
FunctionGraph

Best Practices

Issue 01

Date 2024-06-12

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Compressing Images... 1
1.1 Introduction... 1
1.2 Preparation.. 2
1.3 Building a Program... 3
1.4 Adding an Event Source.. 5
1.5 Compressing Images.. 6

2 Watermarking Images..8
2.1 Introduction... 8
2.2 Preparation.. 8
2.3 Building a Program...10
2.4 Adding an Event Source..12
2.5 Watermarking Images...13

3 Processing DIS Data.. 15
3.1 Introduction.. 15
3.2 Preparation.. 15
3.3 Building a Program...17
3.4 Adding an Event Source..23
3.5 Processing Data... 24

4 Integrating with LTS to Analyze Logs in Real Time..26
4.1 Introduction.. 26
4.2 Preparation.. 27
4.3 Building a Program...28
4.4 Adding an Event Source..29
4.5 Processing Log Data...30
4.6 Other Application Scenarios..30

5 Integrating with CTS to Analyze Login/Logout Security... 32
5.1 Introduction.. 32
5.2 Preparation.. 33
5.3 Building a Program...34
5.4 Adding an Event Source..34
5.5 Processing Operation Records.. 35

FunctionGraph
Best Practices Contents

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

6 Building an HTTP Function with Spring Boot.. 36

7 Creating a FunctionGraph Backend API That Uses a Custom Authorizer................40
7.1 Introduction.. 40
7.2 Resource Planning.. 40
7.3 Building a Program...41
7.4 Adding an Event Source..46
7.5 Debugging and Calling the API..47

8 Processing IoT Data.. 49
8.1 Introduction.. 49
8.2 Preparation.. 50
8.3 Building a Program...52

9 Function + DEW: Encrypting/Decrypting Files... 55
9.1 Introduction.. 55
9.2 Preparation.. 56
9.3 Building a Program...57
9.4 Adding an Event Source..63
9.5 Processing Files.. 64

10 Filtering Logs in Real Time by Using FunctionGraph and LTS................................. 65
10.1 Introduction.. 65
10.2 Preparation... 66
10.3 Building a Program.. 67
10.4 Adding an Event Source... 70
10.5 Processing Results.. 70
10.6 Extended Applications...71

11 Building an HTTP Function with Go... 73

FunctionGraph
Best Practices Contents

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Compressing Images

1.1 Introduction
The best practice for FunctionGraph guides you through image compressing based
on a function.

Scenarios
● Upload images to a specified Object Storage Service (OBS) bucket.
● Compress each uploaded image.
● Upload the processed images to another specified OBS bucket.

NO TE

1. This tutorial uses two different OBS buckets.
2. The function you create must be in the same region (default region) as the OBS

buckets.

Procedure
● Create two buckets on the OBS console.
● Create a function with an OBS trigger.
● Upload an image to one of the buckets.
● The function is triggered to compress the image.
● The function uploads the processed image to the other bucket.

NO TE

After you complete this tutorial, your account will have the following resources:
1. Two OBS buckets (respectively used for storing uploaded and processed images)
2. A thumbnail image creation function (fss_examples_image_thumbnail)
3. An OBS trigger used for associating the function with the OBS buckets

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

1.2 Preparation
Before creating a function and adding an event source, you need to create two
OBS buckets to respectively store uploaded and compressed images.

After creating the OBS buckets, you must create an agency to delegate
FunctionGraph to access OBS resources.

Creating OBS Buckets

Precautions

● The function and the source and destination buckets for storing images must
be in the same region.

● Use two different OBS buckets. If only one bucket is used, the function will be
executed infinitely. (When an image is uploaded to the bucket, the function is
triggered to process the image and store the processed image into the bucket
again. In this way, the function executes endlessly.)

Procedure

Step 1 Log in to the OBS console, and click Create Bucket.

Step 2 On the Create Bucket page, set the bucket information.
● For Region, select a region.
● For Bucket Name, enter your-bucket-input.
● For Data Redundancy Policy, select Single-AZ storage.
● For Default Storage Class, select Standard.
● For Bucket Policies, select Private.
● Server-Side Encryption: Select Disable.
● For Direct Reading, select Disable.

Retain the default values for other parameters and click Create Now.

Step 3 Repeat Step 2 to create the destination bucket.

Name the destination bucket as your-bucket-output, and select the same region
and storage class as those of the source bucket.

Step 4 View your-bucket-input and your-bucket-output in the bucket list.

----End

Creating an Agency

Step 1 In the left navigation pane of the management console, choose Management &
Governance > Identity and Access Management to go to the IAM console. Then
choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://console.eu.huaweicloud.com/obs/

● For Agency Name, enter serverless_trust.

● For Agency Type, select Cloud service.

● For Cloud Service, select FunctionGraph.

● For Validity Period, select Unlimited.

● Enter a description.

Step 4 Click Next. On the Select Policy/Role page, select Tenant Administrator and
click Next.

NO TE

Users with the Tenant Administrator permission can perform any operations on all cloud
resources of the enterprise.

Step 5 Select an authorization scope that meets your service requirements, and click OK.

----End

1.3 Building a Program
Download fss_examples_image_thumbnail.zip (SHA-256 verification package)
to create an image compressing function from scratch.

Creating a Deployment Package

This example uses a Python function to compress images. For details about
function development, see Developing Functions in Python. Figure 1-1 shows
the sample code directory. The service code is not described.

Figure 1-1 Sample code directory

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_examples_image_thumbnail.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_examples_image_thumbnail.zip.sha256
https://support.huaweicloud.com/eu/devg-functiongraph/functiongraph_02_0420.html

Under the directory, index.py is a handler file. The following code is a snippet of
the handler file. Parameter output_bucket is the address for storing compressed
images and must be configured when you create a function.
def handler(event, context):
 ak = context.getAccessKey()
 sk = context.getSecretKey()
 if ak == "" or sk == "":
 context.getLogger().error('Failed to access OBS because no temporary '
 'AK, SK, or token has been obtained. Please '
 'set an agency.')
 return 'Failed to access OBS because no temporary AK, SK, or token ' \
 'has been obtained. Please set an agency. '

 obs_endpoint = context.getUserData('obs_endpoint')
 if not obs_endpoint:
 return 'obs_endpoint is not configured'

 output_bucket = context.getUserData('output_bucket')
 if not output_bucket:
 return 'output_bucket is not configured'

 compress_handler = ThumbnailHandler(context)
 records = event.get("Records", None)
 return compress_handler.run(records[0])

Creating a Function
When creating a function, specify an agency with OBS access permissions so that
FunctionGraph can invoke the OBS service.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Click Create from scratch and configure the function information.

After setting the basic information, click Create Function.
● Function Type: Select Event Function.
● For Function Name, enter fss_examples_image_thumbnail.
● For Agency, select serverless_trust created in Creating an Agency.
● For Runtime, select Python3.6

Step 4 On the fss_examples_image_thumbnail details page, configure the following
information:

1. On the Code tab, choose Upload > Local ZIP, upload the sample code
fss_examples_image_thumbnail.zip.

2. Choose Configuration > Basic Settings, set the following parameters, and
click Save.
– For Memory, select 256.
– For Execution Timeout, enter 40.
– For Handler, retain the default value index.handler.
– For App, retain the default value default.
– For Description, enter Image compressing.

3. Choose Configuration > Environment Variables, set environment variables,
and click Save.

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://console.eu.huaweicloud.com/functiongraph/

output_bucket: the output bucket parameter defined in index.py. Set the
value to your-bucket-output, the bucket created in Creating OBS Buckets.
obs_endpoint: the bucket address parameter defined in index.py. Set the
value to obs.region.myhuaweicloud.com.

Table 1-1 Environment variable description

Environment Variable Description

obs_endpoint OBS endpoint.

output_bucket OBS bucket for storing output
images.

----End

Selecting a Dependency

The sample code depends on the Pillow package, which should be imported as
dependencies. The procedure is as follows:

Step 1 Go to the fss_examples_image_thumbnail details page, click the Code tab, and
click Add in the Dependencies area at the bottom.

Step 2 Add public dependency pillow-7.1.2.

Figure 1-2 Adding dependencies

----End

NO TE

You do not need to configure the reference after adding a dependency, as it is
preconfigured in the function code of the demo package.

1.4 Adding an Event Source
After creating the OBS buckets and function, you can add an event source to the
function by creating an OBS trigger. Perform the following procedure:

Step 1 On the fss_examples_image_thumbnail page, choose Configuration > Triggers,
and click Create Trigger.

Step 2 Select Object Storage Service (OBS) for Trigger Type, and set the trigger
information, as shown in Figure 1-3.
● For Bucket Name, select your-bucket-input created in Creating OBS

Buckets.
● For Events, select Put and Post.

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Figure 1-3 Creating a trigger

Step 3 Click OK.

NO TE

After the OBS trigger is created, when an image is uploaded or updated to bucket your-
bucket-input, an event is generated to trigger the function.

----End

1.5 Compressing Images
When an image is uploaded or updated to bucket your-bucket-input, an event is
generated to trigger the function. The function compresses the image and stores
the compressed one into bucket your-bucket-output.

Uploading an Image to Generate an Event
Log in to the OBS console, go to the object page of the your-bucket-input
bucket, and upload the image.jpg image, as shown in Figure 1-4.

Figure 1-4 Uploading an image

NO TE

The size of the original image.jpg file exceeds 28 KB.

Triggering the Function
After the image is uploaded to bucket your-bucket-input, OBS generates an event
to trigger the image compressing function. The function compresses the image
and stores the compressed one into bucket your-bucket-output. You can view
running logs of the function on the Logs tab page.

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://console.eu.huaweicloud.com/obs/

Go to the Objects page of the your-bucket-output bucket and view the size of
the compressed image.

Figure 1-5 Compressing the image

FunctionGraph
Best Practices 1 Compressing Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

2 Watermarking Images

2.1 Introduction
The best practice for FunctionGraph guides you through image watermarking
based on a function.

Scenarios
● Upload images to a specified OBS bucket.
● Watermark each uploaded image.
● Upload the processed images to another specified OBS bucket.

NO TE

1. This tutorial uses two different OBS buckets.
2. The function you create must be in the same region (default region) as the OBS

buckets.

Procedure
● Create two buckets on the OBS console.
● Create a function with an OBS trigger.
● Upload an image to one of the buckets.
● The function is triggered to watermark the image.
● The function uploads the processed image to the other bucket.

NO TE

After you complete the operations in this tutorial, your account will have the following
resources:
1. Two OBS buckets (respectively used for storing uploaded and processed images)
2. An image watermarking function
3. An OBS trigger used for associating the function with the OBS buckets

2.2 Preparation

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Before creating a function and adding an event source, you need to create two
OBS buckets to respectively store uploaded and watermarked images.

After creating the OBS buckets, you must create an agency to delegate
FunctionGraph to access OBS resources.

Creating OBS Buckets

Precautions

● The function and the source and destination buckets for storing images must
be in the same region.

● Use two different OBS buckets. If only one bucket is used, the function will be
executed infinitely. (When an image is uploaded to the bucket, the function is
triggered to process the image and store the processed image into the bucket
again. In this way, the function executes endlessly.)

Procedure

Step 1 Log in to the OBS console, and click Create Bucket.

Step 2 On the Create Bucket page, set the bucket information.
● For Region, select a region.
● For Data Redundancy Policy, select Single-AZ storage.
● For Bucket Name, enter hugb-bucket-input.
● For Default Storage Class, select Standard.
● For Bucket Policies, select Private.
● For Server-Side Encryption: select Disable
● For Direct Reading, select Disable.

Click Create Now.

Step 3 Repeat Step 2 to create the destination bucket.

Name the destination bucket as hugb-bucket-output, and select the same region
and storage class as those of the source bucket.

Step 4 View hugb-bucket-input and hugb-bucket-output in the bucket list.

----End

Creating an Agency

Step 1 In the left navigation pane of the management console, choose Management &
Governance > Identity and Access Management to go to the IAM console. Then
choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.
● For Agency Name, enter serverless_trust.
● For Agency Type, select Cloud service.
● For Cloud Service, select FunctionGraph.

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://console.eu.huaweicloud.com/obs/

● For Validity Period, select Unlimited.
● Enter a description.

Step 4 Click Next. On the Select Policy/Role page, select Tenant Administrator and
click Next.

NO TE

Users with the Tenant Administrator permission can perform any operations on all cloud
resources of the enterprise.

Step 5 Select an authorization scope that meets your service requirements, and click OK.

----End

2.3 Building a Program
Download watermark.zip to create an image watermarking function from
scratch.

Creating a Deployment Package
This example uses a Python function to watermark images. For details about
function development, see Developing Functions in Python. Figure 2-1 shows
the sample code directory. The service code is not described.

Figure 2-1 Sample code directory

Under the directory, index.py is a handler file. The following code is a snippet of
the handler file. Parameter obs_output_bucket is the address for storing
watermarked images and must be configured when you create a function.

def handler(event, context):
 srcBucket, srcObjName = getObjInfoFromObsEvent(event)
 outputBucket = context.getUserData('obs_output_bucket')

 client = newObsClient(context)
 # download file uploaded by user from obs
 localFile = "/tmp/" + srcObjName
 downloadFile(client, srcBucket, srcObjName, localFile)

 outFileName, outFile = watermark_image(localFile, srcObjName)
 # Upload converted files to a new OBS bucket.
 uploadFileToObs(client, outputBucket, outFileName, outFile)

 return 'OK'

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/watermark.zip
https://support.huaweicloud.com/eu/devg-functiongraph/functiongraph_02_0420.html

Creating a Function
When creating a function, specify an agency with OBS access permissions so that
FunctionGraph can invoke the OBS service.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Click Create from scratch and configure the function information.

After setting the basic information, click Create.
● Function Type: Select Event Function.
● For Function Name, enter fss_examples_image_watermark.
● For Agency, select serverless_trust created in Creating an Agency.
● For Runtime, select Python 3.6.

Step 4 Go to the fss_examples_image_watermark details page, click the Code tab, click
Add in the Dependencies area at the bottom, and add the public dependency
pillow-7.1.2.

Figure 2-2 Adding a dependency

Step 5 On the fss_examples_image_watermark details page, configure the following
information:
1. On the Code tab, choose Upload > Local ZIP, upload the sample code

watermark.zip.
2. Choose Configuration > Basic Settings, set the following parameters, and

click Save.
– For Memory, select 128.
– For Execution Timeout, enter 3.
– For Handler, retain the default value index.handler.
– For App, retain the default value default.
– For Description, enter Image watermarking.

3. Choose Configuration > Environment Variables, set environment variables,
and click Save. The following figure is for reference only. Replace the
following values with the actual values.
obs_output_bucket: the output bucket parameter defined in index.py. Set the
value to hugb-bucket-output, the bucket created in Creating OBS Buckets
for storing watermarked images.
obs_region: region where the OBS bucket obs_output_bucket resides, for
example, eu-west-101.

Figure 2-3 Adding environment variables

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://console.eu.huaweicloud.com/functiongraph/

Table 2-1 Environment variable description

Environment Variable Description

obs_region Region to which the OBS bucket
belongs. The value must be the
same as the region to which the
function belongs.

obs_output_bucket OBS bucket for storing watermarked
images.

----End

2.4 Adding an Event Source
After creating the OBS buckets and function, you can add an event source to the
function by creating an OBS trigger. Perform the following procedure:

Step 1 On the fss_examples_image_watermark page, click the Triggers tab and click
Create Trigger.

Step 2 Select OBS for Trigger Type, and set the trigger information, as shown in Figure
2-4.

For Bucket Name, select hugb-bucket-input created in Creating OBS Buckets.

For Events, select Put and Post.

Figure 2-4 Creating an OBS trigger

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Step 3 Click OK.

NO TE

After the OBS trigger is created, when an image is uploaded or updated to bucket hugb-
bucket-input, an event is generated to trigger the function.

----End

2.5 Watermarking Images
When an image is uploaded or updated to bucket hugb-bucket-input, an event is
generated to trigger the function. The function watermarks the image and stores
the watermarked one into bucket hugb-bucket-output.

Uploading an Image to Generate an Event
Log in to the OBS console, go to the object page of the hugb-bucket-input
bucket, and upload the image.jpg image, as shown in Figure 2-5.

Figure 2-5 Uploading an image

Triggering the Function
After the image is uploaded to bucket hugb-bucket-input, OBS generates an
event to trigger the image watermarking function. The function watermarks the
image and stores the watermarked one into bucket hugb-bucket-output. You can
view running logs of fss_examples_image_watermark on the Logs tab page.

The Objects page of the bucket hugb-bucket-output displays the watermarked
image image.jpg, as shown in Figure 2-6. In the Operation column, click
Download to download the image and view the watermarking effect, as shown in
Figure 2-7.

Figure 2-6 Output image

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://console.eu.huaweicloud.com/obs/

Figure 2-7 Watermarked image

FunctionGraph
Best Practices 2 Watermarking Images

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

3 Processing DIS Data

3.1 Introduction
The best practice for FunctionGraph guides you through DIS data processing based
on a function.

Scenarios
When using the Data Ingestion Service (DIS) to collect real-time Internet of Things
(IoT) data streams, process the collected data, for example, convert its format, and
then store the processed data into the CloudTable Service (CloudTable).

Procedure
● Create a Virtual Private Cloud (VPC) and cluster.
● Build a data processing program and package the code.
● Create a function on the FunctionGraph console.
● Configure a DIS event to test the data processing function.

3.2 Preparation
This tutorial demonstrates how to convert the format of DIS data and store the
converted data into CloudTable. To achieve this purpose, you need to create a VPC
and then create a cluster on the CloudTable console.

Before creating a function, you must create an agency to delegate FunctionGraph
to access DIS and CloudTable resources.

Creating a VPC

Step 1 Log in to the VPC console and click Create VPC.

Step 2 Set the private cloud information.

For Basic Information, enter name vpc-cloudtable, and use the default settings
of other parameters.

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://console.eu.huaweicloud.com/vpc/

For Default Subnet, use the default settings.

Step 3 Confirm the configuration information and click Create Now.

----End

Creating a Cluster

Step 1 In the left navigation pane of the management console, choose Analytics >
CloudTable Service to go to the CloudTable console. On the Cluster Mode page,
click Buy Cluster.

Step 2 Set the cluster information.
● Region: Use the default region.
● Name: Enter "cloudtable-dis".
● VPC: Select vpc-cloudtable created in Creating a VPC.
● Retain the default values for other parameters.

Figure 3-1 Buying a cluster

Step 3 Confirm the configuration information and click Next.

Figure 3-2 Creating a cluster

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

NO TE

Creating a cluster takes a long time. You can check the creation progress according to
Figure 3-2.

----End

Creating an Agency

Step 1 In the left navigation pane of the management console, choose Management &
Governance > Identity and Access Management to go to the IAM console. Then
choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.
● For Agency Name, enter DISDemo.
● For Agency Type, select Cloud service.
● For Cloud Service, select FunctionGraph.
● For Validity Period, select Unlimited.

Step 4 Click Next. On the Select Policy/Role page, select Tenant Administrator and
click Next.

Figure 3-3 Creating an agency

NO TE

Users with the Tenant Administrator permission can perform any operations on all cloud
resources of the enterprise.

Step 5 Click OK.

----End

3.3 Building a Program
Download the source code and program package (including function
dependencies) to create a function from scratch for converting DIS stream data
formats.

Creating a Project
This example uses a Java function to convert the format of DIS stream data. For
details about function development, see Developing Functions in Java. The
service code is not described.

Download the sample source code package fss_examples_dis_cloudtable_src.zip,
decompress the file, and import it to Eclipse, as shown in Figure 3-4.

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_dis_cloudtable_src.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_dis_cloudtable.zip
https://support.huaweicloud.com/eu/devg-functiongraph/functiongraph_02_0430.html
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_dis_cloudtable_src.zip

Figure 3-4 Sample code

In the sample code, modify proID (project ID), clusID (cluster ID), and hostName
(CloudTable endpoint), and save the modification.

To obtain the project ID, perform the following steps:

1. Under the current login account in the upper right corner, choose My
Credentials, as shown in Figure 3-5.

2. Obtain the project ID in the project list, as shown in Figure 3-6.

Figure 3-5 My Credentials

Figure 3-6 Project ID

To obtain the cluster ID, perform the following steps:

1. Log in to the CloudTable console.
2. In the navigation pane, choose Cluster Management. Click cluster

cloudtable-dis created in Creating a Cluster.
3. On the cloudtable-dis page that is displayed, find the cluster ID, as shown in

Figure 3-7.

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://console.eu.huaweicloud.com/cloudtable/

Figure 3-7 Cluster ID

When creating a function on the FunctionGraph console, set a handler in the
format of [package name].[file name].[function name], for example,
com.huawei.cff.TableTester.MyHandler for the preceding code.

Packaging the Code
Use Eclipse to package the code into a JAR file named Table Tester.jar according
to the following figures.

Figure 3-8 Exporting the code

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Figure 3-9 Selecting a file type

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Figure 3-10 Publishing the code file

Package the function dependencies by performing the following steps:

1. Download program package fss_examples_dis_cloudtable.zip, and
decompress it, as shown in Figure 3-11.

2. Use Table Tester.jar to replace DIS Test.jar, as shown in Figure 3-12.
3. Package all of the files into disdemo.zip, as shown in Figure 3-13.

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_dis_cloudtable.zip

Figure 3-11 File directory before replacement

Figure 3-12 File directory after replacement

Figure 3-13 Packaging the files in ZIP format

Creating a Function
When creating a function, specify an agency to delegate FunctionGraph to access
DIS and CloudTable resources.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Select Create from scratch, set the function information, and click Create
Function.

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

https://console.eu.huaweicloud.com/functiongraph/

● Function Type: Select Event Function.
● For Function Name, enter DISDemo.
● For Agency, select DISDemo created in Preparation.
● For Runtime, select Java 8.

Step 4 On the function details page, configure the following information:
● Choose Configuration > Basic Settings, change the handler to

com.huawei.cff.TableTester.MyHandler, and click Save.
● On the Code tab, choose Upload > Local ZIP, upload the disdemo.zip

package generated in Packaging the Code.

----End

Modifying Function Configurations

After the function is created, the default memory is 128 MB, and the default
timeout is 3s, which are insufficient for the data processing. Perform the following
steps to modify the configurations.

Step 1 On the DISDemo details page, choose Configuration > Basic Settings, and
modify the following information as required:
● For Memory, select 512.
● For Execution Timeout, enter 15.
● Keep other parameters unchanged.

Step 2 Click Save.

----End

3.4 Adding an Event Source
After creating the function, you can add an event source by creating a DIS trigger.
Perform the following procedure:

Step 1 On the DISDemo page, select Configure Test Event on the Code tab, as shown in
Figure 3-14.

Figure 3-14 Configuring a test event

Step 2 In the Configure Test Event dialog box, set the test event information, as shown
in Figure 3-15.

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

● Select Create new test event.
● Event Template: Select Data Ingestion Service (DIS).
● For Event Name, enter dis-test.

Figure 3-15 Test event

Step 3 Click Create.

----End

3.5 Processing Data
Perform the following procedure to process simulated stream data:

Step 1 On the DISDemo page, select test event dis-test, and click Test to test the
function, as shown in Figure 3-16.

Figure 3-16 Selecting a test event

Step 2 After the function is executed successfully, check the logs shown in Figure 3-17.
For all logs of the function, go to the Logs tab page.

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Figure 3-17 Function execution result

----End

FunctionGraph
Best Practices 3 Processing DIS Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

4 Integrating with LTS to Analyze Logs in
Real Time

4.1 Introduction

Scenarios
Quickly collect, process, and convert task logs of servers, such as ECSs, through
Log Tank Service (LTS).

Obtain log data based on an LTS trigger created on FunctionGraph, analyze and
process key information in the logs by using a customized function, and then filter
alarm logs.

Use SMN to push alarm messages to service personnel by SMS message or email.

Store processed log data in a specified OBS bucket for subsequent processing. The
processing workflow is shown in Figure 4-1.

Figure 4-1 Processing workflow

FunctionGraph
Best Practices 4 Integrating with LTS to Analyze Logs in Real Time

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Values
● Quickly collects and converts logs through LTS.
● Processes and analyzes data in response to log events in a serverless

architecture, which features automatic scaling, no operation and
maintenance, and pay-per-use billing.

● Sends alarm notifications through SMN.

4.2 Preparation

Collecting and Storing Logs
● Create a log group, for example, polo.guoying on the LTS console. For details,

see Creating a Log Group.
● Create a log stream, for example, lts-topic-gfz3 on the LTS console. For

details, see Creating a Log Stream.
● Configure an agent to collect logs from servers, such as ECSs, to a specified

log group. For details, see Installing the ICAgent.

Pushing Alarm Messages
● Create a topic named fss_test on the SMN console. For details, see Creating

a Topic.
● Add subscriptions to the fss_test topic to push alarm messages. For details,

see Adding a Subscription.
● Define an environment variable named SMN_Topic with value fss_test to

push alarm messages to the subscription endpoints under the fss_test topic.

NO TE

Alarm messages of a subscribed topic can be pushed through email, SMS messages,
and HTTP/HTTPS.

In this example, when log events trigger the specified function through an LTS trigger,
the function filters alarm logs and pushes alarm message to the subscription
endpoints.

Processing Cloud Data
Create an OBS bucket and object, and configure event notifications.

1. Create a bucket and an object on the OBS console, as shown in Figure 4-2.
For details, see Creating a Bucket.

Figure 4-2 Creating a bucket

FunctionGraph
Best Practices 4 Integrating with LTS to Analyze Logs in Real Time

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/eu/qs-lts/lts_08301.html
https://support.huaweicloud.com/eu/qs-lts/lts_08301.html
https://support.huaweicloud.com/eu/usermanual-lts/lts_02_0013.html
https://support.huaweicloud.com/eu/usermanual-smn/en-us_topic_0043961401.html
https://support.huaweicloud.com/eu/usermanual-smn/en-us_topic_0043961401.html
https://support.huaweicloud.com/eu/usermanual-smn/en-us_topic_0043961402.html
https://support.huaweicloud.com/eu/usermanual-obs/obs_03_0306.html

NO TE

Name the bucket as logstore and the object as log.txt to store log data.

Creating an Agency
1. Log in to the Identity and Access Management (IAM) console.
2. On the IAM console, choose Agencies from the navigation pane, and click

Create Agency in the upper right corner.

Figure 4-3 Creating an agency

3. Configure the agency.
– For Agency Name, enter LtsOperation.
– For Agency Type, select Cloud service.
– For Cloud Service, select FunctionGraph.
– For Validity Period, select Unlimited.
– Description: Enter the description.

4. Click Next. On the displayed page, search for LTS Administrator and Tenant
Administrator in the search box on the right and select them.

Figure 4-4 Selecting permissions

NO TE

LTS Administrator depends on Tenant Guest. When you select the former, the latter
will also be selected.

5. Click Next and select the application scope of the permissions based on
service requirements.

4.3 Building a Program
Download fss_examples_logstore_warning.zip to create an alarm log extraction
function from scratch.

Creating a Function
Create a function by uploading the sample code package to extract logs. Select
the Python 2.7 runtime and the agency LtsOperation created in Creating an

FunctionGraph
Best Practices 4 Integrating with LTS to Analyze Logs in Real Time

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_logstore_warning.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_logstore_warning.zip

Agency. For details about how to create a function, see Creating an Event
Function.

This function performs Base64 decoding on received log event data, extracts alarm
logs containing keyword WRN, WARN, ERR, or ERROR, and then stores the
extracted logs in the specified OBS bucket. Set log extraction conditions based on
the content of your service logs.

Setting Environment Variables
On the Configuration tab page of the preceding function, set environment
variables to pass the bucket address, bucket name, and object name, as shown in
Table 4-1.

Table 4-1 Environment variables

Environment Variable Description

obs_address OBS endpoint.

obs_store_bucket Name of the destination bucket for
storing logs.

obs_store_objName Name of the target file for storing
logs.

SMN_Topic SMN topic.

region Name of your region.

Set the environment variables by following the procedure in Environment
Variables.

4.4 Adding an Event Source
Create an LTS trigger by using the log group and log topic created in Preparation,
and configure the trigger information according to Figure 4-5.

Figure 4-5 Creating an LTS trigger

FunctionGraph
Best Practices 4 Integrating with LTS to Analyze Logs in Real Time

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_0154.html
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_0154.html

When the accumulated log size or log retention period meets a specified
threshold, LTS log data is consumed, which triggers the function associated with
the log group.

4.5 Processing Log Data
Email notifications will be received from SMN if alarm logs containing keyword
WRN, WARN, ERR, or ERROR are generated, as shown in Figure 4-6. You can also
view details of the alarm logs by opening the log.txt file in the specified bucket,
as shown in Figure 4-7.

Figure 4-6 Email notification

Figure 4-7 Alarm log details

On the Monitoring tab page of the function, check the number of invocations, as
shown in Figure 4-8.

Figure 4-8 Function metrics

4.6 Other Application Scenarios
FunctionGraph and Log Tank Service (LTS) can be used to process cloud logs, push
alarm messages, and store logs in a specified Object Storage Service (OBS) bucket.
You can use FunctionGraph and LTS in multiple scenarios. For example, you can

FunctionGraph
Best Practices 4 Integrating with LTS to Analyze Logs in Real Time

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

create a timer trigger to periodically analyze and process log data in an OBS
bucket.

FunctionGraph
Best Practices 4 Integrating with LTS to Analyze Logs in Real Time

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

5 Integrating with CTS to Analyze Login/
Logout Security

5.1 Introduction
Scenarios

Collect real-time records of operations on cloud resources.

Create a Cloud Trace Service (CTS) trigger to obtain records of subscribed cloud
resource operations; analyze and process the operation records, and report alarms.

Use SMN to push alarm messages to service personnel by SMS message or email.
The processing workflow is shown in Figure 5-1.

Figure 5-1 Processing workflow

Values
● Quickly analyzes operation records collected by CTS and filters out operations

from specified IP addresses.

FunctionGraph
Best Practices

5 Integrating with CTS to Analyze Login/Logout
Security

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

● Processes and analyzes data in response to log events in a serverless
architecture, which features automatic scaling, no operation and
maintenance, and pay-per-use billing.

● Sends alarm notifications through SMN.

5.2 Preparation

Enabling CTS

Configure a tracker on CTS, as shown in Figure 5-2. For details, see Configuring a
Tracker.

Figure 5-2 Configuring a tracker

Creating an Agency

Step 1 Log in to the IAM console, and choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.
● For Agency Name, enter serverless_trust.
● For Agency Type, select Cloud service.
● For Cloud Service, select FunctionGraph.
● For Validity Period, select Unlimited.
● For Description, enter a description.

Step 4 Click Next. On the Select Policy/Role page, select Tenant Administrator and
click Next.

NO TE

Users with the Tenant Administrator permission can perform any operations on all cloud
resources of the enterprise.

Step 5 Click OK.

----End

Pushing Alarm Messages
● Create a topic named cts_test on the SMN console. For details, see Creating

a Topic.
● Add subscriptions to the cts_test topic to push alarm messages. For details,

see Adding a Subscription.

FunctionGraph
Best Practices

5 Integrating with CTS to Analyze Login/Logout
Security

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://support.huaweicloud.com/eu/usermanual-cts/cts_03_0002.html
https://support.huaweicloud.com/eu/usermanual-cts/cts_03_0002.html
https://console.eu.huaweicloud.com/iam/
https://support.huaweicloud.com/eu/usermanual-smn/en-us_topic_0043961401.html
https://support.huaweicloud.com/eu/usermanual-smn/en-us_topic_0043961401.html
https://support.huaweicloud.com/eu/usermanual-smn/en-us_topic_0043961402.html

NO TE

Alarm messages of a subscribed topic can be pushed through emails, SMS messages,
and HTTP/HTTPS.
In this example, when operation log events trigger the specified function, the function
filters operations that are performed by users not in the IP address whitelist, and
pushes alarm messages to the subscription endpoints.

5.3 Building a Program
Download index.zip to create an alarm log analysis function from scratch.

Creating a Function
Create a function by uploading the sample code package to extract logs. Select
the Python 2.7 runtime and the agency serverless_trust created in Creating an
Agency. For details about how to create a function, see Creating an Event
Function.

This function analyzes received operation records, filters logins or logouts from
unauthorized IP addresses using a whitelist, and sends alarms under a specified
SMN topic. This function can be used to build an account security monitoring
service.

Setting Environment Variables
On the Configuration tab page of the function details page, set the environment
variables listed in Table 5-1.

Table 5-1 Environment variables

Environment Variable Description

SMN_Topic SMN topic.

RegionName Region name.

IP IP address whitelist.

Set the environment variables by following the procedure in Environment
Variables.

5.4 Adding an Event Source
Create a CTS trigger, as shown in Figure 5-3.

FunctionGraph
Best Practices

5 Integrating with CTS to Analyze Login/Logout
Security

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/index.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_logstore_warning.zip
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_0154.html
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_0154.html

Figure 5-3 Creating a CTS trigger

CTS records the logins and logouts of users on IAM.

5.5 Processing Operation Records
The function runs in response to account logins and logouts to filter those not
from the IP address whitelist, and sends a message or email through SMN, as
shown in Figure 5-4.

Figure 5-4 Email notification

The email contains the unauthorized IP address and user operation (login or
logout).

On the Monitoring tab page of the function, check the number of invocations, as
shown in Figure 5-5.

Figure 5-5 Function metrics

FunctionGraph
Best Practices

5 Integrating with CTS to Analyze Login/Logout
Security

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

6 Building an HTTP Function with Spring
Boot

Introduction
This chapter describes how to deploy services on FunctionGraph using Spring Boot.

Usually, you may build Spring Boot applications using SpringInitializr or IntelliJ
IDEA. This chapter uses the Spring.io project in https://spring.io/guides/gs/rest-
service/ as an example to deploy an HTTP function on FunctionGraph.

Procedure
To deploy an existing project to FunctionGraph, change the listening port of the
project to 8000, and create a file named bootstrap in the same directory as the
JAR file to include the command for executing the JAR file.

In this example, a Maven project created using IntelliJ IDEA is used.

Building a Code Package

1. Open the Spring Boot project and click package in the Maven area to
generate a JAR file.

Figure 6-1 Generating a JAR file

FunctionGraph
Best Practices 6 Building an HTTP Function with Spring Boot

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://start.spring.io/
https://spring.io/guides/gs/rest-service/
https://spring.io/guides/gs/rest-service/

2. Set the web port to 8000 (do not change this port) using the
application.properties file or specify the port during startup. HTTP functions
only support this port.

Figure 6-2 Configuring port 8000

3. Create a file named bootstrap in the same directory as the JAR file, and enter
the startup parameters.
/opt/function/runtime/java11/rtsp/jre/bin/java -jar -Dfile.encoding=utf-8 /opt/function/code/rest-
service-complete-0.0.1-SNAPSHOT.jar

4. Compress the JAR file and bootstrap file into a ZIP package.

Creating an HTTP Function and Uploading Code

Create an HTTP function and upload the ZIP file. For details, see Creating an
HTTP Function.

Verifying the Result

● Using a test event

a. On the function details page, select a version and click Configure Test
Event.

b. On the Configure Test Event page, select the event template apig-
event-template, and modify the path and pathParameters parameters
in the template to construct a simple GET request.

c. Click Create.
d. Click Test to obtain the response.

When debugging a function, increase the memory size and timeout,
for example, increase them to 512 MB and 5s.

● Using an APIG trigger

a. Create an APIG trigger by referring to Using an APIG Trigger. Set the
authentication mode to None for debugging.

b. Copy the generated URL, add the request parameter greeting?
name=fg_user to the end of the URL (see Figure 6-3), and access the
URL using a browser. The response shown in the following figure is
displayed.

FunctionGraph
Best Practices 6 Building an HTTP Function with Spring Boot

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1442.html#section2
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1442.html#section2
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1813.html

Figure 6-3 Invoking the function

The default APIG trigger URL is in the format "Domain name/Function
name". In this example, the URL is https://your_host.com/
springboot_demo, where the function name springboot_demo is the
first part of the path. If you send a GET request for https://
your_host.com/springboot_demo/greeting, the request address received
by Spring Boot contains springboot_demo/greeting. If you have
uploaded an existing project, you cannot access your own services
because the path contains a function name. To prevent this from
happening, use either of the following methods to annotate or remove
the function name:

▪ Method 1: Modify the mapping address in the code. For example,
add the first part of the default path to the GetMapping or class
annotation.

Figure 6-4 Modifying the mapping address

▪ Method 2: Click the trigger name to go to the APIG console, and
delete the function name in the path.

FAQ
1. What Directories Are Accessible to My Code?

An uploaded code package is stored in the /opt/function/code/ directory of
the function (runtime environments, compute resources, or containers).
However, the directory can only be read and cannot be written. If some data
must be written to the function during code running and logged locally, or
your dependency is written by default to the directory where the JAR file is
located, use the /tmp directory.

2. How Are My Logs Collected and Output?
Function instances that have not received any requests during a specific
period of time will be deleted together with their local logs. You will be
unable to view the function logs during function running. Therefore, in

FunctionGraph
Best Practices 6 Building an HTTP Function with Spring Boot

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

addition to writing logs to your local host, output logs to the console by
setting the output target of Log4j to System.out or by using the print
function.
Logs output to the console will be collected. If you have enabled LTS, the logs
will also be stored in LTS for near real-time analysis.
Suggestion: Enable LTS, and click Go to LTS to view and analyze logs on the
Real-Time Logs tab page.

3. What Permissions Does My Code Have?
Similar to common event functions, code does not have the root permission.
Code or commands requiring this permission cannot be executed in HTTP
functions.

4. How Do I Package Spring Boot Projects of Multiple Modules?
Configure the following to package these Spring Boot projects.
<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <mainClass>com.example.YourServiceMainClass</mainClass>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

FunctionGraph
Best Practices 6 Building an HTTP Function with Spring Boot

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1834.html#section1

7 Creating a FunctionGraph Backend API
That Uses a Custom Authorizer

7.1 Introduction
In addition to IAM and app authentication, APIG also supports custom
authentication with your own system, which can better adapt to your business
capabilities.

This chapter guides you through the process of creating a FunctionGraph API that
uses a custom authorizer.

Solution
● Log in to the FunctionGraph console, and create a function for custom

authentication.
● Create a service function.
● Create an API group on the APIG console.
● Create an API and configure a custom authorizer and a FunctionGraph

backend for it.
● Debug the API.

NO TE

After you complete the operations in this tutorial, your Huawei Cloud account will
have the following resources:

1. An API group storing APIs

2. A custom authentication function

3. A service function

4. An API with a custom authorizer and a FunctionGraph backend

7.2 Resource Planning
Ensure that the following resources are in the same region.

FunctionGraph
Best Practices

7 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Table 7-1 Resource planning

Resource Quantity

API group 1

Custom
authentication
function

1

Service function 1

API 1

7.3 Building a Program

Creating an API group

Before creating a function and adding an event source, create an API group to
store and manage APIs.

NO TE

Before enabling APIG functions, buy a gateway by referring to section "Buying a Gateway".

Step 1 Log in to the APIG console, choose API Management > API Groups in the
navigation pane, and click Create API Group in the upper right.

Step 2 Select Create Directly, set the group information, and click OK.
● Name: Enter a group name, for example, APIGroup_test.
● Description: Enter a description about the group.

----End

Creating a Custom Authentication Function

Frontend custom authentication means APIG uses a function to authenticate
received API requests. To authenticate API requests by using your own system,
create a frontend custom authorizer in APIG. Create a FunctionGraph function
with the required authentication information. Then use it to authenticate APIs in
APIG.

This section uses the header parameter event["headers"] as an example. For the
description about request parameters, see Request Parameter Code Example.

Step 1 In the left navigation pane of the management console, choose Compute >
FunctionGraph to go to the FunctionGraph console. Then choose Functions >
Function List in the navigation pane.

Step 2 Click Create Function.

Step 3 Set the function information, and click Create Function.
● Template: Select Create from scratch.

FunctionGraph
Best Practices

7 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

● Function Type: Select Event Function.
● Function Name: Enter a function name, for example, apig-test.
● Agency: Select Use no agency.
● Runtime: Select Python 2.7.

Step 4 On the function details page that is displayed, click the Code tab and copy the
example request parameter code to the online editor, and click Deploy.

Step 5 Click Configure Test Event, and select an event template. Modify the template as
required, and click Create. In this example, add "auth":"abc" to "headers".

Figure 7-1 Configuring a test event

Step 6 Click Test. If the result is Execution successful, the function is successfully
created.

Figure 7-2 Viewing the execution result

----End

Creating a Custom Authorizer
Create a custom authorizer in APIG and connect it to the frontend custom
authentication function.

Step 1 In the left navigation pane of the management console, choose Middleware >
API Gateway to go to the APIG console. In the navigation pane, choose API
Management > API Policies. On the Custom Authorizers tab, click Create
Custom Authorizer.

Step 2 Configure basic information about the custom authorizer according to the
following figure.

FunctionGraph
Best Practices

7 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

● Name: Enter a name, for example, Authorizer_test.
● Type: Select Frontend.
● Function URN: Select apig-test.

Figure 7-3 Creating a custom authorizer

Step 3 Click OK.

----End

Creating a Backend Service Function

APIG supports FunctionGraph backends. After you create a FunctionGraph
backend API, APIG will trigger the relevant function, and the function execution
result will be returned to APIG.

Step 1 Create a service function by referring to Creating a Custom Authentication
Function. The function name must be unique.

Step 2 On the Code tab of the function details page, copy the following code to the
online editor, and click Deploy.
-*- coding:utf-8 -*-
import json
def handler (event, context):
 body = "<html><title>Functiongraph Demo</title><body><p>Hello, FunctionGraph!</p></body></html>"
 print(body)

FunctionGraph
Best Practices

7 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

 return {
 "statusCode":200,
 "body":body,
 "headers": {
 "Content-Type": "text/html",
 },
 "isBase64Encoded": False
 }

----End

Request Parameter Code Example

The following are the requirements you must meet when developing
FunctionGraph functions. Python 2.7 is used as an example.

The function must have a clear API definition. Example:

def handler (event, context)

● handler: name of the entry point function. The name must be consistent with
that you define when creating a function.

● event: event parameter defined in JSON format for the function.

● context: runtime information provided for executing the function. For details,
see SDK APIs.

event supports three types of request parameters in the following formats:

● Header parameter: event["headers"]["Parameter name"]

● Query string: event["queryStringParameters"]["Parameter name"]

● Custom user data: event["user_data"]

The three types of request parameters obtained by the function are mapped to the
custom authentication parameters defined in APIG.

● Header parameter: Corresponds to the identity source specified in Header for
custom authentication. The parameter value is transferred when the API that
uses custom authentication is called.

● Query string: Corresponds to the identity source specified in Query for custom
authentication. The parameter value is transferred when the API that uses
custom authentication is called.

● Custom user data: Corresponds to the user data for custom authentication.
The parameter value is specified when the custom authorizer is created.

● The function response cannot be greater than 1 MB and must be in the
following format:
{ "statusCode":200,
 "body": "{\"status\": \"allow\", \"context\": {\"user\": \"abc\"}}"
 }

The body field is a character string, which is JSON-decoded as follows:

{
 "status": "allow/deny",
 "context": {
 "user": "abc"
 }
}

FunctionGraph
Best Practices

7 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

https://support.huaweicloud.com/eu/devg-functiongraph/functiongraph_02_0420.html#section2

The status field is mandatory and is used to identify the authentication result. The
authentication result can only be allow or deny. allow indicates that the
authentication is successful, and deny indicates that the authentication fails.

The context field is optional and can only be key-value pairs. The key value
cannot be a JSON object or an array.

The context field contains custom user data. After successful authentication, the
user data is mapped to the backend parameters. The parameter name in context
is case-sensitive and must be the same as the system parameter name. The
parameter name must start with a letter and can contain 1 to 32 characters,
including letters, digits, hyphens (-), and underscores (_).

Example Header Parameter

-*- coding:utf-8 -*-
import json
def handler(event, context):
 if event["headers"].get("auth")=='abc':
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"success"
 }
 })
 }
 else:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

Example Query String

-*- coding:utf-8 -*-
import json
def handler(event, context):
 if event["queryStringParameters"].get("test")=='abc':
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"abcd"
 }
 })
 }
 else:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

Example User Data

-*- coding:utf-8 -*-
import json
def handler(event, context):
 if event.get("user_data")=='abc':

FunctionGraph
Best Practices

7 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"abcd"
 }
 })
 }
 else:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

7.4 Adding an Event Source

Creating an API

After creating an API group, custom authentication function, and backend
function, create a FunctionGraph backend API that uses a custom authorizer by
performing the following steps:

Step 1 Log in to the APIG console, choose API Management > APIs in the navigation
pane, and click Create API in the upper right.

Step 2 Configure the basic information according to Figure 7-4 and Figure 7-5.

● API Name: Enter a name, for example, API_test.

● Group: Select API group APIGroup_test.

● URL: Set Method to ANY, Protocol to HTTPS, and Path to /testAPI.

● Gateway Response: Select default.

● Authentication Mode: Select Custom.

● Custom Authorizer: Select Authorizer_test.

Figure 7-4 Configuring frontend definition

FunctionGraph
Best Practices

7 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Figure 7-5 Configuring security settings

NO TE

For more parameters, see section "Creating an API".

Step 3 Click Next to configure the backend service according to Figure 7-6.
● Backend Type: Select FunctionGraph.
● Function URN: Select the created service function.
● Version/Alias: Select the latest version.
● Invocation Mode: Select Synchronous.

Figure 7-6 Configuring the backend service

Step 4 Click Finish.

Step 5 Click Publish to publish the API in the RELEASE environment.

Figure 7-7 Publishing an API

----End

7.5 Debugging and Calling the API
APIG provides online debugging, enabling you to check an API after configuring it.

Step 1 Log in to the APIG console. In the navigation pane, choose API Management >
APIs. Then click API_test, and click Debug.

Step 2 Add a header parameter and click Debug.

FunctionGraph
Best Practices

7 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

● Parameter Name: Enter auth.
● Parameter Value: Enter abc.

Figure 7-8 Adding a header

Step 3 Check whether the API response contains the content you have defined in the
service function. See Figure 7-9.

Figure 7-9 API response

----End

FunctionGraph
Best Practices

7 Creating a FunctionGraph Backend API That Uses
a Custom Authorizer

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

8 Processing IoT Data

8.1 Introduction

Scenarios

This section demonstrates how to combine FunctionGraph and IoT Device Access
(IoTDA) to process status data reported by IoT devices. IoT devices are managed
on the IoTDA platform. Data generated by the devices is transferred from IoTDA to
trigger the FunctionGraph functions you have compiled for processing.

This combination is suitable for processing device data and storing them to OBS,
structuring and cleansing data and storing them to a database, and sending event
notifications for device status changes.

This best practice focuses on how to combine IoTDA and FunctionGraph. For
details about how to manage devices and report data using IoTDA, see the
documentation of IoTDA. In this chapter, we use IoTDA and FunctionGraph to
convert WGS84 coordinates to GCJ02.

Procedure
● Create an IoTDA instance in IoTDA. (The standard edition is free of charge.

You can use it for testing purposes.)
● Create a function in FunctionGraph.

FunctionGraph
Best Practices 8 Processing IoT Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

● Set forwarding rules in IoTDA or create an IoTDA trigger in FunctionGraph.

● Send test messages using forwarding rules.

8.2 Preparation
Before creating a forwarding rule, create an IoTDA instance as well as products
and devices. In this best practice, we only create an instance for testing.

Creating an IoTDA Instance

Step 1 Log in to the IoTDA console. In the navigation pane, choose IoTDA Instances.

Step 2 On the right of the IoTDA Instances page, click Enable Free Standard Edition.
The parameter configuration page is displayed. Set the parameters based on
service requirements.

Figure 8-1 Enabling free standard edition

Step 3 Click Create.

----End

Creating a Function

Step 1 In the left navigation pane of the management console, choose Compute >
FunctionGraph. On the FunctionGraph console, click Create Function.

Step 2 Select Create from scratch. Set Function Type to Event Function, enter iotdemo
for Function Name, select a runtime (for example, Python 3.9), and click Create
Function.

----End

FunctionGraph
Best Practices 8 Processing IoT Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Creating a Forwarding Rule
Forwarding rules are used to transfer data from IoTDA to trigger specified
functions. For this purpose, you can create forwarding rules in IoTDA or create an
IoTDA trigger in FunctionGraph. Perform the following procedure to create a
forwarding rule:

Step 1 In the left navigation pane of the management console, choose IoT > IoTDA
Device Access. On the IoTDA console, choose Rules > Data Forwarding, and click
Create Rule.

Step 2 Enter basic information and click Create Rule.

NO TE

● Set Rule Name to iotfg or another one.
● For Data Source, select Device message.
● For Trigger, select device message reporting.

Step 3 To set the forwarding target, click Add, and select FunctionGraph.

Step 4 If this is the first time you select FunctionGraph, authorize access to IoTDA.

Step 5 Select function iotdemo.

Step 6 Start the rule.

----End

FunctionGraph
Best Practices 8 Processing IoT Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

8.3 Building a Program

Editing a Function Program

Open function iotdemo, copy the following coordinate conversion code to the
function. This code is for testing purposes only and can be modified if needed.

 # -*- coding:utf-8 -*-
import json
import math
from math import pi

def handler(event, context):
 data = event["notify_data"]["body"]
 lat = data["lat"]
 lng = data["lng"]
 print(f" WGS84: ({lng},{lat})")
 gcj_lng, gcj_lat = transform(lng, lat)
 print(f" GCJ02: ({gcj_lng},{gcj_lat})")
 body = {
 "gcj_lng": gcj_lng,
 "gcj_lat": gcj_lat
 }
 return {
 "statusCode": 200,
 "isBase64Encoded": False,
 "body": json.dumps(body),
 "headers": {
 "Content-Type": "application/json"
 }
 }

def transform(lon, lat):
 a = 6378245.0
 ee = 0.00669342162296594323

 dlat = transform_lat(lon - 105.0, lat - 35.0)
 dlon = transform_lon(lon - 105.0, lat - 35.0)

 rad_lat = lat / 180.0 * pi
 magic = math.sin(rad_lat)
 magic = 1 - ee * magic * magic
 sqrt_magic = math.sqrt(magic)

 dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrt_magic) * pi)
 dlon = (dlon * 180.0) / (a / sqrt_magic * math.cos(rad_lat) * pi)

 mg_lon = lon + dlon
 mg_lat = lat + dlat

 return mg_lon, mg_lat

def transform_lon(x, y):
 ret = 300.0 + x + 2.0 * y + 0.1 * x * x + \
 0.1 * x * y + 0.1 * math.sqrt(math.fabs(x))
 ret += (20.0 * math.sin(6.0 * pi * x) +
 20.0 * math.sin(2.0 * pi * x)) * 2.0 / 3.0
 ret += (20.0 * math.sin(pi * x) +
 40.0 * math.sin(pi / 3.0 * x)) * 2.0 / 3.0
 ret += (150.0 * math.sin(pi / 12.0 * x) +
 300.0 * math.sin(pi / 30.0 * x)) * 2.0 / 3.0
return ret

def transform_lat(x, y):
 ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + \

FunctionGraph
Best Practices 8 Processing IoT Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

 0.1 * x * y + 0.2 * math.sqrt(math.fabs(x))
 ret += (20.0 * math.sin(6.0 * pi * x) +
 20.0 * math.sin(2.0 * pi * x)) * 2.0 / 3.0
 ret += (20.0 * math.sin(pi * y) +
 40.0 * math.sin(pi / 3.0 * y)) * 2.0 / 3.0
 ret += (160.0 * math.sin(pi / 12.0 * y) +
 320 * math.sin(pi / 30.0 * y)) * 2.0 / 3.0
 return ret

Online Joint Commissioning with IoTDA

Step 1 Log in to the IoTDA console. In the navigation pane, choose Rules & > Data
Forwarding. In the Rule List, click View on the right of the target rule name. The
Data Forwarding Rule Details page is displayed.

Step 2 Select Set Forwarding Target and click Test on the right of the forwarding target
to edit the test data.

Figure 8-2 Testing the forwarding rule

Step 3 Enter the test data and click Connectivity Test.
{
 "resource": "device.message",
 "event": "report",
 "event_time": "string",
 "notify_data": {
 "header": {
 "app_id": "d4922d8a-6c8e-4396-852c-164aefa6638f",
 "device_id": "d4922d8a-6c8e-4396-852c-164aefa6638f",
 "node_id": "ABC123456789",
 "product_id": "ABC123456789",
 "gateway_id": "d4922d8a-6c8e-4396-852c-164aefa6638f",
 "tags": [
 {
 "tag_key": "testTagName",
 "tag_value": "testTagValue"
 }
]
 },
 "body": {
 "lat": 92.64763932844794,
 "lng": 35.25202546134364
 }
 }
}

FunctionGraph
Best Practices 8 Processing IoT Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Step 4 Go to the FunctionGraph console, choose Monitoring > Logs, and click the
request ID in blue to view logs.

To invoke other systems, persist data in OBS, or achieve other purposes, modify
the program.

----End

FunctionGraph
Best Practices 8 Processing IoT Data

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

9 Function + DEW: Encrypting/Decrypting
Files

9.1 Introduction
Huawei Cloud Data Encryption Worksop (DEW) uses the hardware security
module (HSM) to protect your keys. All of your keys are protected by the root key
in HSM. DEW provides access control and log tracing for all operations on keys,
and records key uses to meet audit and compliance requirements. You can buy a
dedicated HSM instance to encrypt your service systems (including sensitive data,
financial payments, and electronic bills). It encrypts the sensitive data of your
enterprise (contracts, transactions, and records) and of users (IDs and mobile
numbers). This prevents data breaches and unauthorized access or data tampering
by internal users caused by network attacks and data reduction. This chapter
describes how to use FunctionGraph and DEW to encrypt and decrypt files.

Scenarios
● Upload files to a specified OBS bucket.
● Encrypt and decrypt each uploaded file.
● Upload the processed files to another OBS bucket.

NO TE

1. This tutorial uses two different OBS buckets.

2. The function you create must be in the same region (default region recommended)
as the OBS buckets.

Procedure
● Create two buckets on the OBS console.
● Create a function with an OBS trigger.
● Upload files to one of the buckets.
● Trigger the function to encrypt and decrypt the files.
● The function uploads the processed files to the other bucket.

FunctionGraph
Best Practices 9 Function + DEW: Encrypting/Decrypting Files

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

NO TE

After you complete the operations in this tutorial, your account will have the following
resources:

1. Two OBS buckets (for storing uploaded and processed files respectively)

2. A file encryption/decryption function

3. An OBS trigger for associating the function with the OBS buckets

9.2 Preparation
Create two OBS buckets to store uploaded and encrypted/decrypted files,
respectively.

Create an agency to delegate FunctionGraph to access OBS resources.

Creating OBS Buckets

CA UTION

● The function and the source and destination buckets for storing files must be in
the same region.

● Use two different OBS buckets. If only one bucket is used, the function will be
executed infinitely. (When a file is uploaded to the bucket, the function is
triggered to process the file and store the processed file into the bucket again.
In this way, the function executes endlessly.)

Procedure

Step 1 Log in to the OBS console, and click Create Bucket.

Step 2 On the Create Bucket page, set the bucket information.

● For Region, select a region.

● For Data Redundancy Policy, select Single-AZ storage.

● For Bucket Name, enter dew-bucket-input.

● For Default Storage Class, select Standard.

● For Bucket Policies, select Private.

● For Direct Reading, select Disable.

Click Create Now.

Step 3 Repeat Step 2 to create the destination bucket.

Name the destination bucket dew-bucket-output, and select the same region and
storage class as those of the source bucket.

Step 4 View dew-bucket-input and dew-bucket-output in the bucket list.

----End

FunctionGraph
Best Practices 9 Function + DEW: Encrypting/Decrypting Files

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

https://console.eu.huaweicloud.com/obs/

Creating a DEW Key

CA UTION

● The DEW key and function must be in the same region.

Procedure

Step 1 In the left navigation pane of the management console, choose Security &
Compliance > Data Encryption Workshop to go to the DEW console. Then click
Create Key.

Step 2 On the Create Key page, click OK.

Step 3 Record the master key ID.

----End

Creating an Agency

Step 1 In the left navigation pane of the management console, choose Management &
Governance > Identity and Access Management to go to the IAM console. Then
choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.
● For Agency Name, enter serverless_trust.
● For Agency Type, select Cloud service.
● For Cloud Service, select FunctionGraph.
● For Validity Period, select Unlimited.
● For Description, enter a description.

Step 4 Click Next. On the Select Policy/Role page, select Tenant Administrator and
click Next.

NO TE

Users with the Tenant Administrator permission can perform any operations on all cloud
resources of the enterprise.

Step 5 Click OK.

----End

9.3 Building a Program
This section provides a file encryption/decryption package. You can create a
function with the sample code in this package.

FunctionGraph
Best Practices 9 Function + DEW: Encrypting/Decrypting Files

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Creating a Deployment Package
This example uses a Java 8 function to encrypt/decrypt files. For details about
function development, see Developing Functions in Java. Figure 9-1 shows the
sample code directory. The service code is not described.

Figure 9-1 Sample code directory

FileEncryptAndDecrypt is the function execution entry point. The entry function
in FileEncryptAndDecrypt contains the following code:

package com.huawei.kms;
import com.huawei.services.runtime.Context;
import com.huawei.services.runtime.entity.s3obs.S3ObsTriggerEvent;
import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.kms.v1.KmsClient;
import com.huaweicloud.sdk.kms.v1.model.*;
import com.obs.services.ObsClient;
import com.obs.services.exception.ObsException;
import com.obs.services.model.ObsObject;
import javax.crypto.Cipher;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.io.*;
import java.nio.file.Files;
import java.security.SecureRandom;
public class FileEncryptAndDecrypt {
 private String objectKey;
 private String inputPath;
 private String outputPath;
 public String encrypt(S3ObsTriggerEvent event, Context context){
 objectKey = event.getObjectKey();
 inputPath = "/tmp/" + objectKey;
 outputPath = "/tmp/" + objectKey + ".encrypt";
 // Initialize OBS class.
 obsClientHandler client = new obsClientHandler();
 client.init(context);
 client.setObjectInfo(objectKey, inputPath, outputPath);
 // Download files from the specified OBS bucket.

FunctionGraph
Best Practices 9 Function + DEW: Encrypting/Decrypting Files

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

https://support.huaweicloud.com/eu/devg-functiongraph/functiongraph_02_0430.html

 client.downloadFile();
 // Initialize KMS class.
 KmsClientHandler kms = new KmsClientHandler();
 kms.init(context);
 kms.setPath(inputPath, outputPath);
 // Encrypt files.
 kms.encryptFile();
 // Upload files.
 client.uploadFile();
 return "ok";
 }
 public String decrypt(S3ObsTriggerEvent event, Context context){
 objectKey = event.getObjectKey();
 inputPath = "/tmp/" + objectKey;
 outputPath = "/tmp/" + objectKey + ".decrypt";
 // Initialize OBS class.
 obsClientHandler client = new obsClientHandler();
 client.init(context);
 client.setObjectInfo(objectKey, inputPath, outputPath);
 // Download files from the specified OBS bucket.
 client.downloadFile();
 // Initialize KMS class.
 KmsClientHandler kms = new KmsClientHandler();
 kms.init(context);
 kms.setPath(inputPath, outputPath);
 // Encrypt files.
 kms.decryptFile();
 // Upload files.
 client.uploadFile();
 return "ok";
 }
 static class KmsClientHandler {
 // DEW API version. Currently fixed to v1.0.
 private static final String KMS_INTERFACE_VERSION = "v1.0";
 private static final String AES_KEY_BIT_LENGTH = "256";
 private static final String AES_KEY_BYTE_LENGTH = "32";
 private static final String AES_ALG = "AES/GCM/PKCS5Padding";
 private static final String AES_FLAG = "AES";
 private static final int GCM_TAG_LENGTH = 16;
 private static final int GCM_IV_LENGTH = 12;
 private String ACCESS_KEY;
 private String SECRET_ACCESS_KEY;
 private String PROJECT_ID;
 private String KMS_ENDPOINT;
 private String keyId;
 private String cipherText;
 private String inputPath;
 private String outputPath;
 private Context context;
 private KmsClient kmsClient = null;
 void init(Context context) {
 this.context = context;
 }
 void initKmsClient() {
 if (kmsClient == null) {
 ACCESS_KEY = context.getAccessKey();
 SECRET_ACCESS_KEY = context.getSecretKey();
 PROJECT_ID = context.getProjectID();
 KMS_ENDPOINT = context.getUserData("kms_endpoint");
 keyId = context.getUserData("kms_key_id");
 cipherText = context.getUserData("cipher_text");
 final BasicCredentials auth = new
BasicCredentials().withAk(ACCESS_KEY).withSk(SECRET_ACCESS_KEY).withProjectId(PROJECT_ID);
 kmsClient = kmsClient.newBuilder().withCredential(auth).withEndpoint(KMS_ENDPOINT).build();
 }
 }
 byte[] getEncryptPlainKey() {
 final CreateDatakeyRequest createDatakeyRequest = new
CreateDatakeyRequest().withVersionId(KMS_INTERFACE_VERSION)

FunctionGraph
Best Practices 9 Function + DEW: Encrypting/Decrypting Files

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

 .withBody(new
CreateDatakeyRequestBody().withKeyId(keyId).withDatakeyLength(AES_KEY_BIT_LENGTH));
 final CreateDatakeyResponse createDatakeyResponse =
kmsClient.createDatakey(createDatakeyRequest);
 final String cipherText = createDatakeyResponse.getCipherText();
 return hexToBytes(createDatakeyResponse.getPlainText());
 }
 byte[] hexToBytes(String hexString) {
 final int stringLength = hexString.length();
 assert stringLength > 0;
 final byte[] result = new byte[stringLength / 2];
 int j = 0;
 for (int i = 0; i < stringLength; i += 2) {
 result[j++] = (byte) Integer.parseInt(hexString.substring(i, i + 2), 16);
 }
 return result;
 }
 public void setPath(String inputPath, String outputPath) {
 this.inputPath = inputPath;
 this.outputPath = outputPath;
 }
 public void encryptFile() {
 final File outEncryptFile = new File(outputPath);
 final File inFile = new File(inputPath);
 final byte[] iv = new byte[GCM_IV_LENGTH];
 final SecureRandom secureRandom = new SecureRandom();
 secureRandom.nextBytes(iv);
 doFileFinal(Cipher.ENCRYPT_MODE, inFile, outEncryptFile, getEncryptPlainKey(), iv);
 }
 byte[] getDecryptPlainKey() {
final CreateDatakeyRequest createDatakeyRequest = new
CreateDatakeyRequest().withVersionId(KMS_INTERFACE_VERSION)
 .withBody(new
CreateDatakeyRequestBody().withKeyId(keyId).withDatakeyLength(AES_KEY_BIT_LENGTH));
// Create a data key.
final CreateDatakeyResponse createDatakeyResponse = kmsClient.createDatakey(createDatakeyRequest);
 final DecryptDatakeyRequest decryptDatakeyRequest = new
DecryptDatakeyRequest().withVersionId(KMS_INTERFACE_VERSION)
 .withBody(new
DecryptDatakeyRequestBody().withKeyId(keyId).withCipherText(createDatakeyResponse.getCipherText()
).withDatakeyCipherLength(AES_KEY_BYTE_LENGTH));
 return hexToBytes(kmsClient.decryptDatakey(decryptDatakeyRequest).getDataKey());
 }
 public void decryptFile() {
 final File outEncryptFile = new File(outputPath);
 final File inFile = new File(inputPath);
 final byte[] iv = new byte[GCM_IV_LENGTH];
 final SecureRandom secureRandom = new SecureRandom();
 secureRandom.nextBytes(iv);
 doFileFinal(Cipher.DECRYPT_MODE, inFile, outEncryptFile, getDecryptPlainKey(), iv);
 }
 /** // * Encrypt/Decrypt files. // * // * @param cipherMode Encryption mode.
Options: Cipher.ENCRYPT_MODE and Cipher.DECRYPT_MODE. // * @param infile Files before
encryption/decryption. // * @param outFile Files after encryption/decryption. // *
@param keyPlain Plaintext key // * @param iv Initialize vector. // */ void
doFileFinal(int cipherMode, File infile, File outFile, byte[] keyPlain, byte[] iv) {
 try (BufferedInputStream bis = new BufferedInputStream(Files.newInputStream(infile.toPath()));
 BufferedOutputStream bos = new
BufferedOutputStream(Files.newOutputStream(outFile.toPath()))) {
 final byte[] bytIn = new byte[(int) infile.length()];
 final int fileLength = bis.read(bytIn);
 assert fileLength > 0;
 final SecretKeySpec secretKeySpec = new SecretKeySpec(keyPlain, AES_FLAG);
 final Cipher cipher = Cipher.getInstance(AES_ALG);
 final GCMParameterSpec gcmParameterSpec = new GCMParameterSpec(GCM_TAG_LENGTH *
Byte.SIZE, iv);
 cipher.init(cipherMode, secretKeySpec, gcmParameterSpec);
 final byte[] bytOut = cipher.doFinal(bytIn);
 bos.write(bytOut);

FunctionGraph
Best Practices 9 Function + DEW: Encrypting/Decrypting Files

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }
 }
 }
 static class obsClientHandler {
 private ObsClient obsClient = null;
 private String inputBucketName;
 private String outputBucketName;
 private String objectKey;
 private Context context;
 private String localInPath;
 private String localOutPath;
 public void init(Context context) {
 this.context = context;
 }
 void initObsclient() {
 if (obsClient == null) {
 inputBucketName = context.getUserData("input_bucket");
 outputBucketName = context.getUserData("output_bucket");
 String ACCESS_KEY = context.getAccessKey();
 String SECRET_ACCESS_KEY = context.getSecretKey();
 String OBS_ENDPOINT = context.getUserData("obs_endpoint");
 obsClient = new ObsClient(ACCESS_KEY, SECRET_ACCESS_KEY, OBS_ENDPOINT);
 }
 }
 public void setObjectInfo(String objectKey, String inPath, String outPath) {
 this.objectKey = objectKey;
 localInPath = inPath;
 localOutPath = outPath;
 }
 public void downloadFile() {
 initObsclient();
 try {
 ObsObject obsObject = obsClient.getObject(inputBucketName, objectKey);
 InputStream inputStream = obsObject.getObjectContent();
 byte[] b = new byte[1024];
 int len;
 FileOutputStream fileOutputStream = new FileOutputStream("/tmp/" + objectKey);
 while ((len = inputStream.read(b)) != -1) {
 fileOutputStream.write(b);
 }
 inputStream.close();
 fileOutputStream.close();
 } catch (ObsException ex) {
 ex.printStackTrace();
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
 public void uploadFile() {
 try {
 // Local path of the files to upload. File names must be specified.
 FileInputStream fis = new FileInputStream(new File("/tmp/" + objectKey + ".encrypt"));
 obsClient.putObject(outputBucketName, objectKey, fis);
 fis.close();
 } catch (FileNotFoundException e) {
 throw new RuntimeException(e);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
 }
}

FunctionGraph
Best Practices 9 Function + DEW: Encrypting/Decrypting Files

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Creating a Function

When creating a function, specify an agency with OBS and DEW access
permissions so that FunctionGraph can invoke these two services.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Click Create from scratch and configure the function information.

After setting the basic information, click Create.

● For Function Type, select Event Function.
● For Function Name, enter fss_examples_dew.
● For Agency, select serverless_trust.
● For Runtime, select Java 8.

Step 4 On the details page of function fss_examples_dew, configure the following
information:

1. On the Code tab, choose Upload > Local JAR, upload the compiled sample
code JAR package, and click OK.

2. Choose Configuration > Basic Settings, set the following parameters, and
click Save.
– For Memory, select 128.
– For Execution Timeout, enter 3.
– For Handler, enter com.huawei.kms.FileEncryptAndDecrypt.encrypt.
– For App, retain the default value default.
– Description: Enter File encryption and decryption.

3. Choose Configuration > Environment Variables, set environment variables,
and click Save.
dew_endpoint: DEW endpoint
dew_key_id: Master key ID
input_bucket: OBS bucket for storing uploaded files
output_bucket: OBS bucket for storing encrypted/decrypted files
obs_endpoint: OBS endpoint

Table 9-1 Environment variables

Environment Variable Description

dew_endpoint DEW endpoint.

dew_key_id User master key ID.

input_bucket OBS bucket for storing input files.

output_bucket OBS bucket for storing encrypted
and uploaded files.

FunctionGraph
Best Practices 9 Function + DEW: Encrypting/Decrypting Files

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

https://console.eu.huaweicloud.com/functiongraph/

Environment Variable Description

obs_endpoint OBS endpoint.

----End

9.4 Adding an Event Source
After creating the OBS buckets and function, add an event source to the function
by creating an OBS trigger. Perform the following procedure:

Step 1 On the fss_examples_dew page, choose Configuration > Triggers and click
Create Trigger.

Step 2 Select Object Storage Service (OBS) for Trigger Type, and set the trigger
information, as shown in Figure 9-2.

Select bucket input_bucket.

For Events, select Post and Put.

Figure 9-2 Creating an OBS trigger

Step 3 Click OK.

NO TE

After the OBS trigger is created, when a file is uploaded or updated to bucket dew-bucket-
input, an event is generated to trigger the function.

----End

FunctionGraph
Best Practices 9 Function + DEW: Encrypting/Decrypting Files

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

9.5 Processing Files
When a file is uploaded and updated to bucket dew-bucket-input, an event is
generated to trigger the function. The function encrypts and decrypts the file and
stores the processed one into bucket dew-bucket-output.

Uploading a File to Generate an Event
Log in to the OBS console, go to the object page of the dew-bucket-input
bucket, and upload the image.jpg file, as shown in Figure 9-3.

Figure 9-3 Uploading a file

Triggering the Function
After the file is uploaded to bucket dew-bucket-input, OBS generates an event to
trigger the file encryption/decryption function. The function encrypts/decrypts the
file and stores the processed one into bucket dew-bucket-output. View the run
logs of fss_examples_dew on the Logs tab page.

The Objects page of the bucket dew-bucket-output displays the processed file
image.jpg.encrypt, as shown in Figure 9-4. In the Operation column, click
Download to download the file.

Figure 9-4 Output file

FunctionGraph
Best Practices 9 Function + DEW: Encrypting/Decrypting Files

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

https://console.eu.huaweicloud.com/obs/

10 Filtering Logs in Real Time by Using
FunctionGraph and LTS

10.1 Introduction
This chapter elaborates the following aspects of the practice:

● Scenario and benefits
● Preparation
● Building a program
● Event source
● Processing results
● Extended applications

Scenario
Quickly collect, process, and convert task logs of servers, such as ECSs, through
Log Tank Service (LTS).

Obtain log data using an LTS trigger created on FunctionGraph, analyze and
process key information in the logs by using a customized function, and then
transfer the filtered logs to another log stream. Figure 10-1 shows this process.

Figure 10-1 Processing workflow

FunctionGraph
Best Practices

10 Filtering Logs in Real Time by Using
FunctionGraph and LTS

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Benefits
● Quickly collect and convert logs with LTS.
● Process and analyze data by using the event triggering and auto scaling

features of serverless function computing. No O&M is involved, and resources
are pay-per-use.

● Transfer filtered logs to another log stream. The original log stream is
automatically deleted at the expiration time you set, reducing log storage
costs.

10.2 Preparation
Download lts_cleanse.zip (including code file write_log.py of function A, code file
lts_cleanse.py of function B, and dependency huaweicloudsdklts) and
lts_cleanse.zip.sha256 to filter logs in real time.

Collecting and Storing Logs
● Create two log groups, for example, test1206 and test-1121, on the LTS

console. For details, see Creating a Log Group.
● Create two log streams, for example, test-206 and test-1121, on the LTS

console. For details, see Creating a Log Stream.
● Create function A to write logs to test-206. For the sample code of this

function, see the write_log.py file.
● Create function B with an LTS trigger to receive logs from test-206, process

the logs, and write the result to test-1121. For the sample code of this
function, see the lts_cleanse.py file.

● Configure an agent to collect logs from servers, such as ECSs, to a specified
log group. For details, see Installing the ICAgent.

Figure 10-2 Flowchart

Creating an Agency

Step 1 Log in to the IAM console.

FunctionGraph
Best Practices

10 Filtering Logs in Real Time by Using
FunctionGraph and LTS

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/lts_cleanse.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/lts_cleanse.zip.sha256
https://support.huaweicloud.com/eu/qs-lts/lts_08301.html
https://support.huaweicloud.com/eu/qs-lts/lts_08301.html
https://support.huaweicloud.com/eu/usermanual-lts/lts_02_0013.html

Step 2 Choose Agencies from the navigation pane, and click Create Agency in the upper
right corner, as shown in Figure 10-3.

Figure 10-3 Creating an agency

Step 3 Configure the agency.
● Agency Name: Enter LtsOperation.
● Agency Type: Select Cloud service.
● Cloud Service: Select FunctionGraph.
● Validity Period: Select Unlimited.
● Description: Describe the agency.

Step 4 Click Next. On the displayed page, search for LTS Administrator and Tenant
Administrator in the search box on the right and select them, as shown in Figure
10-4.

Figure 10-4 Selecting a permission

NO TE

LTS Administrator depends on Tenant Guest. When you select the former, the latter will
also be selected.

Step 5 Click Next and select the application scope of the permission based on service
requirements.

----End

10.3 Building a Program

Prerequisites
(1) The IP address in the two functions is an access point of LTS. To obtain this IP
address, perform the following steps:

FunctionGraph
Best Practices

10 Filtering Logs in Real Time by Using
FunctionGraph and LTS

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

1. Log in to the LTS console. In the navigation pane, choose Host Management.
2. Click Install ICAgent in the upper right.

Figure 10-5 Installing an ICAgent

3. Obtain the access point IP address in the Install ICAgent window.

Figure 10-6 Access point IP address

2. Obtain the values of log_group_id and log_stream_id in the functions. For
details, see Obtaining the Account ID, Project ID, Log Group ID, and Log
Stream ID.

3. Create the LTS dependency required by function B. For details, see How Do I
Create a Dependency on the FunctionGraph Console? and How Do I Add a
Dependency to a Function? You can run the pip install huaweicloudsdklts
command to create the dependency. The sample code contains the
huaweicloudsdklts dependency for Python 3.9.

Creating a Function
Create a log extraction function by uploading the sample code package. Select the
Python 3.9 runtime and the agency LtsOperation created in Creating an Agency.
For details about how to create a function, see Creating an Event Function.

FunctionGraph
Best Practices

10 Filtering Logs in Real Time by Using
FunctionGraph and LTS

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

https://support.huaweicloud.com/eu/api-lts/lts_api_0006.html
https://support.huaweicloud.com/eu/api-lts/lts_api_0006.html
https://support.huaweicloud.com/eu/functiongraph_faq/functiongraph_03_0888.html
https://support.huaweicloud.com/eu/functiongraph_faq/functiongraph_03_0888.html
https://support.huaweicloud.com/eu/functiongraph_faq/functiongraph_03_0889.html
https://support.huaweicloud.com/eu/functiongraph_faq/functiongraph_03_0889.html
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/lts_cleanse.zip
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1441.html

Create function A. For the sample code of this function, see the write_log.py file.
In the code of function A, replace host, log_group_id, and log_stream_id with the
access point and the IDs of log group test-1206 and log stream test-206, as
shown in Figure 10-7.

Figure 10-7 write_log.py

Create function B. For the sample code of this function, see the lts_cleanse.py file.
In the code of function B, replace host, log_group_id, and log_stream_id with the
access point and the IDs of log group test-1121 and log stream test-1121, and
add the huaweicloudsdklts dependency to this function, as shown in Figure 10-8
and Figure 10-9.

Figure 10-8 lts_cleanse.py

Figure 10-9 Adding a dependency for function B

This function performs Base64 decoding on received log event data, extracts alarm
logs containing keyword WRN, WARN, ERR, or ERROR, and then stores the

FunctionGraph
Best Practices

10 Filtering Logs in Real Time by Using
FunctionGraph and LTS

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

extracted logs to a specified LTS log stream. Set log extraction conditions based on
the content of your service logs.

10.4 Adding an Event Source
Create an LTS trigger by using the log group and log stream created in
Preparation, and configure the trigger information according to Figure 10-10.

Figure 10-10 Creating an LTS trigger

When the accumulated log size or log retention period meets a specified
threshold, LTS log data will be consumed, which will trigger the function
associated with the log group.

10.5 Processing Results
Filter alarm logs containing keyword WRN, WARN, ERR, or ERROR, and transfer
them to a specified log stream. Figure 10-11 and Figure 10-12 show the real-time
logs before and after filtering, respectively.

Figure 10-11 Logs before filtering

FunctionGraph
Best Practices

10 Filtering Logs in Real Time by Using
FunctionGraph and LTS

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Figure 10-12 Logs after filtering

Check the function invocation by viewing the metrics, as shown in the following
figures.

Figure 10-13 Function metrics (1)

Figure 10-14 Function metrics (2)

Figure 10-15 Function metrics (3)

10.6 Extended Applications
In addition to log processing and transfer to LTS, the combination of
FunctionGraph and LTS can apply to more scenarios, for example, analyzing and

FunctionGraph
Best Practices

10 Filtering Logs in Real Time by Using
FunctionGraph and LTS

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

processing log data with a timer trigger to delete redundant logs and save space
and costs.

FunctionGraph
Best Practices

10 Filtering Logs in Real Time by Using
FunctionGraph and LTS

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

11 Building an HTTP Function with Go

Introduction

This chapter describes how to deploy services on FunctionGraph using Go.

HTTP functions do not support direct code deployment using Go. This section uses
binary conversion as an example to describe how to deploy Go programs on
FunctionGraph.

Procedure

Building a code package

Create the source file main.go. The code is as follows:

// main.go
package main

import (
 "fmt"
 "net/http"

 "github.com/emicklei/go-restful"
)

func registerServer() {
 fmt.Println("Running a Go Http server at localhost:8000/")

 ws := new(restful.WebService)
 ws.Path("/")

 ws.Route(ws.GET("/hello").To(Hello))
 c := restful.DefaultContainer
 c.Add(ws)
 fmt.Println(http.ListenAndServe(":8000", c))
}

func Hello(req *restful.Request, resp *restful.Response) {
 resp.Write([]byte("nice to meet you"))
}

func main() {
 registerServer()
}
bootstrap
/opt/function/code/go-http-demo

FunctionGraph
Best Practices 11 Building an HTTP Function with Go

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

In main.go, an HTTP server is started using port 8000, and an API whose path is /
hello is registered. When the API is invoked, "nice to meet you" is returned.

Compiling and packaging

1. On the Linux server, compile the preceding code using the go build -o go-
http-demo main.go command. Then, compress go-http-demo and
bootstrap into a ZIP package named xxx.zip.

2. To use the Golang compiler to complete packaging on a Windows host,
perform the following steps:
Switch the compilation environment
Check the previous Golang compilation environment
go env
Set the following parameters to the corresponding value of Linux
set GOARCH=amd64
go env -w GOARCH=amd64
set GOOS=linux
go env -w GOOS=linux

go build -o [target executable program] [source program]
Example
go build -o go-http-demo main.go

Restore the compilation environment
set GOARCH=amd64
go env -w GOARCH=amd64
set GOOS=windows
go env -w GOOS=windows

Creating an HTTP function and uploading code

Create an HTTP function and upload the xxx.zip package. For details, see
Creating an HTTP Function.

Creating an APIG trigger

Create an APIG trigger by referring to Using an APIG Trigger. Set the
authentication mode to None for debugging.

Figure 11-1 APIG trigger

Invocation test

Copy the URL of the APIG trigger and the /hello path registered in the code to the
address box of the browser. The following information is displayed.

FunctionGraph
Best Practices 11 Building an HTTP Function with Go

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1442.html#section2
https://support.huaweicloud.com/eu/usermanual-functiongraph/functiongraph_01_1813.html

Figure 11-2 Request result

FunctionGraph
Best Practices 11 Building an HTTP Function with Go

Issue 01 (2024-06-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

	Contents
	1 Compressing Images
	1.1 Introduction
	1.2 Preparation
	1.3 Building a Program
	1.4 Adding an Event Source
	1.5 Compressing Images

	2 Watermarking Images
	2.1 Introduction
	2.2 Preparation
	2.3 Building a Program
	2.4 Adding an Event Source
	2.5 Watermarking Images

	3 Processing DIS Data
	3.1 Introduction
	3.2 Preparation
	3.3 Building a Program
	3.4 Adding an Event Source
	3.5 Processing Data

	4 Integrating with LTS to Analyze Logs in Real Time
	4.1 Introduction
	4.2 Preparation
	4.3 Building a Program
	4.4 Adding an Event Source
	4.5 Processing Log Data
	4.6 Other Application Scenarios

	5 Integrating with CTS to Analyze Login/Logout Security
	5.1 Introduction
	5.2 Preparation
	5.3 Building a Program
	5.4 Adding an Event Source
	5.5 Processing Operation Records

	6 Building an HTTP Function with Spring Boot
	7 Creating a FunctionGraph Backend API That Uses a Custom Authorizer
	7.1 Introduction
	7.2 Resource Planning
	7.3 Building a Program
	7.4 Adding an Event Source
	7.5 Debugging and Calling the API

	8 Processing IoT Data
	8.1 Introduction
	8.2 Preparation
	8.3 Building a Program

	9 Function + DEW: Encrypting/Decrypting Files
	9.1 Introduction
	9.2 Preparation
	9.3 Building a Program
	9.4 Adding an Event Source
	9.5 Processing Files

	10 Filtering Logs in Real Time by Using FunctionGraph and LTS
	10.1 Introduction
	10.2 Preparation
	10.3 Building a Program
	10.4 Adding an Event Source
	10.5 Processing Results
	10.6 Extended Applications

	11 Building an HTTP Function with Go

