Best Practices

5 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Figure 5-5 Configuring security settings

NO TE

For more parameters, see section "Creating an API".

Step 3 Click Next to configure the backend service according to Figure 5-6.
● Backend Type: Select FunctionGraph.
● Function URN: Select the created service function.
● Version/Alias: Select the latest version.
● Invocation Mode: Select Synchronous.

Figure 5-6 Configuring the backend service

Step 4 Click Finish.

Step 5 Click Publish to publish the API in the RELEASE environment.

Figure 5-7 Publishing an API

----End

5.5 Debugging and Calling the API
APIG provides online debugging, enabling you to check an API after configuring it.

Step 1 Log in to the APIG console. In the navigation pane, choose API Management >
APIs. Then click API_test, and click Debug.

Step 2 Add a header parameter and click Debug.

FunctionGraph
Best Practices

5 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

● Parameter Name: Enter auth.
● Parameter Value: Enter abc.

Figure 5-8 Adding a header

Step 3 Check whether the API response contains the content you have defined in the
service function. See Figure 5-9.

Figure 5-9 API response

----End

FunctionGraph
Best Practices

5 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

6 Building an HTTP Function with Go

Introduction

This chapter describes how to deploy services on FunctionGraph using Go.

HTTP functions do not support direct code deployment using Go. This section uses
binary conversion as an example to describe how to deploy Go programs on
FunctionGraph.

Procedure

Building a code package

Create the source file main.go. The code is as follows:

// main.go
package main

import (
 "fmt"
 "net/http"

 "github.com/emicklei/go-restful"
)

func registerServer() {
 fmt.Println("Running a Go Http server at localhost:8000/")

 ws := new(restful.WebService)
 ws.Path("/")

 ws.Route(ws.GET("/hello").To(Hello))
 c := restful.DefaultContainer
 c.Add(ws)
 fmt.Println(http.ListenAndServe(":8000", c))
}

func Hello(req *restful.Request, resp *restful.Response) {
 resp.Write([]byte("nice to meet you"))
}

func main() {
 registerServer()
}
bootstrap
/opt/function/code/go-http-demo

FunctionGraph
Best Practices 6 Building an HTTP Function with Go

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

In main.go, an HTTP server is started using port 8000, and an API whose path is /
hello is registered. When the API is invoked, "nice to meet you" is returned.

Compiling and packaging

1. On the Linux server, compile the preceding code using the go build -o go-
http-demo main.go command. Then, compress go-http-demo and
bootstrap into a ZIP package named xxx.zip.

2. To use the Golang compiler to complete packaging on a Windows host,
perform the following steps:
Switch the compilation environment
Check the previous Golang compilation environment
go env
Set the following parameters to the corresponding value of Linux
set GOARCH=amd64
go env -w GOARCH=amd64
set GOOS=linux
go env -w GOOS=linux

go build -o [target executable program] [source program]
Example
go build -o go-http-demo main.go

Restore the compilation environment
set GOARCH=amd64
go env -w GOARCH=amd64
set GOOS=windows
go env -w GOOS=windows

Creating an HTTP function and uploading code

Create an HTTP function and upload the xxx.zip package. For details, see
Creating an HTTP Function.

Creating an APIG trigger

Create an APIG trigger by referring to Using an APIG Trigger. Set the
authentication mode to None for debugging.

Figure 6-1 APIG trigger

Invocation test

Copy the URL of the APIG trigger and the /hello path registered in the code to the
address box of the browser. The following information is displayed.

FunctionGraph
Best Practices 6 Building an HTTP Function with Go

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1442.html#section2
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1813.html

Figure 6-2 Request result

FunctionGraph
Best Practices 6 Building an HTTP Function with Go

Issue 01 (2024-08-21) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

	Contents
	1 Compressing Images
	1.1 Introduction
	1.2 Preparation
	1.3 Building a Program
	1.4 Adding an Event Source
	1.5 Compressing Images

	2 Watermarking Images
	2.1 Introduction
	2.2 Preparation
	2.3 Building a Program
	2.4 Adding an Event Source
	2.5 Watermarking Images

	3 Integrating with CTS to Analyze Login/Logout Security
	3.1 Introduction
	3.2 Preparation
	3.3 Building a Program
	3.4 Adding an Event Source
	3.5 Processing Operation Records

	4 Building an HTTP Function with Spring Boot
	5 Creating a FunctionGraph Backend API That Uses a Custom Authorizer
	5.1 Introduction
	5.2 Resource Planning
	5.3 Building a Program
	5.4 Adding an Event Source
	5.5 Debugging and Calling the API

	6 Building an HTTP Function with Go

