
Data Warehouse Service

Best Practices

Issue 04

Date 2024-03-05

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Import and Export... 1
1.1 Best Practices for Data Import..1
1.2 GDS Practice Guide... 3
1.3 Tutorial: Importing Data from OBS to a Cluster.. 5
1.4 Tutorial: Using GDS to Import Data from a Remote Server...9
1.5 Tutorial: Importing Remote GaussDB(DWS) Data Sources..14

2 Data Migration...23
2.1 Migrating Data From Oracle to GaussDB(DWS)... 23
2.1.1 Migration Process.. 23
2.1.2 Required Tools.. 24
2.1.3 Migrating Table Definitions... 25
2.1.3.1 Installing the PL/SQL Developer on the Local Host...25
2.1.3.2 Migrating Table Definitions and Syntax...26
2.1.4 Migrating Full Table Data...30
2.1.4.1 Configuring a GaussDB(DWS) Data Source Connection..30
2.1.4.2 Configuring an Oracle Data Source Connection... 31
2.1.4.3 Migrating Tables... 32
2.1.4.4 Verification... 34
2.1.5 Migrating SQL Statements... 34
2.1.5.1 Migrating Syntax.. 34
2.1.5.2 Verification... 36
2.2 Synchronizing MySQL Table Data to GaussDB(DWS) in Real Time..36
2.3 Using DLI Flink Jobs to Write Kafka Data to GaussDB(DWS) in Real Time...45
2.4 Practice of Data Interconnection Between Two DWS Clusters Based on GDS..65

3 Table Optimization Practices... 73
3.1 Table Structure Design.. 73
3.2 Table Optimization Overview... 79
3.3 Selecting a Table Model... 79
3.4 Step 1: Creating an Initial Table and Loading Sample Data..81
3.5 Step 2: Testing System Performance of the Initial Table and Establishing a Baseline................................. 85
3.6 Step 3: Optimizing a Table.. 88
3.7 Step 4: Creating Another Table and Loading Data... 90

Data Warehouse Service
Best Practices Contents

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. iii

3.8 Step 5: Testing System Performance in the New Table... 92
3.9 Step 6: Evaluating the Performance of the Optimized Table.. 95
3.10 Appendix: Table Creation Syntax.. 97
3.10.1 Usage.. 97
3.10.2 Creating an Initial Table... 97
3.10.3 Creating a Another Table After Design Optimization..100
3.10.4 Creating a Foreign Table.. 104

4 Advanced Features..111
4.1 Creating a Time Series Table.. 111
4.2 Best Practices of Hot and Cold Data Management..117
4.3 Best Practices for Automatic Partition Management.. 122
4.4 GaussDB (DWS) View Decoupling and Automatic Rebuilding...127
4.5 Best Practices of Column-Store Delta Tables..129

5 Database Management... 134
5.1 Best Practices of Resource Management... 134
5.2 Excellent Practices for SQL Queries... 139
5.3 Analyzing SQL Statements that Are Being Executed... 140
5.4 Excellent Practices for Data Skew Queries.. 145
5.4.1 Real-Time Detection of Storage Skew During Data Import...145
5.4.2 Quickly Locating the Tables That Cause Data Skew...146
5.5 Best Practices for User Management.. 147
5.6 Viewing Table and Database Information... 151
5.7 Best Practices of Database SEQUENCE... 158

6 Sample Data Analysis...164
6.1 Checkpoint Vehicle Analysis..164
6.2 Supply Chain Requirement Analysis of a Company... 170
6.3 Operations Status Analysis of a Retail Department Store... 178

7 Security Management..187
7.1 Role-based Access Control (RBAC)...187
7.2 Encrypting and Decrypting Data Columns.. 190
7.3 Managing and Controlling Data Permissions Through Views.. 193

Data Warehouse Service
Best Practices Contents

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. iv

1 Import and Export

1.1 Best Practices for Data Import

Importing Data from OBS in Parallel
● Splitting a data file into multiple files

Importing a huge amount of data takes a long period of time and consumes
many computing resources.
To improve the performance of importing data from OBS, split a data file into
multiple files as evenly as possible before importing it to OBS. The preferred
number of split files is an integer multiple of the DN quantity.

● Verifying data files before and after an import
When importing data from OBS, first import your files to your OBS bucket,
and then verify that the bucket contains all the correct files, and only those
files.
After the import is complete, run the SELECT statement to verify that the
required files have been imported.

● Ensuring no Chinese characters are contained in paths used for importing
data to or exporting data from OBS.

Using GDS to Import Data
● Data skew causes the query performance to deteriorate. Before importing all

the data from a table containing over 10 million records, you are advised to
import some of the data and check whether there is data skew and whether
the distribution keys need to be changed. Troubleshoot the data skew if any. It
is costly to address data skew and change the distribution keys after a large
amount of data has been imported. For details, see Checking for Data Skew.

● To speed up the import, you are advised to split files and use multiple Gauss
Data Service (GDS) tools to import data in parallel. An import task can be
split into multiple concurrent import tasks. If multiple import tasks use the
same GDS, you can specify the -t parameter to enable GDS multi-thread
concurrent import. To prevent physical I/O and network bottleneck, you are
advised to mount GDSs to different physical disks and NICs.

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 1

https://support.huaweicloud.com/eu/migration-dws/dws_15_0093.html

● If the GDS I/O and NICs do not reach their physical bottlenecks, you can
enable SMP on GaussDB(DWS) for acceleration. SMP will multiply the
pressure on GDSs. Note that SMP adaptation is implemented based on the
GaussDB(DWS) CPU pressure rather than the GDS pressure. For more
information about SMP, see Suggestions for SMP Parameter Settings.

● For the proper communication between GDSs and GaussDB(DWS), you are
advised to use 10GE networks. 1GE networks cannot bear the high-speed
data transmission, and, as a result, cannot ensure proper communication
between GDSs and GaussDB(DWS). To maximize the import rate of a single
file, ensure that a 10GE network is used and the data disk group I/O rate is
greater than the upper limit of the GDS single-core processing capability
(about 400 MB/s).

● Similar to the single-table import, ensure that the I/O rate is greater than the
maximum network throughput in the concurrent import.

● It is recommended that the ratio of GDS quantity to DN quantity be in the
range of 1:3 to 1:6.

● To improve the efficiency of importing data in batches to column-store
partitioned tables, the data is buffered before being written into a disk. You
can specify the number of buffers and the buffer size by setting
partition_mem_batch and partition_max_cache_size, respectively. Smaller
values indicate the slower the batch import to column-store partitioned
tables. The larger the values, the higher the memory consumption.

Using INSERT to Insert Multiple Rows

If the COPY statement cannot be used and you require SQL inserts, use a multi-
row insert whenever possible. Data compression is inefficient when you add data
of only one row or a few rows at a time.

Multi-row inserts improve performance by batching up a series of inserts. The
following example inserts three rows into a three-column table using a single
INSERT statement. This is still a small insert, shown simply to illustrate the syntax
of a multi-row insert. For details about how to create a table, see Creating a
Table.

To insert multiple rows of data to the table customer_t1, run the following
statement:

INSERT INTO customer_t1 VALUES
(6885, 'maps', 'Joes'),
(4321, 'tpcds', 'Lily'),
(9527, 'world', 'James');

For more details and examples, see INSERT.

Using the COPY Statement to Import Data

The COPY statement imports data from local and remote databases in parallel.
COPY imports large amounts of data more efficiently than INSERT statements.

For details about how to use the COPY statement, see Running the COPY FROM
STDIN Statement to Import Data.

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 2

https://support.huaweicloud.com/eu/performance-dws/dws_10_0040.html
https://support.huaweicloud.com/eu/devg-dws/dws_04_0899.html
https://support.huaweicloud.com/eu/devg-dws/dws_04_0899.html
https://support.huaweicloud.com/eu/devg-dws/dws_04_0028.html
https://support.huaweicloud.com/eu/devg-dws/dws_04_0028.html
https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0236.html
https://support.huaweicloud.com/eu/migration-dws/dws_15_0043.html
https://support.huaweicloud.com/eu/migration-dws/dws_15_0043.html

Using a gsql Meta-Command to Import Data
The \copy command can be used to import data after you log in to a database
through any gsql client. Unlike the COPY statement, the \copy command reads
from or writes into a file.

Data read or written using the \copy command is transferred through the
connection between the server and the client and may not be efficient. The COPY
statement is recommended when the amount of data is large.

For details about how to use the \copy command, see Using the \copy Meta-
Command to Import Data.

NO TE

\copy only applies to small-batch data import with uniform formats but poor error
tolerance capability. GDS or COPY is preferred for data import.

1.2 GDS Practice Guide
● Before installing GDS, ensure that the system parameters of the server where

GDS is deployed are consistent with those of the database cluster.
● Ensure the physical network works properly for communication between GDS

and GaussDB(DWS). A 10GE network is recommended. The 1GE network
cannot guarantee smooth communication between GDS and GaussDB(DWS),
because it cannot bear the high-speed data transmission pressure and is
prone to disconnection. To maximize the import rate of a single file, ensure
that a 10GE network is used and the data disk group I/O rate is greater than
the upper limit of the GDS single-core processing capability (about 400 MB/s).

● Plan service deployment in advance. It is recommended that one or two GDSs
be deployed on a RAID of a data server. It is recommended that the ratio of
GDS quantity to DN quantity be in the range of 1:3 to 1:6. Do not deploy too
many GDS processes on a loader. Deploy only one GDS process if an 1GE NIC
is used, and no more than four GDS processes if a 10GE NIC is used.

● Hierarchically divide the data directories for data imported and exported by
GDS in advance. Do not put too many files under a data directory, and delete
expired files in a timely manner.

● Properly plan the character set of the target database. You are advised to use
UTF8 instead of the SQL_ASCII characters which can easily incur mixed
encoding. When exporting data using GDS, ensure that the character set of
the foreign table is the same as that of the client. When importing data,
ensure that the client and data file content use the same encoding method.

● If the character set of the database, client, or foreign table cannot be
changed, run the iconv command to manually change the character set.
#Note: -f indicates the character set of the source file, and -t indicates the target character set.
iconv -f utf8 -t gbk utf8.txt -o gbk.txt

● For details about GDS import practices, see Using GDS to Import Data.
● GDS supports CSV, TEXT, and FIXED formats. The default format is TEXT. The

binary format is not supported. However, the encode/decode function can be
used to process data of the binary type. Example:
Export a binary table.
-- Create a table.
CREATE TABLE blob_type_t1

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/eu/migration-dws/dws_15_0042.html
https://support.huaweicloud.com/eu/migration-dws/dws_15_0042.html

(
 BT_COL BYTEA
) DISTRIBUTE BY REPLICATION;
-- Create a foreign table.
CREATE FOREIGN TABLE f_blob_type_t1(BT_COL text) SERVER gsmpp_server OPTIONS (LOCATION
'gsfs://127.0.0.1:7789/', FORMAT 'text', DELIMITER E'\x08', NULL '', EOL '0x0a') WRITE ONLY;
INSERT INTO blob_type_t1 VALUES(E'\\xDEADBEEF');
INSERT INTO blob_type_t1 VALUES(E'\\xDEADBEEF');
INSERT INTO blob_type_t1 VALUES(E'\\xDEADBEEF');
INSERT INTO blob_type_t1 VALUES(E'\\xDEADBEEF');
INSERT INTO f_blob_type_t1 select encode(BT_COL,'base64') from blob_type_t1;

Import a binary table.
-- Create a table.
CREATE TABLE blob_type_t2
(
 BT_COL BYTEA
) DISTRIBUTE BY REPLICATION;
-- Create a foreign table.
CREATE FOREIGN TABLE f_blob_type_t2(BT_COL text) SERVER gsmpp_server OPTIONS (LOCATION
'gsfs://127.0.0.1:7789/f_blob_type_t1.dat.0', FORMAT 'text', DELIMITER E'\x08', NULL '', EOL '0x0a');
insert into blob_type_t2 select decode(BT_COL,'base64') from f_blob_type_t2;
SELECT * FROM blob_type_t2;
 bt_col

 \xdeadbeef
 \xdeadbeef
 \xdeadbeef
 \xdeadbeef
(4 rows)

● Do not repeatedly export data from the same foreign table. Otherwise, the
previously exported file will be overwritten.

● If you are not sure whether the file is in the standard CSV format, you are
advised to set quote parameter to invisible characters such as 0x07, 0x08, or
0x1b to import and export data using GDS. This prevents task failures caused
by incorrect file format.
CREATE FOREIGN TABLE foreign_HR_staffS_ft1
(
 MANAGER_ID NUMBER(6),
 section_ID NUMBER(4)
) SERVER gsmpp_server OPTIONS (location 'file:///input_data/*', format 'csv', mode 'private', quote
'0x07', delimiter ',') WITH err_HR_staffS_ft1;

● GDS supports concurrent import and export. The gds -t parameter is used to
set the size of the thread pool and control the maximum number of
concurrent working threads. But it does not accelerate a single SQL task. The
default value of gds -t is 8, and the upper limit is 200. When using the pipe
function to import and export data, ensure that the value of -t is greater than
or equal to the number of concurrent services.

● If the delimiter of a GDS foreign table consists of multiple characters, do not
use the same characters in the TEXT format, for example ---.

● GDS imports a single file through multiple tables in parallel to improve data
import performance. (Only CSV and TXT files can be imported.)
-- Create a target table.
CREATE TABLE pipegds_widetb_1 (city integer, tel_num varchar(16), card_code varchar(15),
phone_code vcreate table pipegds_widetb_3 (city integer, tel_num varchar(16), card_code varchar(15),
phone_code varchar(16), region_code varchar(6), station_id varchar(10), tmsi varchar(20), rec_date
integer(6), rec_time integer(6), rec_type numeric(2), switch_id varchar(15), attach_city varchar(6),
opc varchar(20), dpc varchar(20));

-- Create a foreign table that contains the file_sequence column.
CREATE FOREIGN TABLE gds_pip_csv_r_1(like pipegds_widetb_1) SERVER gsmpp_server OPTIONS
(LOCATION 'gsfs://127.0.0.1:8781/wide_tb.txt', FORMAT 'text', DELIMITER E'|+|', NULL '', file_sequence
'5-1');

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 4

CREATE FOREIGN TABLE gds_pip_csv_r_2(like pipegds_widetb_1) SERVER gsmpp_server OPTIONS
(LOCATION 'gsfs://127.0.0.1:8781/wide_tb.txt', FORMAT 'text', DELIMITER E'|+|', NULL '', file_sequence
'5-2');

CREATE FOREIGN TABLE gds_pip_csv_r_3(like pipegds_widetb_1) SERVER gsmpp_server OPTIONS
(LOCATION 'gsfs://127.0.0.1:8781/wide_tb.txt', FORMAT 'text', DELIMITER E'|+|', NULL '', file_sequence
'5-3');

CREATE FOREIGN TABLE gds_pip_csv_r_4(like pipegds_widetb_1) SERVER gsmpp_server OPTIONS
(LOCATION 'gsfs://127.0.0.1:8781/wide_tb.txt', FORMAT 'text', DELIMITER E'|+|', NULL '', file_sequence
'5-4');

CREATE FOREIGN TABLE gds_pip_csv_r_5(like pipegds_widetb_1) SERVER gsmpp_server OPTIONS
(LOCATION 'gsfs://127.0.0.1:8781/wide_tb.txt', FORMAT 'text', DELIMITER E'|+|', NULL '', file_sequence
'5-5');

-- Import the wide_tb.txt file to the pipegds_widetb_1 table in parallel.
\parallel on
INSERT INTO pipegds_widetb_1 SELECT * FROM gds_pip_csv_r_1;
INSERT INTO pipegds_widetb_1 SELECT * FROM gds_pip_csv_r_2;
INSERT INTO pipegds_widetb_1 SELECT * FROM gds_pip_csv_r_3;
INSERT INTO pipegds_widetb_1 SELECT * FROM gds_pip_csv_r_4;
INSERT INTO pipegds_widetb_1 SELECT * FROM gds_pip_csv_r_5;
\parallel off

For details about file_sequence, see CREATE FOREIGN TABLE (for GDS
Import and Export).

1.3 Tutorial: Importing Data from OBS to a Cluster

Overview
This practice demonstrates how to upload sample data to OBS and import OBS
data to the target table on GaussDB(DWS), helping you quickly learn how to
import data from OBS to a GaussDB(DWS) cluster.

You can import data in TXT, CSV, ORC, PARQUET, CARBONDATA, or JSON format
from OBS to a GaussDB(DWS) cluster for query.

This tutorial uses the CSV format as an example to describe how to perform the
following operations:

● Generate data files in CSV format.
● Create an OBS bucket in the same region as the GaussDB(DWS) cluster, and

upload data files to the OBS bucket.
● Create a foreign table to import data from the OBS bucket to GaussDB(DWS)

clusters.
● Start GaussDB(DWS), create a table, and import data from OBS to the table.
● Analyze import errors based on the information in the error table and correct

these errors.

Estimated time: 30 minutes

Preparing Source Data Files
● Data file product_info0.csv

100,XHDK-A,2017-09-01,A,2017 Shirt Women,red,M,328,2017-09-04,715,good!
205,KDKE-B,2017-09-01,A,2017 T-shirt Women,pink,L,584,2017-09-05,40,very good!
300,JODL-X,2017-09-01,A,2017 T-shirt men,red,XL,15,2017-09-03,502,Bad.

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0159.html
https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0159.html

310,QQPX-R,2017-09-02,B,2017 jacket women,red,L,411,2017-09-05,436,It's nice.
150,ABEF-C,2017-09-03,B,2017 Jeans Women,blue,M,123,2017-09-06,120,good.

● Data file product_info1.csv
200,BCQP-E,2017-09-04,B,2017 casual pants men,black,L,997,2017-09-10,301,good quality.
250,EABE-D,2017-09-10,A,2017 dress women,black,S,841,2017-09-15,299,This dress fits well.
108,CDXK-F,2017-09-11,A,2017 dress women,red,M,85,2017-09-14,22,It's really amazing to buy.
450,MMCE-H,2017-09-11,A,2017 jacket women,white,M,114,2017-09-14,22,very good.
260,OCDA-G,2017-09-12,B,2017 woolen coat women,red,L,2004,2017-09-15,826,Very comfortable.

● Data file product_info2.csv
980,"ZKDS-J",2017-09-13,"B","2017 Women's Cotton Clothing","red","M",112,,,
98,"FKQB-I",2017-09-15,"B","2017 new shoes men","red","M",4345,2017-09-18,5473
50,"DMQY-K",2017-09-21,"A","2017 pants men","red","37",28,2017-09-25,58,"good","good","good"
80,"GKLW-l",2017-09-22,"A","2017 Jeans Men","red","39",58,2017-09-25,72,"Very comfortable."
30,"HWEC-L",2017-09-23,"A","2017 shoes women","red","M",403,2017-09-26,607,"good!"
40,"IQPD-M",2017-09-24,"B","2017 new pants Women","red","M",35,2017-09-27,52,"very good."
50,"LPEC-N",2017-09-25,"B","2017 dress Women","red","M",29,2017-09-28,47,"not good at all."
60,"NQAB-O",2017-09-26,"B","2017 jacket women","red","S",69,2017-09-29,70,"It's beautiful."
70,"HWNB-P",2017-09-27,"B","2017 jacket women","red","L",30,2017-09-30,55,"I like it so much"
80,"JKHU-Q",2017-09-29,"C","2017 T-shirt","red","M",90,2017-10-02,82,"very good."

Step 1 Create a text file, open it using a local editing tool (for example, Visual Studio
Code), and copy the sample data to the text file.

Step 2 Choose Format > Encode in UTF-8 without BOM.

Step 3 Choose File > Save as.

Step 4 In the displayed dialog box, enter the file name, set the file name extension
to .csv, and click Save.

----End

Uploading Data to OBS

Step 1 Store the three CSV source data files in the OBS bucket.

1. Log in to the OBS management console.
Click Service List and choose Object Storage Service to open the OBS
management console.

2. Create a bucket.

For details about how to create an OBS bucket, see Creating a Bucket in
Getting Started in Object Storage Service.
For example, create two buckets named mybucket and mybucket02.

NO TICE

Ensure that the two buckets are in the same region as the GaussDB(DWS)
cluster. This practice uses the EU-Dublin region as an example.

3. Create a folder.
For details, see "Creating a Folder" in the Object Storage Service Usage Guide
Examples:
– Create a folder named input_data in the mybucket OBS bucket.

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 6

https://support.huaweicloud.com/eu/qs-obs/obs_qs_0007.html

– Create a folder named input_data in the mybucket02 OBS bucket.
4. Upload the files.

For details, see "Uploading a File" in the Object Storage Service Usage Guide.
Examples:
– Upload the following data files to the input_data folder in the mybucket

OBS bucket:
product_info0.csv
product_info1.csv

– Upload the following data file to the input_data folder in the
mybucket02 OBS bucket:
product_info2.csv

Step 2 Grant the OBS bucket read permission for the user who will import data.

When importing data from OBS to a cluster, the user must have the read
permission for the OBS buckets where the source data files are located. You can
configure the ACL for the OBS buckets to grant the read permission to a specific
user.

----End

Creating a Foreign Table

Step 1 Connect to the GaussDB(DWS) database.

Step 2 Create a foreign table.

NO TE

● ACCESS_KEY and SECRET_ACCESS_KEY
These parameters specify the AK and SK used to access OBS by a user. Replace them
with the actual AK and SK.
To obtain an access key, log in to the management console, move the cursor to the
username in the upper right corner, click My Credential, and click Access Keys in the
navigation pane on the left. On the Access Keys page, you can view the existing access
key IDs (AKs). To obtain both the AK and SK, click Create Access Key to create and
download an access key.

● // Hard-coded or plaintext AK and SK are risky. For security purposes, encrypt your AK
and SK and store them in the configuration file or environment variables.

DROP FOREIGN TABLE IF EXISTS product_info_ext;
CREATE FOREIGN TABLE product_info_ext
(
 product_price integer not null,
 product_id char(30) not null,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt integer ,
 product_comment_time date ,
 product_comment_num integer ,
 product_comment_content varchar(200)
)
SERVER gsmpp_server
OPTIONS(
LOCATION 'obs://mybucket/input_data/product_info | obs://mybucket02/input_data/product_info',

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 7

FORMAT 'CSV' ,
DELIMITER ',',
ENCODING 'utf8',
HEADER 'false',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
FILL_MISSING_FIELDS 'true',
IGNORE_EXTRA_DATA 'true'
)
READ ONLY
LOG INTO product_info_err
PER NODE REJECT LIMIT 'unlimited';

If the following information is displayed, the foreign table has been created:
CREATE FOREIGN TABLE

----End

Importing Data

Step 1 Create a table named product_info in the GaussDB(DWS) database to store the
data imported from OBS.
DROP TABLE IF EXISTS product_info;
CREATE TABLE product_info
(
 product_price integer not null,
 product_id char(30) not null,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt integer ,
 product_comment_time date ,
 product_comment_num integer ,
 product_comment_content varchar(200)
)
WITH (
orientation = column,
compression=middle
)
DISTRIBUTE BY hash (product_id);

Step 2 Run INSERT to import data from OBS to the target table product_info through
the foreign table product_info_ext.
INSERT INTO product_info SELECT * FROM product_info_ext;

Step 3 Run SELECT to view the data imported from OBS to GaussDB(DWS).
SELECT * FROM product_info;

The following information is displayed at the end of the query result:

(20 rows)

Step 4 Run VACUUM FULL on the product_info table.
VACUUM FULL product_info;

Step 5 Update statistics of the product_info table.
ANALYZE product_info;

----End

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 8

Deleting Resources

Step 1 If you have performed queries after importing data, run the following statement
to delete the target table:
DROP TABLE product_info;

If the following output is displayed, the foreign table has been deleted:

DROP TABLE

Step 2 Run the following statement to delete the foreign table:
DROP FOREIGN TABLE product_info_ext;

If the following output is displayed, the foreign table has been deleted:

DROP FOREIGN TABLE

----End

1.4 Tutorial: Using GDS to Import Data from a Remote
Server

Overview
This practice demonstrates how to use General Data Service (GDS) to import data
from a remote server to GaussDB(DWS).

GaussDB(DWS) allows you to import data in TXT, CSV, or FIXED format.

In this tutorial, you will:

● Generate the source data files in CSV format to be used in this tutorial.
● Upload the source data files to a data server.
● Create foreign tables used for importing data from a data server to

GaussDB(DWS) through GDS.
● Start GaussDB(DWS), create a table, and import data to the table.
● Analyze import errors based on the information in the error table and correct

these errors.

Preparing an ECS as the GDS Server
For details about how to purchase a Linux ECS, see section "Purchasing an ECS" in
the Elastic Cloud Server Getting Started. After the purchase, log in to the ECS by
referring to section "Logging In to a Linux ECS".

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 9

NO TE

● The ECS OS must be supported by the GDS package.

● The ECS and DWS are in the same region, VPC, and subnet.

● The ECS security group rule must allow access to the DWS cluster, that is, the inbound
rule of the security group is as follows:

● Protocol: TCP

● Port: 5000

● Source: Select IP Address and enter the IP address of the GaussDB(DWS) cluster,
for example, 192.168.0.10/32.

● If the firewall is enabled in the ECS, ensure that the listening port of GDS is enabled on
the firewall:
iptables -I INPUT -p tcp -m tcp --dport <gds_port> -j ACCEPT

Downloading the GDS Package

Step 1 Log in to the GaussDB(DWS) console.

Step 2 In the navigation tree on the left, click Connections.

Step 3 Select the GDS client of the corresponding version from the drop-down list of CLI
Client.

Select a version based on the cluster version and the OS where the client is
installed.

NO TE

The CPU architecture of the client must be the same as that of the cluster. If the cluster
uses the x86 specifications, select the x86 client.

Step 4 Click Download.

----End

Preparing Source Data Files
● Data file product_info0.csv

100,XHDK-A,2017-09-01,A,2017 Shirt Women,red,M,328,2017-09-04,715,good!
205,KDKE-B,2017-09-01,A,2017 T-shirt Women,pink,L,584,2017-09-05,40,very good!
300,JODL-X,2017-09-01,A,2017 T-shirt men,red,XL,15,2017-09-03,502,Bad.
310,QQPX-R,2017-09-02,B,2017 jacket women,red,L,411,2017-09-05,436,It's nice.
150,ABEF-C,2017-09-03,B,2017 Jeans Women,blue,M,123,2017-09-06,120,good.

● Data file product_info1.csv
200,BCQP-E,2017-09-04,B,2017 casual pants men,black,L,997,2017-09-10,301,good quality.
250,EABE-D,2017-09-10,A,2017 dress women,black,S,841,2017-09-15,299,This dress fits well.
108,CDXK-F,2017-09-11,A,2017 dress women,red,M,85,2017-09-14,22,It's really amazing to buy.
450,MMCE-H,2017-09-11,A,2017 jacket women,white,M,114,2017-09-14,22,very good.
260,OCDA-G,2017-09-12,B,2017 woolen coat women,red,L,2004,2017-09-15,826,Very comfortable.

● Data file product_info2.csv
980,"ZKDS-J",2017-09-13,"B","2017 Women's Cotton Clothing","red","M",112,,,
98,"FKQB-I",2017-09-15,"B","2017 new shoes men","red","M",4345,2017-09-18,5473
50,"DMQY-K",2017-09-21,"A","2017 pants men","red","37",28,2017-09-25,58,"good","good","good"
80,"GKLW-l",2017-09-22,"A","2017 Jeans Men","red","39",58,2017-09-25,72,"Very comfortable."
30,"HWEC-L",2017-09-23,"A","2017 shoes women","red","M",403,2017-09-26,607,"good!"
40,"IQPD-M",2017-09-24,"B","2017 new pants Women","red","M",35,2017-09-27,52,"very good."
50,"LPEC-N",2017-09-25,"B","2017 dress Women","red","M",29,2017-09-28,47,"not good at all."
60,"NQAB-O",2017-09-26,"B","2017 jacket women","red","S",69,2017-09-29,70,"It's beautiful."

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 10

70,"HWNB-P",2017-09-27,"B","2017 jacket women","red","L",30,2017-09-30,55,"I like it so much"
80,"JKHU-Q",2017-09-29,"C","2017 T-shirt","red","M",90,2017-10-02,82,"very good."

Step 1 Create a text file, open it using a local editing tool (for example, Visual Studio
Code), and copy the sample data to the text file.

Step 2 Choose Format > Encode in UTF-8 without BOM.

Step 3 Choose File > Save as.

Step 4 In the displayed dialog box, enter the file name, set the file name extension
to .csv, and click Save.

Step 5 Log in to the GDS server as user root.

Step 6 Create the /input_data directory for storing the data file.
mkdir -p /input_data

Step 7 Use MobaXterm to upload source data files to the created directory.

----End

Installing and Starting GDS

Step 1 Log in to the GDS server as user root and create the /opt/bin/dws directory for
storing the GDS package.
mkdir -p /opt/bin/dws

Step 2 Upload the GDS package to the created directory.

For example, upload the dws_client_8.1.x_redhat_x64.zip package to the created
directory.

Step 3 Go to the directory and decompress the package.
cd /opt/bin/dws
unzip dws_client_8.1.x_redhat_x64.zip

Step 4 Create a user (gds_user) and the user group (gdsgrp) to which the user belongs.
This user is used to start GDS and must have the permission to read the source
data file directory.
groupadd gdsgrp
useradd -g gdsgrp gds_user

Step 5 Change the owner of the GDS package and source data file directory to gds_user
and change the user group to gdsgrp.
chown -R gds_user:gdsgrp /opt/bin/dws/gds
chown -R gds_user:gdsgrp /input_data

Step 6 Switch to user gds_user.
su - gds_user

If the current cluster version is 8.0.x or earlier, skip Step 7 and go to Step 8.

If the current cluster version is 8.1.x or later, go to the next step.

Step 7 Execute the script on which the environment depends (applicable only to 8.1.x).
cd /opt/bin/dws/gds/bin
source gds_env

Step 8 Start GDS.
/opt/bin/dws/gds/bin/gds -d /input_data/ -p 192.168.0.90:5000 -H 10.10.0.1/24 -l /opt/bin/dws/gds/
gds_log.txt -D

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 11

Replace the italic parts as required.

● -d dir: directory for storing data files that contain data to be imported. This
practice uses /input_data/ as an example.

● -p ip:port: listening IP address and port for GDS. The default value is
127.0.0.1. Replace it with the IP address of a 10GE network that can
communicate with GaussDB(DWS). The port number ranges from 1024 to
65535. The default value is 8098. This practice uses 192.168.0.90:5000 as an
example.

● -H address_string: hosts that are allowed to connect to and use GDS. The
value must be in CIDR format. Set this parameter to enable a GaussDB(DWS)
cluster to access GDS for data import. Ensure that the network segment
covers all hosts in a GaussDB(DWS) cluster.

● -l log_file: GDS log directory and log file name. This practice
uses /opt/bin/dws/gds/gds_log.txt as an example.

● -D: GDS in daemon mode. This parameter is used only in Linux.

----End

Creating a Foreign Table

Step 1 Use an SQL client to connect to the GaussDB(DWS) database.

Step 2 Create the following foreign table:

CA UTION

LOCATION: Replace it with the actual GDS address and port number.

DROP FOREIGN TABLE IF EXISTS product_info_ext;
CREATE FOREIGN TABLE product_info_ext
(
 product_price integer not null,
 product_id char(30) not null,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt integer ,
 product_comment_time date ,
 product_comment_num integer ,
 product_comment_content varchar(200)
)
SERVER gsmpp_server
OPTIONS(
LOCATION 'gsfs://192.168.0.90:5000/*',
FORMAT 'CSV' ,
DELIMITER ',',
ENCODING 'utf8',
HEADER 'false',
FILL_MISSING_FIELDS 'true',
IGNORE_EXTRA_DATA 'true'
)
READ ONLY
LOG INTO product_info_err
PER NODE REJECT LIMIT 'unlimited';

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 12

If the following information is displayed, the foreign table has been created:

CREATE FOREIGN TABLE

----End

Importing Data

Step 1 Run the following statements to create the product_info table in GaussDB(DWS)
to store imported data:
DROP TABLE IF EXISTS product_info;
CREATE TABLE product_info
(
 product_price integer not null,
 product_id char(30) not null,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt integer ,
 product_comment_time date ,
 product_comment_num integer ,
 product_comment_content varchar(200)
)
WITH (
orientation = column,
compression=middle
)
DISTRIBUTE BY hash (product_id);

Step 2 Import data from source data files to the product_info table through the foreign
table product_info_ext.
INSERT INTO product_info SELECT * FROM product_info_ext ;

If the following information is displayed, the data has been imported:
INSERT 0 20

Step 3 Run the SELECT statement to view the data imported to GaussDB(DWS).
SELECT count(*) FROM product_info;

If the following information is displayed, the data has been imported:

count

 20
(1 row)

Step 4 Run VACUUM FULL on the product_info table.
VACUUM FULL product_info

Step 5 Update statistics of the product_info table.
ANALYZE product_info;

----End

Stopping GDS

Step 1 Log in to the data server where GDS is installed as user gds_user.

Step 2 Perform the following operations to stop GDS:

1. Query the GDS process ID. The GDS process ID is 128954.

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 13

ps -ef|grep gds
gds_user 128954 1 0 15:03 ? 00:00:00 gds -d /input_data/ -p 192.168.0.90:5000 -
l /opt/bin/gds/gds_log.txt -D
gds_user 129003 118723 0 15:04 pts/0 00:00:00 grep gds

2. Run the kill command to stop GDS. 128954 indicates the GDS process ID.
kill -9 128954

----End

Deleting Resources

Step 1 Run the following command to delete the target table product_info:
DROP TABLE product_info;

If the following information is displayed, the table has been deleted:

DROP TABLE

Step 2 Run the following command to delete the foreign table product_info_ext:
DROP FOREIGN TABLE product_info_ext;

If the following information is displayed, the table has been deleted:

DROP FOREIGN TABLE

----End

1.5 Tutorial: Importing Remote GaussDB(DWS) Data
Sources

In the era of big data convergent analysis, GaussDB(DWS) clusters in the same
region can communicate with each other. This practice demonstrates how to
import data from a remote GaussDB(DWS) cluster to the local GaussDB(DWS)
cluster using foreign tables.

The demonstration procedure is as follows: Install the gsql database client on an
ECS, connect to GaussDB(DWS) using gsql, and import data from the remote
GaussDB(DWS) using a foreign table.

General Procedure

This practice takes about 40 minutes. The basic process is as follows:

1. Preparations
2. Creating an ECS
3. Creating a Cluster and Downloading the Tool Package
4. Importing Data Sources Using GDS
5. Importing Remote GaussDB(DWS) Data Using a Foreign Table

Preparations

You have registered a Huawei account and enabled Huawei Cloud. The account
cannot be in arrears or frozen.

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 14

Creating an ECS
For details about how to purchase a Linux ECS, see section "Purchasing an ECS" in
the Elastic Cloud Server Getting Started. After the purchase, log in to the ECS by
referring to section "Logging In to a Linux ECS".

NO TICE

When creating an ECS, ensure that the ECS and the GaussDB(DWS) clusters to be
created are in the same VPC subnet and in the same region and AZ . The ECS OS
is the same as that of the gsql client or GDS (CentOS 7.6 is used as an example),
and the password is used for login.

Creating a Cluster and Downloading the Tool Package

Step 1 Log in to the Huawei Cloud management console.

Step 2 Choose Service List > EI Enterprise IntelligenceAnalytics > Data Warehouse
Service. On the page that is displayed, click Create Cluster in the upper right
corner.

Step 3 Configure the parameters according to Table 1-1.

Table 1-1 Software configuration

Parameter Configuration

Region Select EU-Dublin.
NOTE

● EU-Dublin is used as an example. You can select other regions as
required. Ensure that all operations are performed in the same region.

● Ensure that GaussDB(DWS) and the ECS are in the same region, AZ, and
VPC subnet.

AZ AZ2

Resource Standard data warehouse

Compute
Resource

ECS

Storage
Type

Cloud SSD

CPU
Architectur
e

x86

Node
Flavor

dws2.m6.4xlarge.8 (16 vCPUs | 128 GB | 2000 GB SSD)
NOTE

If this flavor is sold out, select other AZs or flavors.

Hot
Storage

100 GB/node

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 15

Parameter Configuration

Nodes 3

Cluster
Name

dws-demo01

Administra
tor
Account

dbadmin

Administra
tor
Password

User-defined password

Confirm
Password

password

Database
Port

8000

VPC vpc-default

Subnet subnet-default(192.168.0.0/24)
NOTICE

Ensure that the cluster and the ECS are in the same VPC subnet.

Security
Group

Automatic creation

EIP Buy now

Bandwidth 1 Mbit/s

Advanced
Settings

Default

Step 4 Confirm the information, click Next, and then click Submit.

Step 5 Wait for about 10 minutes. After the cluster is created, click the cluster name to
go to the Basic Information page. Choose Network, click a security group name,
and verify that a security group rule has been added. In this example, the client IP
address is 192.168.0.x (the private network IP address of the ECS where gsql is
located is 192.168.0.90). Therefore, you need to add a security group rule in which
the IP address is 192.168.0.0/24 and port number is 8000.

Step 6 Return to the Basic Information tab of the cluster and record the value of Private
Network IP Address.

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 16

Step 7 Return to the homepage of the GaussDB(DWS) console. Choose Connections in
the navigation pane on the left, select the ECS OS (for example, select Redhat
x86_64 for CentOS 7.6), and click Download to save the tool package to the local
host. The tool package contains the gsql client and GDS.

Step 8 Repeat Step 1 to Step 6 to create a second GaussDB(DWS) cluster and set its
name to dws-demo02.

----End

Preparing Source Data

Step 1 Create the following three CSV files in the specified directory on the local PC:

● Data file product_info0.csv
100,XHDK-A,2017-09-01,A,2017 Shirt Women,red,M,328,2017-09-04,715,good!
205,KDKE-B,2017-09-01,A,2017 T-shirt Women,pink,L,584,2017-09-05,40,very good!
300,JODL-X,2017-09-01,A,2017 T-shirt men,red,XL,15,2017-09-03,502,Bad.
310,QQPX-R,2017-09-02,B,2017 jacket women,red,L,411,2017-09-05,436,It's nice.
150,ABEF-C,2017-09-03,B,2017 Jeans Women,blue,M,123,2017-09-06,120,good.

● Data file product_info1.csv
200,BCQP-E,2017-09-04,B,2017 casual pants men,black,L,997,2017-09-10,301,good quality.
250,EABE-D,2017-09-10,A,2017 dress women,black,S,841,2017-09-15,299,This dress fits well.
108,CDXK-F,2017-09-11,A,2017 dress women,red,M,85,2017-09-14,22,It's really amazing to buy.
450,MMCE-H,2017-09-11,A,2017 jacket women,white,M,114,2017-09-14,22,very good.
260,OCDA-G,2017-09-12,B,2017 woolen coat women,red,L,2004,2017-09-15,826,Very comfortable.

● Data file product_info2.csv
980,"ZKDS-J",2017-09-13,"B","2017 Women's Cotton Clothing","red","M",112,,,
98,"FKQB-I",2017-09-15,"B","2017 new shoes men","red","M",4345,2017-09-18,5473
50,"DMQY-K",2017-09-21,"A","2017 pants men","red","37",28,2017-09-25,58,"good","good","good"
80,"GKLW-l",2017-09-22,"A","2017 Jeans Men","red","39",58,2017-09-25,72,"Very comfortable."
30,"HWEC-L",2017-09-23,"A","2017 shoes women","red","M",403,2017-09-26,607,"good!"
40,"IQPD-M",2017-09-24,"B","2017 new pants Women","red","M",35,2017-09-27,52,"very good."
50,"LPEC-N",2017-09-25,"B","2017 dress Women","red","M",29,2017-09-28,47,"not good at all."
60,"NQAB-O",2017-09-26,"B","2017 jacket women","red","S",69,2017-09-29,70,"It's beautiful."
70,"HWNB-P",2017-09-27,"B","2017 jacket women","red","L",30,2017-09-30,55,"I like it so much"
80,"JKHU-Q",2017-09-29,"C","2017 T-shirt","red","M",90,2017-10-02,82,"very good."

Step 2 Log in to the created ECS as user root and run the following command to create a
data source file directory:

mkdir -p /input_data

Step 3 Use a file transfer tool to upload the preceding data files to the /input_data
directory of the ECS.

----End

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 17

Importing Data Sources Using GDS

Step 1 Log in to the ECS as user root and use a file transfer tool to upload the
downloaded tool package in Step 7 to the /opt directory.

Step 2 Decompress the tool package in the /opt directory.

cd /opt

unzip dws_client_8.1.x_redhat_x64.zip

Step 3 Create a GDS user and change the owners of the data source and GDS directories.

groupadd gdsgrp

useradd -g gdsgrp gds_user

chown -R gds_user:gdsgrp /opt/gds

chown -R gds_user:gdsgrp /input_data

Step 4 Switch to user gds_user.

su - gds_user

Step 5 Import the GDS environment variables.

NO TE

This step is required only for 8.1.x or later. For earlier versions, skip this step.

cd /opt/gds/bin

source gds_env

Step 6 Start GDS.

/opt/gds/bin/gds -d /input_data/ -p 192.168.0.90:5000 -H 192.168.0.0/24 -
l /opt/gds/gds_log.txt -D

● -d dir: directory for storing data files that contain data to be imported. This
practice uses /input_data/ as an example.

● -p ip:port: listening IP address and port for GDS. Set this parameter to the
private network IP address of the ECS where GDS is installed so that GDS can
communicate with GaussDB(DWS). In this example, 192.168.0.90:5000 is
used.

● -H address_string: hosts that are allowed to connect to and use GDS. The
value must be in CIDR format. In this example, the network segment of the
GaussDB(DWS) private network IP address is used.

● -l log_file: GDS log directory and log file name. In this example, /opt/gds/
gds_log.txt is used.

● -D: GDS in daemon mode.

Step 7 Connect to the first GaussDB(DWS) cluster using gsql.

1. Run the exit command to switch to user root, go to the /opt directory of the
ECS, and import the environment variables of gsql.
exit
cd /opt

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 18

source gsql_env.sh
2. Go to the /opt/bin directory and connect to the first GaussDB(DWS) cluster

using gsql.
cd /opt/bin
gsql -d gaussdb -h 192.168.0.8 -p 8000 -U dbadmin -W password -r
– -d: name of the connected database. In this example, the default

database gaussdb is used.
– -h: private network IP address of the connected GaussDB(DWS) database

queried in Step 6. In this example, 192.168.0.8 is used.
– -p: GaussDB(DWS) port. The value is 8000.
– -U: database administrator. The value defaults to dbadmin.
– -W: administrator password, which is set during cluster creation in Step

3. In this example, replace password with your actual password.

Step 8 Create a common user leo and grant the user the permission for creating foreign
tables.
CREATE USER leo WITH PASSWORD 'password';
ALTER USER leo USEFT;

Step 9 Switch to user leo and create a GDS foreign table.

NO TE

Set LOCATION to the GDS listening IP address and port number obtained in Step 6, for
example, gsfs://192.168.0.90:5000/*.

SET ROLE leo PASSWORD 'password';
DROP FOREIGN TABLE IF EXISTS product_info_ext;
CREATE FOREIGN TABLE product_info_ext
(
 product_price integer not null,
 product_id char(30) not null,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt integer ,
 product_comment_time date ,
 product_comment_num integer ,
 product_comment_content varchar(200)
)
SERVER gsmpp_server
OPTIONS(
LOCATION 'gsfs://192.168.0.90:5000/*',
FORMAT 'CSV' ,
DELIMITER ',',
ENCODING 'utf8',
HEADER 'false',
FILL_MISSING_FIELDS 'true',
IGNORE_EXTRA_DATA 'true'
)
READ ONLY
LOG INTO product_info_err
PER NODE REJECT LIMIT 'unlimited';

Step 10 Create a local table.
DROP TABLE IF EXISTS product_info;
CREATE TABLE product_info
(
 product_price integer not null,

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 19

 product_id char(30) not null,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt integer ,
 product_comment_time date ,
 product_comment_num integer ,
 product_comment_content varchar(200)
)
WITH (
orientation = column,
compression=middle
)
DISTRIBUTE BY hash (product_id);

Step 11 Import data from the GDS foreign table and check whether the data is successfully
imported.
INSERT INTO product_info SELECT * FROM product_info_ext ;
SELECT count(*) FROM product_info;

----End

Importing Remote GaussDB(DWS) Data Using a Foreign Table
Step 1 Connect to the second cluster on the ECS by referring to Step 7. Change the

connection address to the address of the second cluster. In this example,
192.168.0.86 is used.

Step 2 Create a common user jim and grant the user the permission for creating foreign
tables and servers. The value of FOREIGN DATA WRAPPER is gc_fdws.
CREATE USER jim WITH PASSWORD 'password';
ALTER USER jim USEFT;
GRANT ALL ON FOREIGN DATA WRAPPER gc_fdw TO jim;

Step 3 Switch to user jim and create a server.
SET ROLE jim PASSWORD 'password';
CREATE SERVER server_remote FOREIGN DATA WRAPPER gc_fdw OPTIONS
 (address '192.168.0.8:8000,192.168.0.158:8000' ,
 dbname 'gaussdb',
 username 'leo',
 password 'password'
);

● address: private network IP addresses and port number of the first cluster
obtained in Step 6. In this example, 192.168.0.8:8000 and
192.168.0.158:8000 are used.

● dbname: database name of the first connected cluster. In this example,
gaussdb is used.

● username: username of the first connected cluster. In this example, leo is
used.

● password: user password

Step 4 Create a foreign table.

NO TICE

The columns and constraints of the foreign table must be consistent with those of
the table to be accessed.

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 20

CREATE FOREIGN TABLE region
(
 product_price integer ,
 product_id char(30) ,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt integer ,
 product_comment_time date ,
 product_comment_num integer ,
 product_comment_content varchar(200)
)
SERVER
 server_remote
OPTIONS
(
 schema_name 'leo',
 table_name 'product_info',
 encoding 'utf8'
);

● SERVER: name of the server created in the previous step. In this example,
server_remote is used.

● schema_name: schema name of the first cluster to be accessed. In this
example, leo is used.

● table_name: table name of the first cluster to be accessed obtained in Step
10. In this example, product_info is used.

● encoding: The value must be the same as that of the first cluster obtained in
Step 9. In this example, utf8 is used.

Step 5 View the created server and foreign table.
\des+ server_remote
\d+ region

Step 6 Create a local table.

NO TICE

The columns and constraints of the table must be consistent with those of the
table to be accessed.

CREATE TABLE local_region
(
 product_price integer not null,
 product_id char(30) not null,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt integer ,
 product_comment_time date ,
 product_comment_num integer ,
 product_comment_content varchar(200)
)

WITH (
orientation = column,
compression=middle
)
DISTRIBUTE BY hash (product_id);

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 21

Step 7 Import data to the local table using the foreign table.
INSERT INTO local_region SELECT * FROM region;
SELECT * FROM local_region;

Step 8 Query the foreign table without importing data.
SELECT * FROM region;

----End

Data Warehouse Service
Best Practices 1 Import and Export

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 22

2 Data Migration

2.1 Migrating Data From Oracle to GaussDB(DWS)

2.1.1 Migration Process
This tutorial demonstrates how to migrate Oracle table data to GaussDB(DWS).
Figure 2-2 and Table 2-1 show the migration process.

Figure 2-1 Migration scenario

NO TICE

● This practice describes how to migrate data in the
APEX2_DYNAMIC_ADD_REMAIN_TEST table of user db_user01 in the Oracle
database.

● Network connection: In this practice, the Oracle database is deployed on-
premises, so CDM is used to connect Oracle to GaussDB(DWS). CDM connects
to Oracle via a public IP address. CDM and GaussDB(DWS) are in the same
region and VPC and can communicate with each other. Ensure that all the
network is connected during the migration.

● This practice is for reference only. The actual migration may be complex due to
factors such as the network environment, service complexity, node scale, and
data volume. It is better to perform the migration under the guidance of
technical personnel.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 23

Figure 2-2 Basic process of migrating data from Oracle to GaussDB(DWS)

Table 2-1 Basic process of migrating data from Oracle to GaussDB(DWS)

Process Description

Required Tools Software tools to be prepared before the migration.

Migrating Table
Definitions

Use the PL/SQL Developer to migrate table
definitions.

Migrating Full Table
Data

Use Huawei Cloud Data Migration Service (CDM)
to migrate data.

Migrating SQL
Statements

Use the DSC syntax migration tool to rewrite the
syntax so that the Oracle service SQL statements
can be adapted to GaussDB(DWS).

2.1.2 Required Tools
The tools required for the migration include PL/SQL Developer, Instant Client, and
DSC. For details about how to download the tools, see Table 2-2.

Table 2-2 Required tools

Tool Description Download Address

PL/SQL
Developer

Oracle visual
development tool

PL/SQL Developer download
address

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 24

https://www.allroundautomations.com/registered-plsqldev/
https://www.allroundautomations.com/registered-plsqldev/

Tool Description Download Address

Oracle Instant
Client

Oracle client Instant Client download address

DSC Syntax migration tool
for GaussDB(DWS)

DSC Download Address

2.1.3 Migrating Table Definitions

2.1.3.1 Installing the PL/SQL Developer on the Local Host

Procedure

Step 1 Decompress the PL/SQL Developer, Instant Client, and DSC packages.

Step 2 Configure an Oracle home and OCL library for PL/SQL Developer.

NO TE

The following uses the PL/SQL Developer Trial Version as an example.

1. On the login page, click Cancel.

2. Choose Configure > Preferences > Connection, and add the Oracle Home
and OCl library configurations.

3. Copy the instantclient path obtained from Step 1 (for example, D:\Oracle
\instantclient_19_17\oci.dll) to the home directory of the Oracle database.
Copy the oci.dll file path (for example, D:\Oracle
\instantclient_19_17\oci.dll) in the instantclient file to the OCI library.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 25

https://www.oracle.com/database/technologies/instant-client/downloads.html
https://support.huaweicloud.com/eu/tg-dws/dws_07_0002.html

Step 3 Go back to the PL/SQL Developer login page. Enter the username, password, and
database address, for example, xx.xx.xx.xx:1521/ORCL.

Step 4 Click OK. If the database is connected, it indicates that the PL/SQL Developer is
installed successfully.

----End

2.1.3.2 Migrating Table Definitions and Syntax

Step 1 Log in to the PL/SQL Developer use an account with the sysdba permission. In this
example, the account db_user01 is used.

NO TE

The following uses the PL/SQL Developer Trial Version as an example.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 26

Step 2 On the menu bar, choose Tools > Export User Objects.

Step 3 Select the logged-in user db_user01, select the table object
APEX2_DYNAMIC_ADD_REMAIN_TEST of the user, select the path to the output
file (name the output SQL file as test), and click Export.

The exported DDL file is as follows:

Step 4 Place the exported DDL file in the input directory of the decompressed DSC folder.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 27

Step 5 In the directory of runDSC.bat, press Shift and right-click. Choose Open
PowerShell window here and perform the conversion. Replace D:\DSC\DSC
\input, D:\DSC\DSC\output, and D:\DSC\DSC\log with the actual DSC paths.
.\runDSC.bat --source-db Oracle --input-folder D:\DSC\DSC\input --output-folder D:\DSC\DSC\output --
log-folder D:\DSC\DSC\log --application-lang SQL --conversion-type bulk --target-db gaussdbA

Step 6 After the conversion is complete, the converted DDL file is automatically
generated in the output directory of DSC.

Step 7 The table definition structure of GaussDB(DWS) is different from that of Oracle.
You need to manually modify the converted table definition.

Comment out \echo in the file (if you use gsql to import table definitions, you do
not need to do this) and manually change the distribution column of the specified
table.
● Before the change:

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 28

● After the change:

NO TE

The distribution column in a hash table must meet the following requirements, which are
ranked by priority in descending order:

1. The values of the distribution key should be discrete so that data can be evenly
distributed on each DN. You can select the primary key of the table as the distribution
key. For example, for a person information table, choose the ID number column as the
distribution key.

2. Do not select the column where a constant filter exists. For example, if a constant
constraint (for example, zqdh= '000001') exists on the zqdh column in some queries on
the dwcjk table, you are not advised to use zqdh as the distribution key.

3. Select the join condition as the distribution column, so that join tasks can be pushed
down to DNs to execute, reducing the amount of data transferred between the DNs.

Step 8 Create a GaussDB(dws) cluster. For details, see Creating a Cluster.

Step 9 Connect to the GaussDB(DWS) cluster as the system administrator dbadmin. For
details, see Using the Data Studio GUI Client to Connect to a Cluster. By
default, the first connection is to the default database gaussdb.

Step 10 Create a new target database test, and then switch to it.
CREATE DATABASE test WITH ENCODING 'UTF-8' DBCOMPATIBILITY 'ORA' TEMPLATE template0;

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 29

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0019.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0094.html

Step 11 Create a schema and switch to it. The schema name must be the same as the
Oracle user name (db_user01 in this example).
CREATE SCHEMA db_user01;
SET CURRENT_SCHEMA = db_user01;

Step 12 Copy the converted DDL statements in Step 7 to Data Studio for execution.

Step 13 If the APEX2_DYNAMIC_ADD_REMAIN_TEST table can be found in the schema in
the test database of the GaussDB(DWS) cluster, the table definition is migrated.
SELECT COUNT(*) FORM db_user01.APEX2_DYNAMIC_ADD_REMAIN_TEST;

----End

2.1.4 Migrating Full Table Data

2.1.4.1 Configuring a GaussDB(DWS) Data Source Connection

Step 1 Create a cluster and bind an EIP to the cluster. For details, see section Creating a
CDM Cluster.

NO TICE

Ensure that the CDM cluster and the GaussDB(DWS) cluster are in the same
region and VPC to ensure network connectivity.

Step 2 On the Cluster Management page, click Job Management in the Operation
column of the cluster and choose Links > Create Link.

Step 3 Select Data Warehouse Service and click Next.

Step 4 Configure the GaussDB(DWS) connection, click Test. If the connection is
successful, click Save.

Table 2-3 GaussDB(DWS) connection information

Parameter Value

Name dws

Database Server Click Select and select the GaussDB(DWS) cluster to be
connected from the cluster list.
NOTE

The system automatically displays the GaussDB(DWS) clusters in
the same region and VPC. If no GaussDB(DWS) cluster is available,
manually enter the IP address of the GaussDB(DWS) cluster that
has been connected to the network.

Host Port 8000

Database Name test

User Name dbadmin

Password Password of user dbadmin

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 30

https://support.huaweicloud.com/eu/qs-dws/dws_01_1011.html#section3
https://support.huaweicloud.com/eu/qs-dws/dws_01_1011.html#section3

Parameter Value

Use Agent No

----End

2.1.4.2 Configuring an Oracle Data Source Connection

To migrate data from Oracle to GaussDB(DWS), you need to configure an Oracle
data source connection first.

Procedure

Step 1 On the Cluster Management page, click Job Management in the Operation
column of the cluster and choose Links > Driver Management.

Step 2 Click Upload on the right of ORACLE, select an Oracle driver package (if no driver
package is available on the local PC, download it by referring to Managing
Drivers), and click Upload.

Step 3 On the Cluster Management page, click Job Management in the Operation
column of the cluster and choose Links > Create Link.

Step 4 Select Oracle as the connector and click Next.

Step 5 Configure the Oracle connection, click Test. If the connection is successful, click
Save.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 31

https://support.huaweicloud.com/eu/usermanual-cdm/cdm_01_0215.html
https://support.huaweicloud.com/eu/usermanual-cdm/cdm_01_0215.html

Table 2-4 Oracle connection information

Parameter Value

Name oracle

Database Server 192.168.1.100 (This is an example. Enter the actual public IP
address of the Oracle database.)

Host Port 1521

Connection Type Service Name

Database Name orcl

User Name db_user01

Password -

Use Local API No

Use Agent No

Oracle Version Later than 12.1

----End

2.1.4.3 Migrating Tables

Procedure

Step 1 On the Cluster Management page, click Job Management in the Operation
column of the cluster and choose Table/File Migration > Create Job.

Step 2 Configure jobs at the source end and destination end.

Step 3 Configure source job parameters based on the type of the source database.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 32

Table 2-5 Source job parameters

Parameter Example Value

Schema/Table Space db_user01

Use SQL Statement No

Table Name APEX2_DYNAMIC_ADD_REMAIN_TEST

WHERE Clause -

Null in Partition
Column

Yes

Step 4 Configure the destination job parameters based on the destination cloud service.

Table 2-6 Destination job parameters

1. Parameter Example Value

Schema/Table Space db_user01

Auto Table Creation Non-auto creation

Table Name apex2_dynamic_add_remain_test

Clear Data Before
Import

Clear all data

Import Mode COPY

Import to Staging Table No

Prepare for Data Import -

Complete Statement
After Data Import

analyze db_user01. apex2_dynamic_add_remain_test;

Step 5 Mapping between source fields and destination fields.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 33

Step 6 If the task fails to be configured, retry for three times, save the configuration, and
run the task.

Step 7 The task is executed, and the data migration is finished.

----End

2.1.4.4 Verification

Step 1 In the test database of GaussDB(DWS), run the following SQL statement to query
the number of rows in the table apex2_dynamic_add_remain_test. If the number
of rows is the same as that in the source table, the data is consistent.
SELECT COUNT(*) FROM db_user01.apex2_dynamic_add_remain_test;

Step 2 Run the following statement to check the data skewness:

If the data skewness is within 10%, the data distribution is normal. The data
migration is complete.
SELECT TABLE_SKEWNESS('db_user01.apex2_dynamic_add_remain_test');

----End

2.1.5 Migrating SQL Statements

2.1.5.1 Migrating Syntax

Step 1 Save the following SQL statements in an Oracle database as an query.sql file.
-- Generally, the HAVING clause must appear after the GROUP BY clause, but Oracle allows HAVING to
appear before or after the GROUP BY clause. Therefore, you need to move the HAVING clause after the
GROUP BY clause in the target database.
SELECT
id,
count(*),
sum(remain_users)
FROM LYC.APEX2_DYNAMIC_ADD_REMAIN_TEST
HAVING id <= 5
GROUP BY id;

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 34

UNIQUE keywords are migrated as DISTINCT keywords.
SELECT UNIQUE add_users FROM LYC.APEX2_DYNAMIC_ADD_REMAIN_TEST;

-- In NVL2(expression,value1,value2), if the expression is not Null, NVL2 returns Value1. If the expression is
Null, NVL2 returns Value2.
SELECT NVL2(add_users, 1, 2) FROM LYC.APEX2_DYNAMIC_ADD_REMAIN_TEST SHERE rownum <= 2;

Step 2 Place the query.sql file obtained in Step 1 in the input directory of the
decompressed DSC folder.

Step 3 In the directory of runDSC.bat, press Shift and right-click. Choose Open
PowerShell window here and perform the conversion.

Replace D:\DSC\DSC\input, D:\DSC\DSC\output, and D:\DSC\DSC\log with the
actual DSC paths.
.\runDSC.bat --source-db Oracle --input-folder D:\DSC\DSC\input --output-folder D:\DSC\DSC\output --
log-folder D:\DSC\DSC\log --application-lang SQL --conversion-type bulk --target-db gaussdbA

Step 4 After the conversion is complete, a DML file is generated in the output directory.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 35

----End

2.1.5.2 Verification

Step 1 Execute the SQL statements in the Oracle database before migration.

Step 2 Execute the migrated SQL statements on Data Studio.

Step 3 Compare the execution results. If they are the same, the SQL migration is
complete.

----End

2.2 Synchronizing MySQL Table Data to GaussDB(DWS)
in Real Time

This practice demonstrates how to use Data Replication Service (DRS) to
synchronize MySQL data to GaussDB (DWS) in real time. For details about DRS,
see What Is DRS?

This practice takes about 60 minutes. The process is as follows:

1. Preparations

2. Step 1: Prepare a MySQL Source Table

3. Step 2: Create a GaussDB(DWS) Cluster

4. Step 3: Create a DRS Synchronization Task

5. Step 4: Verify Data Synchronization

Scenario Description

In big data analysis scenarios, MySQL serves as an OLTP database. After MySQL is
connected to the GaussDB(DWS) data warehouse for OLAP analysis, data written
by MySQL in real time needs to be synchronized to the GaussDB(DWS) data
warehouse in real time. DRS is used to perform the synchronization.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 36

https://support.huaweicloud.com/eu/productdesc-drs/drs_01_0002.html

Figure 2-3 DRS real-time synchronization

Preparations
● You have registered a Huawei account and enabled Huawei Cloud services..

Before using GaussDB(DWS), check the account status. The account cannot
be in arrears or frozen.

● The MySQL source table to be migrated has been prepared. In this practice, a
Huawei Cloud RDS MySQL database is used as the source data. If your MySQL
database is offline, ensure that the network connection is normal.

Step 1: Prepare a MySQL Source Table

Step 1 You have purchased an RDS MySQL DB engine (this practice use MySQL 8.0.x as
an example). For details, see Buy a DB Instance.

Step 2 The source database rds_demo with the utf8mb4 character set has been created,
and there is the table rds_t1 with data in the database.

----End

Step 2: Create a GaussDB(DWS) Cluster

Step 1 Creating a Cluster. To ensure network connectivity, the GaussDB(DWS) cluster
and RDS must be in the same region.

Step 2 On the Clusters page of the GaussDB(DWS) console, locate the row that contains
the target cluster and click Login in the Operation column.

NO TE

This practice uses version 8.1.3.x as an example. 8.1.2 and earlier versions do not support
this login mode. You can use Data Studio to connect to a cluster. For details, see Using
Data Studio to Connect to a Cluster.

Step 3 After logging in to the GaussDB(DWS) database, create the database rds_demo
for synchronization.
CREATE DATABASE rds_demo WITH ENCODING 'UTF-8' DBCOMPATIBILITY 'mysql' TEMPLATE template0;

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 37

https://support.huaweicloud.com/eu/qs-rds/rds_02_0008.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0019.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0094.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0094.html

Step 4 Switch to the rds_demo database and create a schema named rds_demo.
CREATE SCHEMA rds_demo;

Step 5 Create a table named rds_t1 in the schema rds_demo.
CREATE TABLE rds_demo.rds_t1 (
 area_id varchar(256) NOT NULL,
 area_name varchar(256) DEFAULT NULL,
 lifecycle varchar(256) DEFAULT NULL,
 user_num int DEFAULT NULL,
 income bigint DEFAULT NULL,
 create_time timestamp DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (area_id)
)distribute by hash(area_id);
COMMENT on column rds_demo.rds_t1.area_id is 'Region Code';
COMMENT on column rds_demo.rds_t1.area_name is 'Region Name';
COMMENT on column rds_demo.rds_t1.lifecycle is 'Life Cycle';
 COMMENT on column rds_demo.rds_t1.user_num is 'Subscribers in Each Life Cycle';
 COMMENT on column rds_demo.rds_t1.income is 'Region Income';
COMMENT on column rds_demo.rds_t1.create_time is 'Creation Time';

Step 6 Query table data. Currently, the table is empty.
SELECT * FROM rds_demo.rds_t1;

----End

Step 3: Create a DRS Synchronization Task

Step 1 Choose Service List > Databases > Data Replication Service to switch to the DRS
console.

Step 2 Choose Data Synchronization Management on the left and click Create
Synchronization Task in the upper right corner.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 38

Step 3 Configure basic parameters. For details, see Table 2-7.

Table 2-7 Basic parameters

Parameter Value

Billing Mode Pay-per-use

Region EU-Dublin. Ensure that RDS and GaussDB(DWS) are
in the same region.

Project Europe-Dublin

Task Name DRS-DWS

Description -

Step 4 Configure the following parameters. For details, see Table 2-8.

Table 2-8 Synchronized instance parameters

Parameter Value

Data Flow To the cloud

Source DB Engine MySQL

Destination DB engine GaussDB(DWS)

Network Type In this practice, select VPC. If the MySQL database is
offline, select Public Network.

Instance Type Single

Destination DB Instance Select the cluster created in Step 2: Create a
GaussDB(DWS) Cluster.

Synchronization
Instance Subnet

Select the subnet where the GaussDB(DWS) cluster
resides. In this practice, RDS and GaussDB(DWS) are
in the same VPC and subnet.

Synchronous Mode Full+Incremental

Specifications In this practice, select Micro. This option is selected
based on the data volume and synchronization rate.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 39

Step 5 Click Next and click I have read and understand this notice.

Wait for about 5 to 10 minutes for the synchronization to complete.

Step 6 After the synchronization succeeds, enter the source database information and
click Test Connection.

Table 2-9 Source database information

Parameter Value

Database Type RDS DB Instance

DB Instance Name Select the created RDS DB instance.

Database Username root

Database Password ****

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 40

Step 7 Enter the destination database information and click Test Connection. The
connection test is successful.

Table 2-10 Destination database information

Parameter Value

Database Username dbadmin

Database Password ****

Step 8 Click Next, and then click Agree.

Step 9 Set the synchronization policy. For details, see Table 2-11.

Table 2-11 Synchronization policy

Parameter Value

Flow Control No

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 41

Parameter Value

Synchronization
Object Type

Data

Incremental Conflict
Policy

Overwrite

Data Synchronization
Topology

One-to-one

Synchronize DDLs Default

Synchronization
Object

Tables
Select the table to be synchronized from the source
database. In this practice, select rds_t1 under
rds_demo.
Enter the name of the GaussDB(DWS) database that
data is synchronized to: rds_demo

Step 10 Click Next, confirm the information, and click Next.

Wait until the database parameter check is successful. If the check fails, click
Check Again.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 42

Step 11 Click Next, select Start upon task creation, verify other information, and click
Submit in the lower right corner.

Step 12 In the dialog box that is displayed, confirm the information, select I have read
and understand this notice, and click Start Task.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 43

Go back to the Data Synchronization Management page and wait for about 5 to
10 minutes. The synchronization is started successfully.

Wait for about 5 minutes and continue with Step 4: Verify Data Synchronization.

----End

Step 4: Verify Data Synchronization

Step 1 Log in to GaussDB(DWS) console again, and run the following statement to query
the table data again. If the result is shown as follows, the full data synchronization
is successful.
SELECT * FROM rds_demo.rds_t1;

Step 2 Switch to the RDS console, log in to the RDS database, and insert new data into
the table rds_t1.
INSERT INTO rds_t1 VALUES ('5','new_area_name_05',34,64,1003,'2022-11-04');

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 44

Step 3 Switch back to the GaussDB(DWS) database and run the following statement to
query table data:

A row of data is added to the query result, indicating that the data in the MySQL
database has been synchronized to GaussDB(DWS) in real time.
SELECT * FROM rds_demo.rds_t1;

----End

2.3 Using DLI Flink Jobs to Write Kafka Data to
GaussDB(DWS) in Real Time

This practice demonstrates how to use DLI Flink jobs to synchronize consumption
data from Kafka to GaussDB(DWS) in real time. The demonstration process
includes writing and updating existing data in real time.

● For details, see What Is Data Lake Insight?
● For details about Kafka, see What Is DMS for Kafka?

Figure 2-4 Importing Kafka data to GaussDB(DWS) in real time

This practice takes about 90 minutes. The cloud services used in this practice
include Virtual Private Cloud (VPC) and subnets, Elastic Load Balance (ELB),
Elastic Cloud Server (ECS), Object Storage Service (OBS), Distributed Message
Service (DMS) for Kafka, Data Lake Insight (DLI), and Data Warehouse Service
(DWS). The basic process is as follows:

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 45

https://support.huaweicloud.com/eu/productdesc-dli/dli_01_0378.html
https://support.huaweicloud.com/eu/productdesc-kafka/kafka-pd-190605001.html

1. Preparations
2. Step 1: Creating a Kafka Instance
3. Step 2: Creating a GaussDB(DWS) Cluster and Target Table
4. Step 3: Creating a DLI Queue
5. Step 4: Creating an Enhanced Datasource Connection for Kafka and

GaussDB(DWS)
6. Step 5: Preparing the dws-connector-flink Tool for Interconnecting

GaussDB(DWS) with Flink
7. Step 6: Creating and Editing a DLI Flink Job
8. Step 7: Creating and Modifying Messages on the Kafka Client

Scenario Description
Assume that the sample data of the data source Kafka is a user information table,
as shown in Table 2-12, which contains the id, name, and age fields. The id field
is unique and fixed, which is shared by multiple service systems. Generally, the id
field does not need to be modified. Only the name and age fields need to be
modified.

Use Kafka to generate the following three groups of data and use DLI Flink jobs to
synchronize the data to GaussDB(DWS): Change the users whose IDs are 2 and 3
to jim and tom, and use DLI Flink jobs to update data and synchronize the data to
GaussDB(DWS).

Table 2-12 Sample data

id name age

1 lily 16

2 lucy > jim 17

3 lilei > tom 15

Constraints
● Ensure that VPC, ECS, OBS, Kafka, DLI, and GaussDB(DWS) are in the same

region, for example, Europe-Dublin.
● Ensure that Kafka, DLI, and GaussDB(DWS) can communicate with each

other. In this practice, Kafka and GaussDB(DWS) are created in the same
region and VPC, and the security groups of Kafka and GaussDB(DWS) allow
the network segment of the DLI queues.

● To ensure that the link between DLI and DWS is stable, bind the ELB service
to the created data warehouse cluster.

Preparations
● You have registered a Huawei account and enabled Huawei Cloud services..

Before using GaussDB(DWS), check the account status. The account cannot
be in arrears or frozen.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 46

● You have created a VPC and subnet. For details, see Creating a VPC.

Step 1: Creating a Kafka Instance

Step 1 Log in to the Huawei Cloud management console and choose Middleware >
Distributed Message Service (for Kafka) from the service list. The Kafka
management console is displayed.

Step 2 Click DMS for Kafka on the left and click Buy Instance in the upper right corner.

Step 3 Set the following parameters. Retain the default values for other parameters that
are not described in the table.

Table 2-13 Kafka instance parameters

Parameter Value

Billing Mode Pay-per-use

Region Europe-Dublin

Project Default

AZ AZ 1 (If not available, select another AZ.)

Instance Name kafka-dli-dws

Enterprise
Project

default

Specifications Default

Version 2.7

CPU
Architecture

x86

Broker Flavor kafka.2u4g.cluster.small (For reference only. Select the smallest
flavor.)

Brokers 3

VPC Select a created VPC. If no VPC is available, create one.

Security Group Select a created security group. If no security group is
available, create one.

Other
parameters

Retain the default value.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 47

https://support.huaweicloud.com/eu/usermanual-vpc/en-us_topic_0013935842.html

Figure 2-5 Creating a Kafka instance

Step 4 Click Buy and complete the payment. Wait until the creation is successful.

Step 5 In the Kafka instance list, click the name of the created Kafka instance. The Basic
Information page is displayed.

Step 6 Choose Topics on the left and click Create Topic.

Set Topic Name to topic-demo and retain the default values for other
parameters.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 48

Figure 2-6 Creating a topic

Step 7 Click OK. In the topic list, you can see that topic-demo is successfully created.

Step 8 Choose Consumer Groups on the left and click Create Consumer Group.

Step 9 Enter kafka01 for Consumer Group Name and click OK.

----End

Step 2: Creating a GaussDB(DWS) Cluster and Target Table

Step 1 Create a dedicated load balancer, set Network Type to IPv4 private network.
Set Region and VPC to the same values as those of the Kafka instance. In this
example, set Region to Europe-Dublin.

Step 2 Creating a Cluster. To ensure network connectivity, the region and VPC of the
GaussDB(DWS) cluster must be the same as those of the Kafka instance. In this
practice, the region and VPC are Europe-Dublin. The VPC must be the same as
that created for Kafka.

Step 3 On the Clusters page of the GaussDB(DWS) console, locate the row that contains
the target cluster and click Login in the Operation column.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 49

https://support.huaweicloud.com/eu/usermanual-elb/elb_lb_000006.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0019.html

NO TE

This practice uses version 8.1.3.x as an example. 8.1.2 and earlier versions do not support
this login mode. You can use Data Studio to connect to a cluster. For details, see Using
Data Studio to Connect to a Cluster.

Step 4 The login username is dbadmin, the database name is gaussdb, and the password
is the password of user dbadmin set during data warehouse cluster creation.
Select Remember Password, enable Collect Metadata Periodically and Show
Executed SQL Statements, and click Log In.

Figure 2-7 Logging In to GaussDB(DWS)

Step 5 Click the database name gaussdb and click SQL Window in the upper right
corner to access the SQL editor.

Step 6 Copy the following SQL statement. In the SQL window, click Execute SQL to create
the target table user_dws.
CREATE TABLE user_dws (
id int,
name varchar(50),
age int,
PRIMARY KEY (id)
);

----End

Step 3: Creating a DLI Queue
Step 1 Log in to the Huawei Cloud management console and choose Analytics > Data

Lake Insight from the service list. The DLI management console is displayed.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 50

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0094.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0094.html

Step 2 In the navigation pane on the left, choose Resource Management > Queue
Manager.

Step 3 Click Buy Queue in the upper right corner, set the following parameters, and
retain the default values for other parameters that are not described in the table.

Table 2-14 DLI queue parameters

Parameter Value

Billing Mode Pay-per-use

Region Europe-Dublin

Project Default

Name dli_dws

Type For a general queue, select Dedicated
Resource Mode.

AZ Mode Single-AZ deployment

Specifications 16 CUs

Enterprise Project default

Advanced Settings Custom

CIDR Block 172.16.0.0/18. It must be in a different
network segment from Kafka and
GaussDB(DWS). For example, if Kafka
and GaussDB(DWS) are in the
192.168.x.x network segment, select
172.16.x.x for DLI.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 51

Figure 2-8 Creating a DLI queue

Step 4 Click Buy.

----End

Step 4: Creating an Enhanced Datasource Connection for Kafka and
GaussDB(DWS)

Step 1 In the security group of Kafka, allow the network segment where the DLI queue is
located.

1. Return to the Kafka console and click the Kafka instance name to go to the
Basic Information page. View the value of Instance Address (Private
Network) in connection information and record the address for future use.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 52

Figure 2-9 Kafka private network address

2. Click the security group name.

Figure 2-10 Kafka security group

3. Choose Inbound Rules > Add Rule, as shown in the following figure. Add the
network segment of the DLI queue. In this example, the network segment is
172.16.0.0/18. Ensure that the network segment is the same as that entered
during Step 3: Creating a DLI Queue.

Figure 2-11 Adding rules to the Kafka security group

4. Click OK.

Step 2 Return to the DLI management console, click Datasource Connections on the left,
select Enhanced, and click Create.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 53

Step 3 Set the following parameters. Retain the default values for other parameters that
are not described in the table.

Table 2-15 Connection from DLI to Kafka

Parameter Value

Connection Name dli_kafka

Resource Pool Select the created DLI queue dli_dws.

VPC Select the VPC of Kafka.

Subnet Select the subnet where Kafka is located.

Other parameters Retain the default value.

Figure 2-12 Creating an enhanced connection

Step 4 Click OK. Wait until the Kafka connection is successfully created.

Step 5 Choose Resources > Queue Management on the left, and choose More > Test
Address Connectivity on the right of dli_dws.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 54

Step 6 In the address box, enter the private IP address and port number of the Kafka
instance obtained in Step 1.1. (There are three Kafka addresses. Enter only one of
them.)

Figure 2-13 Testing Kafka connectivity

Step 7 Click Test to verify that DLI is successfully connected to Kafka.

Step 8 Log in to the GaussDB(DWS) management console, choose Clusters on the left,
and click the cluster name to go to the details page.

Step 9 Record the private network domain name, port number, and Elastic Load Balance
address of the data warehouse cluster for future use.

Figure 2-14 Private Domain Name and ELB Address

Step 10 Click the security group name.

Figure 2-15 GaussDB(DWS) security group

Step 11 Choose Inbound Rules > Add Rule, as shown in the following figure. Add the
network segment of the DLI queue. In this example, the network segment is
172.16.0.0/18. Ensure that the network segment is the same as that entered
during Step 3: Creating a DLI Queue.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 55

Figure 2-16 Adding a rule to the GaussDB(DWS) security group

Step 12 Click OK.

Step 13 Switch to the DLI console, choose Resources > Queue Management on the left,
and click More > Test Address Connectivity on the right of dli_dws.

Step 14 In the address box, enter the Elastic Load Balance IP address and port number of
the GaussDB (DWS) cluster obtained in Step 9.

Figure 2-17 Testing GaussDB(DWS) connectivity

Step 15 Click Test to verify that DLI is successfully connected to GaussDB(DWS).

----End

Step 5: Preparing the dws-connector-flink Tool for Interconnecting
GaussDB(DWS) with Flink

dws-connector-flink is a tool for interconnecting with Flink based on DWS JDBC
APIs. During DLI job configuration, this tool and its dependencies are stored in the
Flink class loading directory to improve the capability of importing Flink jobs to
GaussDB(DWS).

Step 1 Go to https://mvnrepository.com/artifact/com.huaweicloud.dws using a
browser.

Step 2 In the software list, select the latest version of GaussDB(DWS) Connectors Flink. In
this practice, select DWS Connector Flink 2 12 1 12.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 56

https://mvnrepository.com/artifact/com.huaweicloud.dws

Step 3 Click the 1.0.4 branch.(Click the newest branch in actual scenarios).

Step 4 Click View ALL.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 57

Step 5 Click dws-connector-flink_2.12_1.12-1.0.4-jar-with-dependencies.jar to
download it to the local host.

Step 6 Create an OBS bucket. In this practice, set the bucket name to obs-flink-dws and
upload the file to the OBS bucket. Ensure that the bucket is in the same region as
DLI, which in this practice is Europe-Dublin.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 58

Figure 2-18 Uploading the JAR package to the OBS bucket

----End

Step 6: Creating and Editing a DLI Flink Job

Step 1 Return to the DLI management console, choose Job Management > Flink Jobs on
the left, and click Create Job in the upper right corner.

Step 2 Set Type to Flink OpenSource SQL and Name to kafka-dws.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 59

Figure 2-19 Creating a job

Step 3 Click OK. The page for editing the job is displayed.

Step 4 Set the following parameters on the right of the page. Retain the default values
for other parameters that are not described in the table.

Table 2-16 Flink job parameters

Parameter Value

Queue dli_dws

Flink Version 1.12

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 60

Parameter Value

UDF Jar Select the JAR file in the OBS bucket created in Step 5:
Preparing the dws-connector-flink Tool for
Interconnecting GaussDB(DWS) with Flink.

OBS Bucket Select the bucket created in Step 5: Preparing the
dws-connector-flink Tool for Interconnecting
GaussDB(DWS) with Flink.

Enable Checkpointing Check the box.

Other parameters Retain the default value.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 61

Figure 2-20 Editing a job

Step 5 Copy the following SQL code to the SQL code window on the left.

Obtain the private IP address and port number of the Kafka instance from Step
1.1, and obtain the private domain name from Step 9.
CREATE TABLE user_kafka (
 id string,
 name string,
 age int
) WITH (

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 62

 'connector' = 'kafka',
 'topic' = 'topic-demo',
'properties.bootstrap.servers' ='Private IP address and port number of the Kafka instance',
 'properties.group.id' = 'kafka01',
 'scan.startup.mode' = 'latest-offset',
 "format" = "json"
);

CREATE TABLE user_dws (
 id string,
 name string,
 age int,
 PRIMARY KEY (id) NOT ENFORCED
) WITH (
 'connector' = 'dws',
'url'='jdbc:postgresql://GaussDB(DWS) private network domain name:8000/gaussdb',
 'tableName' = 'public.user_dws',
 'username' = 'dbadmin',
'password' ='Password of database user dbdamin'
);

insert into user_dws select * from user_kafka;

Step 6 Click Check Semantics and wait until the verification is successful.

If the verification fails, check whether the SQL input has syntax errors.

Figure 2-21 SQL statement of a job

Step 7 Click Save.

Step 8 Return to the DLI console home page and choose Job Management > Flink Jobs
on the left.

Step 9 Click Start on the right of the job name kafka-dws and click Start Now.

Wait for about 1 minute and refresh the page. If the status is Running, the job is
successfully executed.

Figure 2-22 Job execution status

----End

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 63

Step 7: Creating and Modifying Messages on the Kafka Client
Step 1 Create an ECS by referring to the ECS document. Ensure that the region and VPC

of the ECS are the same as those of Kafka.

Step 2 Install JDK.

1. Log in to the ECS, go to the /usr/local directory, and download the JDK
package.
cd /usr/local
wget https://download.oracle.com/java/17/latest/jdk-17_linux-x64_bin.tar.gz

2. Decompress the downloaded JDK package.
tar -zxvf jdk-17_linux-x64_bin.tar.gz

3. Run the following command to open the /etc/profile file:
vim /etc/profile

4. Press i to enter editing mode and add the following content to the end of
the /etc/profile file:
export JAVA_HOME=/usr/local/jdk-17.0.7 #JDK installation directory
export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib:${JAVA_HOME}/test:${JAVA_HOME}/lib/
gsjdbc4.jar:${JAVA_HOME}/lib/dt.jar:${JAVA_HOME}/lib/tools.jar:$CLASSPATH
export JAVA_PATH=${JAVA_HOME}/bin:${JRE_HOME}/bin
export PATH=$PATH:${JAVA_PATH}

5. Press Esc and enter :wq! to save the settings and exit.
6. Run the following command for the environment variables to take effect:

source /etc/profile

7. Run the following command. If the following information is displayed, the JDK
is successfully installed:
java -version

Step 3 Install the Kafka client.

1. Go to the /opt directory and run the following command to obtain the Kafka
client software package.
cd /opt
wget https://archive.apache.org/dist/kafka/2.7.2/kafka_2.12-2.7.2.tgz

2. Decompress the downloaded software package.
tar -zxf kafka_2.12-2.7.2.tgz

3. Go to the Kafka client directory.
cd /opt/kafka_2.12-2.7.2/bin

Step 4 Run the following command to connect to Kafka: {Connection address} indicates
the internal network connection address of Kafka. For details about how to obtain
the address, see Step 1.1. topic indicates the name of the Kafka topic created in
Step 6.
./kafka-console-producer.sh --broker-list {connection address} --topic {Topic name}

The following is an example:

./kafka-console-producer.sh --broker-list
192.168.0.136:9092,192.168.0.214:9092,192.168.0.217:9092 --topic topic-demo

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 64

If > is displayed and no other error message is displayed, the connection is
successful.

Step 5 In the window of the connected Kafka client, copy the following content (one line
at a time) based on the data planned in the Scenario Description and press Enter
to produce messages:
{"id":"1","name":"lily","age":"16"}
{"id":"2","name":"lucy","age":"17"}
{"id":"3","name":"lilei","age":"15"}

Step 6 Return to the GaussDB(DWS) console, choose Clusters on the left, and click Log
In on the right of the GaussDB(DWS) cluster. The SQL page is displayed.

Step 7 Run the following SQL statement. You can find that the data is successfully saved
to the database in real time.
SELECT * FROM user_dws ORDER BY id;

Step 8 Go back to the client window for connecting to Kafka on the ECS, copy the
following content (one line at a time), and press Enter to produce messages.
{"id":"2","name":"jim","age":"17"}
{"id":"3","name":"tom","age":"15"}

Step 9 Go back to the opened SQL window of GaussDB(DWS) and run the following SQL
statement. It is found that the names whose IDs are 2 and 3 have been changed
to jim and tom.

The scenario description is as expected. End of this practice.
SELECT * FROM user_dws ORDER BY id;

----End

2.4 Practice of Data Interconnection Between Two
DWS Clusters Based on GDS

This practice demonstrates how to migrate 15 million rows of data between two
data warehouse clusters within minutes based on the high concurrency of GDS
import and export.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 65

NO TE

● This function is supported only by clusters of version 8.1.2 or later.

● GDS is a high-concurrency import and export tool developed by GaussDB(DWS). For
more information, visit GDS Usage Description.

● This section describes only the operation practice. For details about GDS interconnection
and syntax description, see GDS-based cross-cluster interconnection.

This practice takes about 90 minutes. The cloud service resources used in this
practice are Data Warehouse Service (DWS), Elastic Cloud Server (ECS), and
Virtual Private Cloud (VPC). The basic process is as follows:

1. Preparations
2. Step 1: Creating Two DWS Clusters
3. Step 2: Preparing Source Data
4. Step 3: Installing and Starting the GDS Server
5. Step 4: Implementing Data Interconnection Across DWS Clusters

Supported Regions

Table 2-17 Regions and OBS bucket names

Region OBS Bucket

EU-Dublin dws-demo-eu-west-101

Constraints

In this practice, two sets of DWS and ECS services are deployed in the same region
and VPC to ensure network connectivity.

Preparations
● You have registered a Huawei account and enabled Huawei Cloud services..

Before using GaussDB(DWS), check the account status. The account cannot
be in arrears or frozen.

● You have obtained the AK and SK of the account.
● You have created a VPC and subnet. For details, see Creating a VPC.

Step 1: Creating Two DWS Clusters

Create two GaussDB(DWS) clusters in the Europe-Dublin region. For details, see
Creating a Cluster. The two clusters are named dws-demo01 and dws-demo02.

Step 2: Preparing Source Data

Step 1 On the Cluster Management page of the GaussDB (DWS) console, click Login in
the Operation column of the source cluster dws-demo01.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 66

https://support.huaweicloud.com/eu/tg-dws/dws_07_0759.html
https://support.huaweicloud.com/eu/migration-dws/dws_15_0041.html
https://support.huaweicloud.com/eu/usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0019.html

NO TE

This practice uses version 8.1.3.x as an example. 8.1.2 and earlier versions do not support
this login mode. You can use Data Studio to connect to a cluster. For details, see Using
Data Studio to Connect to a Cluster.

Step 2 The login username is dbadmin, the database name is gaussdb, and the password
is the password of user dbadmin set during data warehouse cluster creation.
Select Remember Password, enable Collect Metadata Periodically and Show
Executed SQL Statements, and click Log In.

Figure 2-23 Logging In to GaussDB(DWS)

Step 3 Click the database name gaussdb and click SQL Window in the upper right
corner to access the SQL editor.

Step 4 Copy the following SQL statement to the SQL window and click Execute SQL to
create the test TPC-H table ORDERS.
CREATE TABLE ORDERS
 (
 O_ORDERKEY BIGINT NOT NULL ,
 O_CUSTKEY BIGINT NOT NULL ,
 O_ORDERSTATUS CHAR(1) NOT NULL ,
 O_TOTALPRICE DECIMAL(15,2) NOT NULL ,
 O_ORDERDATE DATE NOT NULL ,
 O_ORDERPRIORITY CHAR(15) NOT NULL ,
 O_CLERK CHAR(15) NOT NULL ,
 O_SHIPPRIORITY BIGINT NOT NULL ,
 O_COMMENT VARCHAR(79) NOT NULL)
 with (orientation = column)
 distribute by hash(O_ORDERKEY)
 PARTITION BY RANGE(O_ORDERDATE)

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 67

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0094.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0094.html

 (
 PARTITION O_ORDERDATE_1 VALUES LESS THAN('1993-01-01 00:00:00'),
 PARTITION O_ORDERDATE_2 VALUES LESS THAN('1994-01-01 00:00:00'),
 PARTITION O_ORDERDATE_3 VALUES LESS THAN('1995-01-01 00:00:00'),
 PARTITION O_ORDERDATE_4 VALUES LESS THAN('1996-01-01 00:00:00'),
 PARTITION O_ORDERDATE_5 VALUES LESS THAN('1997-01-01 00:00:00'),
 PARTITION O_ORDERDATE_6 VALUES LESS THAN('1998-01-01 00:00:00'),
 PARTITION O_ORDERDATE_7 VALUES LESS THAN('1999-01-01 00:00:00')
);

Step 5 Run the following SQL statement to create an OBS foreign table:

Replace AK and SK with the actual AK and SK of the account. <obs_bucket_name>
is obtained from Supported Regions.

NO TE

// Hard-coded or plaintext AK and SK are risky. For security purposes, encrypt your AK and
SK and store them in the configuration file or environment variables.

CREATE FOREIGN TABLE ORDERS01
 (
LIKE orders
)
 SERVER gsmpp_server
 OPTIONS (
 ENCODING 'utf8',
 LOCATION obs://<obs_bucket_name>/tpch/orders.tbl',
 FORMAT 'text',
 DELIMITER '|',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
 CHUNKSIZE '64',
 IGNORE_EXTRA_DATA 'on'
);

Step 6 Run the following SQL statement to import data from the OBS foreign table to
the source data warehouse cluster: The import takes about 2 minutes. Please wait.

NO TE

If an import error occurs, the AK and SK values of the foreign table are incorrect. In this
case, run the DROP FOREIGN TABLE order01; command to delete the foreign table, create a
foreign table again, and run the following statement to import data again:

INSERT INTO orders SELECT * FROM orders01;

Step 7 Repeat the preceding steps to log in to the target cluster dws-demo02 and run the
following SQL statement to create the target table orders:
CREATE TABLE ORDERS
 (
 O_ORDERKEY BIGINT NOT NULL ,
 O_CUSTKEY BIGINT NOT NULL ,
 O_ORDERSTATUS CHAR(1) NOT NULL ,
 O_TOTALPRICE DECIMAL(15,2) NOT NULL ,
 O_ORDERDATE DATE NOT NULL ,
 O_ORDERPRIORITY CHAR(15) NOT NULL ,
 O_CLERK CHAR(15) NOT NULL ,
 O_SHIPPRIORITY BIGINT NOT NULL ,
 O_COMMENT VARCHAR(79) NOT NULL)
 with (orientation = column)
 distribute by hash(O_ORDERKEY)
 PARTITION BY RANGE(O_ORDERDATE)
 (
 PARTITION O_ORDERDATE_1 VALUES LESS THAN('1993-01-01 00:00:00'),
 PARTITION O_ORDERDATE_2 VALUES LESS THAN('1994-01-01 00:00:00'),
 PARTITION O_ORDERDATE_3 VALUES LESS THAN('1995-01-01 00:00:00'),
 PARTITION O_ORDERDATE_4 VALUES LESS THAN('1996-01-01 00:00:00'),

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 68

 PARTITION O_ORDERDATE_5 VALUES LESS THAN('1997-01-01 00:00:00'),
 PARTITION O_ORDERDATE_6 VALUES LESS THAN('1998-01-01 00:00:00'),
 PARTITION O_ORDERDATE_7 VALUES LESS THAN('1999-01-01 00:00:00')
);

----End

Step 3: Installing and Starting the GDS Server

Step 1 Create an ECS by referring to Purchasing an ECS. Note that the ECS and
GaussDB(DWS) instances must be created in the same region and VPC. In this
example, the CentOS 7.6 version is selected as the ECS image.

Step 2 Downloading the GDS Package

1. Log in to the GaussDB(DWS) console.
2. In the navigation tree on the left, click Connections.
3. Select the GDS client of the corresponding version from the drop-down list of

CLI Client.
Select a version based on the cluster version and the OS where the client is
installed.

NO TE

The CPU architecture of the client must be the same as that of the cluster. If the
cluster uses the x86 specifications, select the x86 client.

4. Click Download.

Step 3 Use the SFTP tool to upload the downloaded client (for example,
dws_client_8.2.x_redhat_x64.zip) to the /opt directory of the ECS.

Step 4 Log in to the ECS as the root user and run the following commands to go to
the /opt directory and decompress the client package:
cd /opt
unzip dws_client_8.2.x_redhat_x64.zip

Step 5 Create a GDS user and the user group to which the user belongs. This user is used
to start GDS and read source data.
groupadd gdsgrp
useradd -g gdsgrp gds_user

Step 6 Change the owner of the GDS package directory and source data file directory to
the GDS user.
chown -R gds_user:gdsgrp /opt/gds/bin
chown -R gds_user:gdsgrp /opt

Step 7 Switch to user gds.
su - gds_user

Step 8 Run the following commands to go to the gds directory and execute environment
variables:
cd /opt/gds/bin
source gds_env

Step 9 Run the following command to start GDS. You can view the internal IP address of
the ECS on the ECS console.
/opt/gds/bin/gds -d /opt -p ECS Intranet IP:5000 -H 0.0.0.0/0 -l /opt/gds/bin/gds_log.txt -D -t 2

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 69

https://support.huaweicloud.com/eu/qs-ecs/en-us_topic_0021831611.html

Step 10 Enable the network port between the ECS and DWS.

The GDS server (ECS in this experiment) needs to communicate with DWS. The
default security group of the ECS does not allow inbound traffic from GDS port
5000 and DWS port 8000. Perform the following steps:

1. Return to the ECS console and click the ECS name to go to the ECS details
page.

2. Switch to the Security Groups tab and click Configure Rule.
3. Select Inbound Rules, click Add Rule, set Priority to 1, set Protocol Port to

5000, and click OK.

4. Repeat the preceding steps to add an inbound rule of 8000.

----End

Step 4: Implementing Data Interconnection Across DWS Clusters

Step 1 Create a server.

1. Obtain the private IP address of the source data warehouse cluster: Switch to
the DWS console, choose Cluster Management on the left, and click the
source cluster name dws-demo01.

2. Go to the cluster details page and record the internal IP address of DWS.

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 70

3. Switch back to the DWS console and click Log In in the Operation column of
the target dws-demo02. The SQL window is displayed,
Run the following command to create a server:
The private IP address of the source data warehouse cluster is obtained in the
previous step. The private IP address of the ECS server is obtained from the
ECS console. The login password of user dbadmin is set when the data
warehouse cluster is created.
CREATE SERVER server_remote FOREIGN DATA WRAPPER GC_FDW OPTIONS
 (
address'Private network IP address of the source DWS cluster :8000',
 dbname 'gaussdb',
 username 'dbadmin',
password'Password of user dbadmin',
syncsrv'gsfs://Internal IP address of the ECS server:5000'
)
 ;

Step 2 Create a foreign table for interconnection.

In the SQL window of the destination cluster dws-demo02, run the following
command to create a foreign table for interconnection:
CREATE FOREIGN TABLE ft_orders
 (
 O_ORDERKEY BIGINT ,
 O_CUSTKEY BIGINT ,
 O_ORDERSTATUS CHAR(1) ,
 O_TOTALPRICE DECIMAL(15,2) ,
 O_ORDERDATE DATE ,
 O_ORDERPRIORITY CHAR(15) ,
 O_CLERK CHAR(15) ,
 O_SHIPPRIORITY BIGINT ,
 O_COMMENT VARCHAR(79)

)
 SERVER server_remote
 OPTIONS
 (
 schema_name 'public',
 table_name 'orders',
 encoding 'SQL_ASCII'
);

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 71

Step 3 Import all table data.

In the SQL window, run the following SQL statement to import full data from the
ft_orders foreign table: Wait for about 1 minute.

INSERT INTO orders SELECT * FROM ft_orders;

Run the following SQL statement. It is found that 15 million lines of data are
successfully imported.

SELECT count(*) FROM orders;

Step 4 Import data based on filter criteria.

Run the following SQL statements to import data based on the filter criteria:

INSERT INTO orders SELECT * FROM ft_orders WHERE o_orderkey < '10000000';

----End

Data Warehouse Service
Best Practices 2 Data Migration

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 72

3 Table Optimization Practices

3.1 Table Structure Design
Before you optimize a table, you need to understand the structure of the table.
During database design, some key factors about table design will greatly affect
the subsequent query performance of the database. Table design affects data
storage as well. Scientific table design reduces I/O operations and minimizes
memory usage, improving the query performance.

This section describes how to optimize table performance in GaussDB(DWS) by
properly designing the table structure (for example, by configuring the table
storage mode, compression level, distribution mode, distribution column,
partitioned tables, and local clustering).

Selecting a Storage Mode
Selecting a model for table storage is the first step of table definition. Select a
proper storage model for your service based on the table below.

Generally, if a table contains many columns (called a wide table) and its query
involves only a few columns, column storage is recommended. If a table contains
only a few columns and a query involves most of the columns, row storage is
recommended.

Storage
Model

Application Scenario

Row
storage

Point query (simple index–based query that returns only a few
records).
Query involving many INSERT, UPDATE, and DELETE operations.

Column
storage

Statistics analysis query, in which operations, such as group and
join, are performed many times.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 73

The row/column storage of a table is specified by the orientation attribute in the
table definition. The value row indicates a row-store table and column indicates a
column-store table. The default value is row.

Table Compression
Table compression can be enabled when a table is created. Table compression
enables data in the table to be stored in compressed format to reduce memory
usage.

In scenarios where I/O is large (much data is read and written) and CPU is
sufficient (little data is computed), select a high compression ratio. In scenarios
where I/O is small and CPU is insufficient, select a low compression ratio. Based
on this principle, you are advised to select different compression ratios and test
and compare the results to select the optimal compression ratio as required.
Specify a compressions ratio using the COMPRESSION parameter. The supported
values are as follows:

● The valid value of column-store tables is YES, NO, LOW, MIDDLE, or HIGH,
and the default value is LOW.

● The valid values of row-store tables are YES and NO, and the default is NO.
(The row-store table compression function is not put into commercial use. To
use this function, contact technical support.)

The service scenarios applicable to each compression level are described in the
following table.

Compression
Level

Application Scenario

LOW The system CPU usage is high and the disk storage space is
sufficient.

MIDDLE The system CPU usage is moderate and the disk storage
space is insufficient.

HIGH The system CPU usage is low and the disk storage space is
insufficient.

Selecting a Distribution Mode
GaussDB(DWS) supports the following distribution modes: replication, hash, and
Round-robin.

NO TE

Round-robin is supported in cluster 8.1.2 and later.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 74

Policy Description Application
Scenario

Advantages/
disadvantages

Replicatio
n

Full data in a
table is stored on
each DN in the
cluster.

Small tables and
dimension tables

● The advantage of
replication is that each
DN has full data of the
table. During the join
operation, data does
not need to be
redistributed, reducing
network overheads and
reducing plan segments
(each plan segment
starts a corresponding
thread).

● The disadvantage of
replication is that each
DN retains the
complete data of the
table, resulting in data
redundancy. Generally,
replication is only used
for small dimension
tables.

Hash Table data is
distributed on all
DNs in the cluster.

Fact tables
containing a large
amount of data

● The I/O resources of
each node can be used
during data read/write,
greatly improving the
read/write speed of a
table.

● Generally, a large table
(containing over 1
million records) is
defined as a hash table.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 75

Policy Description Application
Scenario

Advantages/
disadvantages

Polling
(Round-
robin)

Each row in the
table is sent to
each DN in turn.
Data can be
evenly distributed
on each DN.

Fact tables that
contain a large
amount of data
and cannot find a
proper
distribution key in
hash mode

● Round-robin can avoid
data skew, improving
the space utilization of
the cluster.

● Round-robin does not
support local DN
optimization like a
hash table does, and
the query performance
of Round-robin is
usually lower than that
of a hash table.

● If a proper distribution
key can be found for a
large table, use the
hash distribution mode
with better
performance.
Otherwise, define the
table as a round-robin
table.

Selecting a Distribution Key
If the hash distribution mode is used, a distribution key must be specified for the
user table. If a record is inserted, the system performs hash computing based on
values in the distribute column and then stores data on the related DN.

Select a hash distribution key based on the following principles:

1. The values of the distribution key should be discrete so that data can be
evenly distributed on each DN. You can select the primary key of the table
as the distribution key. For example, for a person information table, choose
the ID number column as the distribution key.

2. Do not select the column where a constant filter exists. For example, if a
constant constraint (for example, zqdh= '000001') exists on the zqdh column
in some queries on the dwcjk table, you are not advised to use zqdh as the
distribution key.

3. With the above principles met, you can select join conditions as
distribution keys, so that join tasks can be pushed down to DNs for
execution, reducing the amount of data transferred between the DNs.
For a hash table, an improper distribution key may cause data skew or poor
I/O performance on certain DNs. Therefore, you need to check the table to
ensure that data is evenly distributed on each DN. You can run the following
SQL statements to check for data skew:
SELECT
xc_node_id, count(1)
FROM tablename

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 76

GROUP BY xc_node_id
ORDER BY xc_node_id desc;

xc_node_id corresponds to a DN. Generally, over 5% difference between the
amount of data on different DNs is regarded as data skew. If the
difference is over 10%, choose another distribution key.

4. You are not advised to add a column as a distribution key, especially add a
new column and use the SEQUENCE value to fill the column. (Sequences may
cause performance bottlenecks and unnecessary maintenance costs.)

Using Partitioned Tables
Partitioning refers to splitting what is logically one large table into smaller
physical pieces based on specific schemes. The table based on the logic is called a
partitioned table, and a physical piece is called a partition. Data is stored on these
smaller physical pieces, namely, partitions, instead of the larger logical partitioned
table. A partitioned table has the following advantages over an ordinary table:

1. High query performance: The system queries only the concerned partitions
rather than the whole table, improving the query efficiency.

2. High availability: If a partition is faulty, data in the other partitions is still
available.

3. Easy maintenance: You only need to fix the faulty partition.

The partitioned tables supported by GaussDB(DWS) include range partitioned
tables and list partitioned tables. (List partitioned tables are supported only in
cluster 8.1.3).

Using Partial Clustering
Partial Cluster Key is the column-based technology. It can minimize or maximize
sparse indexes to quickly filter base tables. Partial cluster key can specify multiple
columns, but you are advised to specify no more than two columns. Use the
following principles to specify columns:

1. The selected columns must be restricted by simple expressions in base tables.
Such constraints are usually represented by Col, Op, and Const. Col specifies
the column name, Op specifies operators, (including =, >, >=, <=, and <) Const
specifies constants.

2. Select columns that are frequently selected (to filter much more undesired
data) in simple expressions.

3. List the less frequently selected columns on the top.
4. List the columns of the enumerated type at the top.

Selecting a Data type
You can use data types with the following features to improve efficiency:

1. Data types that boost execution efficiency
Generally, the calculation of integers (including common comparison
calculations, such as =, >, <, ≥, ≤, and ≠ and GROUP BY) is more efficient than
that of strings and floating point numbers. For example, if you need to
perform a point query on a column-store table whose NUMERIC column is

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 77

used as a filter criterion, the query will take over 10 seconds. If you change
the data type from NUMERIC to INT, the query takes only about 1.8 seconds.

2. Selecting data types with a short length

Data types with short length reduce both the data file size and the memory
used for computing, improving the I/O and computing performance. For
example, use SMALLINT instead of INT, and INT instead of BIGINT.

3. Same data type for a join

You are advised to use the same data type for a join. To join columns with
different data types, the database needs to convert them to the same type,
which leads to additional performance overheads.

Index Use
● The purpose of creating indexes is to accelerate queries. Therefore, ensure

that indexes can be used in some queries. If an index is not used by any query
statement, the index is meaningless. Delete the index.

● Do not create unnecessary secondary indexes. Useful secondary indexes can
accelerate query. However, the space occupied by indexes increases with the
number of indexes. Each time an index is added, an additional key-value pair
needs to be added when a piece of data is inserted. Therefore, the more
indexes, the slower the write speed, and the larger the space usage. In
addition, too many indexes affect the optimizer running time, and
inappropriate indexes mislead the optimizer. Therefore, the more indexes, the
better.

● Create proper indexes based on service characteristics. In principle, indexes
need to be created for columns required in a query to improve performance.
Indexes can be created in the following scenarios:

– For columns with high differentiation, indexes can significantly reduce the
number of rows after filtering. For example, you are advised to create an
index in the ID card number column, but not in the gender column.

– If there are multiple query conditions, you can select a combination
index. Note that the column of the equivalent condition must be placed
before the combination index. For example, if the common query is
SELECT * FROM t where c1 = 10 and c2 = 100 and c3 > 10, you can create
the combination index Index cidx (c1, c2, c3). In this way, you can use the
query conditions to construct an index prefix for scanning.

● When an index column is used as a query condition, do not perform
calculation, function, or type conversion on the index column. Otherwise, the
optimizer cannot use the index.

● Ensure that the index column contains the query column. Do not always run
the SELECT * statement to query all columns.

● The query condition is used. =. When NOT IN is used, indexes cannot be used.

● When LIKE is used, if the condition starts with the wildcard %, the index
cannot be used.

● If multiple indexes are available for a query condition but you know which
index is the optimal one, you are advised to use the optimizer hint to force
the optimizer to use the index. This prevents the optimizer from selecting an
incorrect index due to inaccurate statistics or other problems.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 78

● When the IN expression is used as the query condition, the number of
matched conditions should not be too large. Otherwise, the execution
efficiency is low.

3.2 Table Optimization Overview
In this practice, you will learn how to optimize the design of your tables. You will
start by creating tables without specifying their storage mode, distribution key,
distribution mode, or compression mode. Load test data into these tables and test
system performance. Then, follow excellent practices to create the tables again
using new storage modes, distribution keys, distribution modes, and compression
modes. Load the test data and test performance again. Compare the two test
results to find out how table design affects the storage space, and the loading and
query performance of the tables.

Estimated time: 60 minutes

3.3 Selecting a Table Model
The most common types of data warehouse schemas are star and snowflake
schemas. Consider service and performance requirements when you choose a
schema for your tables.

● In the star schema, a central fact table contains the core data for the
database and several dimension tables provide descriptive attribute
information for the fact table. The primary key of a dimension table
associates a foreign key in a fact table, as shown in Figure 3-1.

– All facts must have the same granularity.

– Different dimensions are not associated.

Figure 3-1 Star schema

● The snowflake schema is developed based on the star schema. In this schema,
each dimension can be associated with multiple dimensions and split into
tables of different granularities based on the dimension level, as shown in
Figure 3-2.

– Dimension tables can be associated as needed, and the data stored in
them is reduced.

– This schema has more dimension tables to maintain than the star
schema does.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 79

Figure 3-2 Snowflake schema

This practice verifies performance using the Store Sales (SS) model of TPC-DS. The
model uses the snowflake schema. Figure 3-3 illustrates its structure.

Figure 3-3 TPC-DS Store Sales ER-Diagram

For details about the store_sales fact table and dimension tables in the model,
see the official document of TPC-DS at http://www.tpc.org/
tpc_documents_current_versions/current_specifications5.asp.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 80

http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp

3.4 Step 1: Creating an Initial Table and Loading
Sample Data

Supported Regions

Table 3-1 Regions and OBS bucket names

Region OBS Bucket

EU-Dublin dws-demo-eu-west-101

Create a group of tables without specifying their storage modes, distribution keys,
distribution modes, or compression modes. Load sample data into these tables.

Step 1 (Optional) Create a cluster.

If a cluster is available, skip this step. For details about how to create a cluster, see
Creating a GaussDB(DWS) 2.0 Cluster.

Connect to the cluster and test the connection. For details, see Methods of
Connecting to a Cluster.

This practice uses an 8-node cluster as an example. You can also use a four-node
cluster to perform the test.

Step 2 Create an SS test table store_sales.

NO TE

Before you create this table, delete existing SS tables first (if any) using the DROP TABLE
command. For example, to delete the store_sales table, run the following command:
DROP TABLE store_sales;

Do not configure the storage mode, distribution key, distribution mode, or
compression mode when you create this table.

Run the CREATE TABLE command to create the 11 tables in Figure 3-3. This
section only provides the syntax for creating the store_sales table. To create all
tables, copy the syntax in Creating an Initial Table.

CREATE TABLE store_sales
(
 ss_sold_date_sk integer ,
 ss_sold_time_sk integer ,
 ss_item_sk integer not null,
 ss_customer_sk integer ,
 ss_cdemo_sk integer ,
 ss_hdemo_sk integer ,
 ss_addr_sk integer ,
 ss_store_sk integer ,
 ss_promo_sk integer ,
 ss_ticket_number bigint not null,
 ss_quantity integer ,
 ss_wholesale_cost decimal(7,2) ,
 ss_list_price decimal(7,2) ,

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 81

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0019.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0137.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0137.html

 ss_sales_price decimal(7,2) ,
 ss_ext_discount_amt decimal(7,2) ,
 ss_ext_sales_price decimal(7,2) ,
 ss_ext_wholesale_cost decimal(7,2) ,
 ss_ext_list_price decimal(7,2) ,
 ss_ext_tax decimal(7,2) ,
 ss_coupon_amt decimal(7,2) ,
 ss_net_paid decimal(7,2) ,
 ss_net_paid_inc_tax decimal(7,2) ,
 ss_net_profit decimal(7,2)
) ;

Step 3 Load sample data into these tables.

An OBS bucket provides sample data used for this practice. The bucket can be
read by all authenticated cloud users. Perform the following operations to load the
sample data:

1. Create a foreign table for each table.
GaussDB(DWS) uses the foreign data wrappers (FDWs) provided by
PostgreSQL to import data in parallel. To use FDWs, create FDW tables first
(also called foreign tables). This section only provides the syntax for creating
the obs_from_store_sales_001 foreign table corresponding to the store_sales
table. To create all foreign tables, copy the syntax in Creating a Foreign
Table.

NO TE

– Note that <obs_bucket_name> in the following statement indicates the OBS bucket
name. Only some regions are supported. For details about the supported regions
and OBS bucket names, see Table 3-1. GaussDB(DWS) clusters do not support
cross-region access to OBS bucket data.

– The columns of the foreign table must be the same as that of the corresponding
ordinary table. In this example, store_sales and obs_from_store_sales_001 should
have the same columns.

– The foreign table syntax obtains the sample data used for this practice from the
OBS bucket. To load other sample data, modify SERVER gsmpp_server OPTIONS
as needed. For details, see About Parallel Data Import from OBS.

– // Hard-coded or plaintext AK and SK are risky. For security purposes, encrypt your
AK and SK and store them in the configuration file or environment variables.

CREATE FOREIGN TABLE obs_from_store_sales_001
(
 ss_sold_date_sk integer ,
 ss_sold_time_sk integer ,
 ss_item_sk integer not null,
 ss_customer_sk integer ,
 ss_cdemo_sk integer ,
 ss_hdemo_sk integer ,
 ss_addr_sk integer ,
 ss_store_sk integer ,
 ss_promo_sk integer ,
 ss_ticket_number bigint not null,
 ss_quantity integer ,
 ss_wholesale_cost decimal(7,2) ,
 ss_list_price decimal(7,2) ,
 ss_sales_price decimal(7,2) ,
 ss_ext_discount_amt decimal(7,2) ,
 ss_ext_sales_price decimal(7,2) ,
 ss_ext_wholesale_cost decimal(7,2) ,
 ss_ext_list_price decimal(7,2) ,
 ss_ext_tax decimal(7,2) ,
 ss_coupon_amt decimal(7,2) ,
 ss_net_paid decimal(7,2) ,

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 82

https://support.huaweicloud.com/eu/migration-dws/dws_15_0005.html

 ss_net_paid_inc_tax decimal(7,2) ,
 ss_net_profit decimal(7,2)
)
-- Configure OBS server information and data format details.
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/store_sales',
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
-- If create foreign table failed,record error message
WITH err_obs_from_store_sales_001;

2. Set ACCESS_KEY and SECRET_ACCESS_KEY parameters as needed in the
foreign table creation statement, and run this statement in a client tool to
create a foreign table.
For the values of ACCESS_KEY and SECRET_ACCESS_KEY, see Creating
Access Keys (AK and SK).

3. Import data.
Create the insert.sql script containing the following statements and execute
it:
\timing on
\parallel on 4
INSERT INTO store_sales SELECT * FROM obs_from_store_sales_001;
INSERT INTO date_dim SELECT * FROM obs_from_date_dim_001;
INSERT INTO store SELECT * FROM obs_from_store_001;
INSERT INTO item SELECT * FROM obs_from_item_001;
INSERT INTO time_dim SELECT * FROM obs_from_time_dim_001;
INSERT INTO promotion SELECT * FROM obs_from_promotion_001;
INSERT INTO customer_demographics SELECT * from obs_from_customer_demographics_001 ;
INSERT INTO customer_address SELECT * FROM obs_from_customer_address_001 ;
INSERT INTO household_demographics SELECT * FROM obs_from_household_demographics_001;
INSERT INTO customer SELECT * FROM obs_from_customer_001;
INSERT INTO income_band SELECT * FROM obs_from_income_band_001;
\parallel off

Information similar to the following is displayed:
SET
Timing is on.
SET
Time: 2.831 ms
Parallel is on with scale 4.
Parallel is off.
INSERT 0 402
Time: 1820.909 ms
INSERT 0 73049
Time: 2715.275 ms
INSERT 0 86400
Time: 2377.056 ms
INSERT 0 1000
Time: 4037.155 ms
INSERT 0 204000
Time: 7124.190 ms
INSERT 0 7200
Time: 2227.776 ms
INSERT 0 1920800
Time: 8672.647 ms
INSERT 0 20
Time: 2273.501 ms
INSERT 0 1000000
Time: 11430.991 ms

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 83

https://support.huaweicloud.com/eu/migration-dws/dws_15_0007.html
https://support.huaweicloud.com/eu/migration-dws/dws_15_0007.html

INSERT 0 1981703
Time: 20270.750 ms
INSERT 0 287997024
Time: 341395.680 ms
total time: 341584 ms

4. Calculate the total time spent in creating the 11 tables. The result will be
recorded as the loading time in the benchmark table in Step 1 in the next
section.

5. Run the following command to verify that each table is loaded correctly and
records lines into the table:
SELECT COUNT(*) FROM store_sales;
SELECT COUNT(*) FROM date_dim;
SELECT COUNT(*) FROM store;
SELECT COUNT(*) FROM item;
SELECT COUNT(*) FROM time_dim;
SELECT COUNT(*) FROM promotion;
SELECT COUNT(*) FROM customer_demographics;
SELECT COUNT(*) FROM customer_address;
SELECT COUNT(*) FROM household_demographics;
SELECT COUNT(*) FROM customer;
SELECT COUNT(*) FROM income_band;

The number of rows in each SS table is as follows:

Table name Number of Rows

Store_Sales 287997024

Date_Dim 73049

Store 402

Item 204000

Time_Dim 86400

Promotion 1000

Customer_Demograp
hics

1920800

Customer_Address 1000000

Household_Demogra
phics

7200

Customer 1981703

Income_Band 20

Step 4 Run the ANALYZE command to update statistics.
ANALYZE;

If ANALYZE is returned, the execution is successful.

ANALYZE

The ANALYZE statement collects statistics about table content in databases, which
will be stored in the PG_STATISTIC system catalog. Then, the query optimizer uses
the statistics to work out the most efficient execution plan.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 84

After executing batch insertions and deletions, you are advised to run the
ANALYZE statement on the table or the entire library to update statistics.

----End

3.5 Step 2: Testing System Performance of the Initial
Table and Establishing a Baseline

Before and after tuning table structures, test and record the following information
to compare differences in system performance:

● Load time
● Storage space occupied by tables
● Query performance

The examples in this practice are based on a dws.d2.xlarge cluster consisting of
eight nodes. Because system performance is affected by many factors, clusters of
the same flavor may have different results.

Model dws.d2.xlarge VM

CPU 4*CPU E5-2680 v2 @ 2.80GHZ

Memory 32 GB

Network 1 GB

Disk 1.63 TB

Number of
Nodes

8

Record the results using the following benchmark table.

Benchmark Before After

Loading time (11 tables) 341584 ms -

Occupied storage space

Store_Sales - -

Date_Dim - -

Store - -

Item - -

Time_Dim - -

Promotion - -

Customer_Demographics - -

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 85

Benchmark Before After

Customer_Address - -

Household_Demographic
s

- -

Customer - -

Income_Band - -

Total storage space - -

Query execution time

Query 1 - -

Query 2 - -

Query 3 - -

Total execution time - -

Perform the following steps to test the system performance before tuning to
establish a benchmark:

Step 1 Enter the cumulative load time for all the 11 tables in the benchmarks table in the
Before column.

Step 2 Record the storage space usage of each table.

Determine how much disk space is used for each table using the pg_size_pretty
function and record the results in base tables.

SELECT T_NAME, PG_SIZE_PRETTY(PG_RELATION_SIZE(t_name)) FROM (VALUES('store_sales'),('date_dim'),
('store'),('item'),('time_dim'),('promotion'),('customer_demographics'),('customer_address'),
('household_demographics'),('customer'),('income_band')) AS names1(t_name);

The following information is displayed:

 t_name | pg_size_pretty
------------------------+----------------
 store_sales | 42 GB
 date_dim | 11 MB
 store | 232 kB
 item | 110 MB
 time_dim | 11 MB
 promotion | 256 kB
 customer_demographics | 171 MB
 customer_address | 170 MB
 household_demographics | 504 kB
 customer | 441 MB
 income_band | 88 kB
(11 rows)

Step 3 Test query performance.

Run the following queries and record the time spent on each query. The execution
durations of the same query can be different, depending on the OS cache during
execution. You are advised to perform several rounds of tests and select a group
with average values.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 86

\timing on
SELECT * FROM (SELECT COUNT(*)
FROM store_sales
 ,household_demographics
 ,time_dim, store
WHERE ss_sold_time_sk = time_dim.t_time_sk
 AND ss_hdemo_sk = household_demographics.hd_demo_sk
 AND ss_store_sk = s_store_sk
 AND time_dim.t_hour = 8
 AND time_dim.t_minute >= 30
 AND household_demographics.hd_dep_count = 5
 AND store.s_store_name = 'ese'
ORDER BY COUNT(*)
) LIMIT 100;

SELECT * FROM (SELECT i_brand_id brand_id, i_brand brand, i_manufact_id, i_manufact,
SUM(ss_ext_sales_price) ext_price
 FROM date_dim, store_sales, item,customer,customer_address,store
 WHERE d_date_sk = ss_sold_date_sk
 AND ss_item_sk = i_item_sk
 AND i_manager_id=8
 AND d_moy=11
 AND d_year=1999
 AND ss_customer_sk = c_customer_sk
 AND c_current_addr_sk = ca_address_sk
 AND substr(ca_zip,1,5) <> substr(s_zip,1,5)
 AND ss_store_sk = s_store_sk
 GROUP BY i_brand
 ,i_brand_id
 ,i_manufact_id
 ,i_manufact
 ORDER BY ext_price desc
 ,i_brand
 ,i_brand_id
 ,i_manufact_id
 ,i_manufact
) LIMIT 100;

SELECT * FROM (SELECT s_store_name, s_store_id,
 SUM(CASE WHEN (d_day_name='Sunday') THEN ss_sales_price ELSE null END) sun_sales,
 SUM(CASE WHEN (d_day_name='Monday') THEN ss_sales_price ELSE null END) mon_sales,
 SUM(CASE WHEN (d_day_name='Tuesday') THEN ss_sales_price ELSE null END) tue_sales,
 SUM(CASE WHEN (d_day_name='Wednesday') THEN ss_sales_price ELSE null END) wed_sales,
 SUM(CASE WHEN (d_day_name='Thursday') THEN ss_sales_price ELSE null END) thu_sales,
 SUM(CASE WHEN (d_day_name='Friday') THEN ss_sales_price ELSE null END) fri_sales,
 SUM(CASE WHEN (d_day_name='Saturday') THEN ss_sales_price ELSE null END) sat_sales
 FROM date_dim, store_sales, store
 WHERE d_date_sk = ss_sold_date_sk AND
 s_store_sk = ss_store_sk AND
 s_gmt_offset = -5 AND
 d_year = 2000
 GROUP BY s_store_name, s_store_id
 ORDER BY s_store_name, s_store_id,sun_sales,mon_sales,tue_sales,wed_sales,thu_sales,fri_sales,sat_sales
) LIMIT 100;

----End

After the preceding statistics are collected, the benchmark table is as follows:

Benchmark Before After

Loading time (11
tables)

341584 ms -

Occupied storage space

Store_Sales 42 GB -

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 87

Benchmark Before After

Date_Dim 11 MB -

Store 232 KB -

Item 110 MB -

Time_Dim 11 MB -

Promotion 256 KB -

Customer_Demograph
ics

171 MB -

Customer_Address 170 MB -

Household_Demograp
hics

504 KB -

Customer 441 MB -

Income_Band 88 KB -

Total storage space 42 GB -

Query execution time

Query 1 14552.05 ms -

Query 2 27952.36 ms -

Query 3 17721.15 ms -

Total execution time 60225.56 ms -

3.6 Step 3: Optimizing a Table

Selecting a Storage Mode

Sample tables used in this practice are typical multi-column TPC-DS tables where
many statistical analysis queries are performed. Therefore, the column storage
mode is recommended.

WITH (ORIENTATION = column)

Selecting a Compression Level

No compression ratio is specified in Step 1: Creating an Initial Table and
Loading Sample Data, and the low compression ratio is selected by
GaussDB(DWS) by default. Specify COMPRESSION to MIDDLE, and compare the
result to that when COMPRESSION is set to LOW.

The following is an example of selecting a storage mode and the MIDDLE
compression ratio for a table.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 88

CREATE TABLE store_sales
(
 ss_sold_date_sk integer ,
 ss_sold_time_sk integer ,
 ss_item_sk integer not null,
 ss_customer_sk integer ,
 ss_cdemo_sk integer ,
 ss_hdemo_sk integer ,
 ss_addr_sk integer ,
 ss_store_sk integer ,
 ss_promo_sk integer ,
 ss_ticket_number bigint not null,
 ss_quantity integer ,
 ss_wholesale_cost decimal(7,2) ,
 ss_list_price decimal(7,2) ,
 ss_sales_price decimal(7,2) ,
 ss_ext_discount_amt decimal(7,2) ,
 ss_ext_sales_price decimal(7,2) ,
 ss_ext_wholesale_cost decimal(7,2) ,
 ss_ext_list_price decimal(7,2) ,
 ss_ext_tax decimal(7,2) ,
 ss_coupon_amt decimal(7,2) ,
 ss_net_paid decimal(7,2) ,
 ss_net_paid_inc_tax decimal(7,2) ,
 ss_net_profit decimal(7,2)
)
WITH (ORIENTATION = column,COMPRESSION=middle);

Selecting a Distribution Mode
Based on table sizes provided in Step 2: Testing System Performance of the
Initial Table and Establishing a Baseline, set the distribution mode as follows.

Table Name Number of Rows Distribution Mode

Store_Sales 287997024 Hash

Date_Dim 73049 Replication

Store 402 Replication

Item 204000 Replication

Time_Dim 86400 Replication

Promotion 1000 Replication

Customer_Demogr
aphics

1920800 Hash

Customer_Address 1000000 Hash

Household_Demog
raphics

7200 Replication

Customer 1981703 Hash

Income_Band 20 Replication

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 89

Selecting a Distribution Key
If your table is distributed using hash, choose a proper distribution key. You are
advised to select a distribution key according to Selecting a Distribution Key.

Select the primary key of each table as the distribution key of the hash table.

Table Name Number of
Records

Distribution
Mode

Distribution Key

Store_Sales 287997024 Hash ss_item_sk

Date_Dim 73049 Replication -

Store 402 Replication -

Item 204000 Replication -

Time_Dim 86400 Replication -

Promotion 1000 Replication -

Customer_Demogr
aphics

1920800 Hash cd_demo_sk

Customer_Address 1000000 Hash ca_address_sk

Household_Demog
raphics

7200 Replication -

Customer 1981703 Hash c_customer_sk

Income_Band 20 Replication -

3.7 Step 4: Creating Another Table and Loading Data
After selecting a storage mode, compression level, distribution mode, and
distribution key for each table, use these attributes to create tables and reload
data. Compare the system performance before and after the table recreation.

Step 1 Delete the tables created before.
DROP TABLE store_sales;
DROP TABLE date_dim;
DROP TABLE store;
DROP TABLE item;
DROP TABLE time_dim;
DROP TABLE promotion;
DROP TABLE customer_demographics;
DROP TABLE customer_address;
DROP TABLE household_demographics;
DROP TABLE customer;
DROP TABLE income_band;

DROP FOREIGN TABLE obs_from_store_sales_001;
DROP FOREIGN TABLE obs_from_date_dim_001;
DROP FOREIGN TABLE obs_from_store_001;
DROP FOREIGN TABLE obs_from_item_001;
DROP FOREIGN TABLE obs_from_time_dim_001;
DROP FOREIGN TABLE obs_from_promotion_001;

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 90

DROP FOREIGN TABLE obs_from_customer_demographics_001;
DROP FOREIGN TABLE obs_from_customer_address_001;
DROP FOREIGN TABLE obs_from_household_demographics_001;
DROP FOREIGN TABLE obs_from_customer_001;
DROP FOREIGN TABLE obs_from_income_band_001;

Step 2 Create tables and specify storage and distribution modes for them.

Only the syntax for recreating the store_sales table is provided for simplicity. To
recreate all the other tables, copy the syntax in Creating a Another Table After
Design Optimization.

CREATE TABLE store_sales
(
 ss_sold_date_sk integer ,
 ss_sold_time_sk integer ,
 ss_item_sk integer not null,
 ss_customer_sk integer ,
 ss_cdemo_sk integer ,
 ss_hdemo_sk integer ,
 ss_addr_sk integer ,
 ss_store_sk integer ,
 ss_promo_sk integer ,
 ss_ticket_number bigint not null,
 ss_quantity integer ,
 ss_wholesale_cost decimal(7,2) ,
 ss_list_price decimal(7,2) ,
 ss_sales_price decimal(7,2) ,
 ss_ext_discount_amt decimal(7,2) ,
 ss_ext_sales_price decimal(7,2) ,
 ss_ext_wholesale_cost decimal(7,2) ,
 ss_ext_list_price decimal(7,2) ,
 ss_ext_tax decimal(7,2) ,
 ss_coupon_amt decimal(7,2) ,
 ss_net_paid decimal(7,2) ,
 ss_net_paid_inc_tax decimal(7,2) ,
 ss_net_profit decimal(7,2)
)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY hash (ss_item_sk);

Step 3 Load sample data into these tables.

Step 4 Record the loading time in the benchmark tables.

Benchmark Before After

Loading time (11 tables) 341584 ms 257241 ms

Occupied storage space

Store_Sales 42 GB -

Date_Dim 11 MB -

Store 232 KB -

Item 110 MB -

Time_Dim 11 MB -

Promotion 256 KB -

Customer_Demographics 171 MB -

Customer_Address 170 MB -

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 91

Benchmark Before After

Household_Demographic
s

504 KB -

Customer 441 MB -

Income_Band 88 KB -

Total storage space 42 GB -

Query execution time

Query 1 14552.05 ms -

Query 2 27952.36 ms -

Query 3 17721.15 ms -

Total execution time 60225.56 ms -

Step 5 Run the ANALYZE command to update statistics.
ANALYZE;

If ANALYZE is returned, the execution is successful.

ANALYZE

Step 6 Check for data skew.

For a hash table, an improper distribution key may cause data skew or poor I/O
performance on certain DNs. Therefore, you need to check the table to ensure that
data is evenly distributed on each DN. You can run the following SQL statements
to check for data skew:

SELECT a.count,b.node_name FROM (SELECT count(*) AS count,xc_node_id FROM table_name GROUP BY
xc_node_id) a, pgxc_node b WHERE a.xc_node_id=b.node_id ORDER BY a.count desc;

xc_node_id corresponds to a DN. Generally, over 5% difference between the
amount of data on different DNs is regarded as data skew. If the difference is
over 10%, choose another distribution key. In GaussDB(DWS), you can select
multiple distribution keys to distribute data evenly.

----End

3.8 Step 5: Testing System Performance in the New
Table

After recreating the test data set with the selected storage modes, compression
levels, distribution modes, and distribution keys, you will retest the system
performance.

Step 1 Record the storage space usage of each table.

Determine how much disk space is used for each table using the pg_size_pretty
function and record the results in base tables.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 92

SELECT T_NAME, PG_SIZE_PRETTY(PG_RELATION_SIZE(t_name)) FROM (VALUES('store_sales'),('date_dim'),
('store'),('item'),('time_dim'),('promotion'),('customer_demographics'),('customer_address'),
('household_demographics'),('customer'),('income_band')) AS names1(t_name);
 t_name | pg_size_pretty
------------------------+----------------
 store_sales | 14 GB
 date_dim | 27 MB
 store | 4352 kB
 item | 259 MB
 time_dim | 14 MB
 promotion | 3200 kB
 customer_demographics | 11 MB
 customer_address | 27 MB
 household_demographics | 1280 kB
 customer | 111 MB
 income_band | 896 kB
(11 rows)

Step 2 Test the query performance and record the performance data in the benchmark
table.

Execute the following queries again and record the time spent on each query.
\timing on
SELECT * FROM (SELECT COUNT(*)
FROM store_sales
 ,household_demographics
 ,time_dim, store
WHERE ss_sold_time_sk = time_dim.t_time_sk
 AND ss_hdemo_sk = household_demographics.hd_demo_sk
 AND ss_store_sk = s_store_sk
 AND time_dim.t_hour = 8
 AND time_dim.t_minute >= 30
 AND household_demographics.hd_dep_count = 5
 AND store.s_store_name = 'ese'
ORDER BY COUNT(*)
) LIMIT 100;

SELECT * FROM (SELECT i_brand_id brand_id, i_brand brand, i_manufact_id, i_manufact,
SUM(ss_ext_sales_price) ext_price
 FROM date_dim, store_sales, item,customer,customer_address,store
 WHERE d_date_sk = ss_sold_date_sk
 AND ss_item_sk = i_item_sk
 AND i_manager_id=8
 AND d_moy=11
 AND d_year=1999
 AND ss_customer_sk = c_customer_sk
 AND c_current_addr_sk = ca_address_sk
 AND substr(ca_zip,1,5) <> substr(s_zip,1,5)
 AND ss_store_sk = s_store_sk
 GROUP BY i_brand
 ,i_brand_id
 ,i_manufact_id
 ,i_manufact
 ORDER BY ext_price desc
 ,i_brand
 ,i_brand_id
 ,i_manufact_id
 ,i_manufact
) LIMIT 100;

SELECT * FROM (SELECT s_store_name, s_store_id,
 SUM(CASE WHEN (d_day_name='Sunday') THEN ss_sales_price ELSE null END) sun_sales,
 SUM(CASE WHEN (d_day_name='Monday') THEN ss_sales_price ELSE null END) mon_sales,
 SUM(CASE WHEN (d_day_name='Tuesday') THEN ss_sales_price ELSE null END) tue_sales,
 SUM(CASE WHEN (d_day_name='Wednesday') THEN ss_sales_price ELSE null END) wed_sales,
 SUM(CASE WHEN (d_day_name='Thursday') THEN ss_sales_price ELSE null END) thu_sales,
 SUM(CASE WHEN (d_day_name='Friday') THEN ss_sales_price ELSE null END) fri_sales,
 SUM(CASE WHEN (d_day_name='Saturday') THEN ss_sales_price ELSE null END) sat_sales
 FROM date_dim, store_sales, store

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 93

 WHERE d_date_sk = ss_sold_date_sk AND
 s_store_sk = ss_store_sk AND
 s_gmt_offset = -5 AND
 d_year = 2000
 GROUP BY s_store_name, s_store_id
 ORDER BY s_store_name, s_store_id,sun_sales,mon_sales,tue_sales,wed_sales,thu_sales,fri_sales,sat_sales
) LIMIT 100;

The following benchmark table shows the validation results of the cluster used in
this tutorial. Your results may vary based on a number of factors, but the relative
results should be similar. The execution durations of queries having the same table
structure can be different, depending on the OS cache during execution. You are
advised to perform several rounds of tests and select a group with average values.

Benchmark Before After

Loading time (11 tables) 341584 ms 257241 ms

Occupied storage space

Store_Sales 42 GB 14 GB

Date_Dim 11 MB 27 MB

Store 232 KB 4352 KB

Item 110 MB 259 MB

Time_Dim 11 MB 14 MB

Promotion 256 KB 3200 KB

Customer_Demographics 171 MB 11 MB

Customer_Address 170 MB 27 MB

Household_Demographic
s

504 KB 1280 KB

Customer 441 MB 111 MB

Income_Band 88 KB 896 KB

Total storage space 42 GB 15 GB

Query execution time

Query 1 14552.05 ms 1783.353 ms

Query 2 27952.36 ms 14247.803 ms

Query 3 17721.15 ms 11441.659 ms

Total execution time 60225.56 ms 27472.815 ms

Step 3 If you have higher expectations for the performance after the table design, you
can run the EXPLAIN PERFORMANCE command to view the execution plan for
tuning.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 94

For more details about execution plans and query tuning, see SQL Execution Plan
and Query Performance Tuning Overview.

----End

3.9 Step 6: Evaluating the Performance of the
Optimized Table

Compare the loading time, storage space usage, and query execution time before
and after the table tuning.

The following table shows the example results of the cluster used in this tutorial.
Your results will be different, but should show similar improvement.

Benchmark Before After Change Percentage (%)

Loading time
(11 tables)

341584 ms 257241 ms -84343 ms -24.7%

Occupied storage space - -

Store_Sales 42 GB 14 GB -28 GB -66.7%

Date_Dim 11 MB 27 MB 16 MB 145.5%

Store 232 KB 4352 KB 4120 KB 1775.9%

Item 110 MB 259 MB 149 MB 1354.5%

Time_Dim 11 MB 14 MB 13 MB 118.2%

Promotion 256 KB 3200 KB 2944 KB 1150%

Customer_De
mographics

171 MB 11 MB -160 MB -93.6

Customer_Add
ress

170 MB 27 MB -143 MB -84.1%

Household_De
mographics

504 KB 1280 KB 704 KB 139.7%

Customer 441 MB 111 MB -330 MB -74.8%

Income_Band 88 KB 896 KB 808 KB 918.2%

Total storage
space

42 GB 15 GB -27 GB -64.3%

Query execution time - -

Query 1 14552.05
ms

1783.353
ms

-12768.697
ms

-87.7%

Query 2 27952.36
ms

14247.803
ms

-13704.557
ms

-49.0%

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 95

https://support.huaweicloud.com/eu/performance-dws/dws_10_0002.html
https://support.huaweicloud.com/eu/performance-dws/dws_10_0001.html

Benchmark Before After Change Percentage (%)

Query 3 17721.15
ms

11441.659
ms

-6279.491
ms

-35.4%

Total
execution time

60225.56
ms

27472.815
ms

-32752.745
ms

-54.4%

Evaluating the Table After Optimization
● The loading time was reduced by 24.7%.

The distribution mode has obvious impact on loading data. The hash
distribution mode improves the loading efficiency. The replication distribution
mode reduces the loading efficiency. When the CPU and I/O are sufficient, the
compression level has little impact on the loading efficiency. Typically, the
efficiency of loading a column-store table is higher than that of a row-store
table.

● The storage usage space was reduced by 64.3%.
The compression level, column storage, and hash distribution can save the
storage space. A replication table increases the storage usage, but reduces the
network overhead. Using the replication mode for small tables is a positive
way to use small space for performance.

● The query performance (speed) increased by 54.4%, indicating that the query
time decreased by 54.4%.
The query performance is improved by optimizing storage modes, distribution
modes, and distribution keys. In a statistical analysis query on multi-column
tables, column storage can improve query performance. In a hash table, I/O
resources on each node can be used during I/O read/write, which improves
the read/write speed of a table.
Often, query performance can be improved further by rewriting queries and
configuring workload management (WLM). For more information, see
Overview of Query Performance Optimization.

You can adapt the operations in Table Optimization Practices to further improve
the distribution of tables and the performance of data loading, storage, and query.

Deleting Resources
After the exercise is completed, delete the cluster by referring to Deleting a
Cluster.

If you want to keep the cluster, but delete the storage space used by the SS tables,
run the following commands:

DROP TABLE store_sales;
DROP TABLE date_dim;
DROP TABLE store;
DROP TABLE item;
DROP TABLE time_dim;
DROP TABLE promotion;
DROP TABLE customer_demographics;
DROP TABLE customer_address;
DROP TABLE household_demographics;

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 96

https://support.huaweicloud.com/eu/performance-dws/dws_10_0001.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0025.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0025.html

DROP TABLE customer;
DROP TABLE income_band;

3.10 Appendix: Table Creation Syntax

3.10.1 Usage
This section provides SQL test statements used in this tutorial. You are advised to
copy the SQL statements in each section and save them as an .sql file. For
example, create a file named create_table_fir.sql file and paste the SQL
statements in section Creating an Initial Table to the file. Executing the file on an
SQL client tool is efficient, and the total elapsed time of test cases is easy to
calculate. Execute the .sql file using gsql as follows:

gsql -d database_name -h dws_ip -U username -p port_number -W password -f XXX.sql

Replace the italic parts in the example with actual values in GaussDB(DWS). For
example:

gsql -d postgres -h 10.10.0.1 -U dbadmin -p 8000 -W password -f create_table_fir.sql

Replace the following information in the example based on the site requirements:

● postgres: indicates the name of the database to be connected.
● 10.10.0.1: cluster connection address.
● dbadmin: username of the cluster database. The default administrator is

dbadmin.
● 8000: database port set during cluster creation.
● password: password set during cluster creation.

3.10.2 Creating an Initial Table
This section contains the table creation syntax used when you create a table for
the first time in this tutorial. Tables are created without specifying their storage
modes, distribution keys, distribution modes, or compression modes.

CREATE TABLE store_sales
(
 ss_sold_date_sk integer ,
 ss_sold_time_sk integer ,
 ss_item_sk integer not null,
 ss_customer_sk integer ,
 ss_cdemo_sk integer ,
 ss_hdemo_sk integer ,
 ss_addr_sk integer ,
 ss_store_sk integer ,
 ss_promo_sk integer ,
 ss_ticket_number bigint not null,
 ss_quantity integer ,
 ss_wholesale_cost decimal(7,2) ,
 ss_list_price decimal(7,2) ,
 ss_sales_price decimal(7,2) ,
 ss_ext_discount_amt decimal(7,2) ,
 ss_ext_sales_price decimal(7,2) ,
 ss_ext_wholesale_cost decimal(7,2) ,
 ss_ext_list_price decimal(7,2) ,
 ss_ext_tax decimal(7,2) ,
 ss_coupon_amt decimal(7,2) ,
 ss_net_paid decimal(7,2) ,

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 97

 ss_net_paid_inc_tax decimal(7,2) ,
 ss_net_profit decimal(7,2)
) ;

CREATE TABLE date_dim
(
 d_date_sk integer not null,
 d_date_id char(16) not null,
 d_date date ,
 d_month_seq integer ,
 d_week_seq integer ,
 d_quarter_seq integer ,
 d_year integer ,
 d_dow integer ,
 d_moy integer ,
 d_dom integer ,
 d_qoy integer ,
 d_fy_year integer ,
 d_fy_quarter_seq integer ,
 d_fy_week_seq integer ,
 d_day_name char(9) ,
 d_quarter_name char(6) ,
 d_holiday char(1) ,
 d_weekend char(1) ,
 d_following_holiday char(1) ,
 d_first_dom integer ,
 d_last_dom integer ,
 d_same_day_ly integer ,
 d_same_day_lq integer ,
 d_current_day char(1) ,
 d_current_week char(1) ,
 d_current_month char(1) ,
 d_current_quarter char(1) ,
 d_current_year char(1)
) ;

CREATE TABLE store
(
 s_store_sk integer not null,
 s_store_id char(16) not null,
 s_rec_start_date date ,
 s_rec_end_date date ,
 s_closed_date_sk integer ,
 s_store_name varchar(50) ,
 s_number_employees integer ,
 s_floor_space integer ,
 s_hours char(20) ,
 s_manager varchar(40) ,
 s_market_id integer ,
 s_geography_class varchar(100) ,
 s_market_desc varchar(100) ,
 s_market_manager varchar(40) ,
 s_division_id integer ,
 s_division_name varchar(50) ,
 s_company_id integer ,
 s_company_name varchar(50) ,
 s_street_number varchar(10) ,
 s_street_name varchar(60) ,
 s_street_type char(15) ,
 s_suite_number char(10) ,
 s_city varchar(60) ,
 s_county varchar(30) ,
 s_state char(2) ,
 s_zip char(10) ,
 s_country varchar(20) ,
 s_gmt_offset decimal(5,2) ,
 s_tax_precentage decimal(5,2)
) ;

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 98

CREATE TABLE item
(
 i_item_sk integer not null,
 i_item_id char(16) not null,
 i_rec_start_date date ,
 i_rec_end_date date ,
 i_item_desc varchar(200) ,
 i_current_price decimal(7,2) ,
 i_wholesale_cost decimal(7,2) ,
 i_brand_id integer ,
 i_brand char(50) ,
 i_class_id integer ,
 i_class char(50) ,
 i_category_id integer ,
 i_category char(50) ,
 i_manufact_id integer ,
 i_manufact char(50) ,
 i_size char(20) ,
 i_formulation char(20) ,
 i_color char(20) ,
 i_units char(10) ,
 i_container char(10) ,
 i_manager_id integer ,
 i_product_name char(50)
) ;

CREATE TABLE time_dim
(
 t_time_sk integer not null,
 t_time_id char(16) not null,
 t_time integer ,
 t_hour integer ,
 t_minute integer ,
 t_second integer ,
 t_am_pm char(2) ,
 t_shift char(20) ,
 t_sub_shift char(20) ,
 t_meal_time char(20)
) ;

CREATE TABLE promotion
(
 p_promo_sk integer not null,
 p_promo_id char(16) not null,
 p_start_date_sk integer ,
 p_end_date_sk integer ,
 p_item_sk integer ,
 p_cost decimal(15,2) ,
 p_response_target integer ,
 p_promo_name char(50) ,
 p_channel_dmail char(1) ,
 p_channel_email char(1) ,
 p_channel_catalog char(1) ,
 p_channel_tv char(1) ,
 p_channel_radio char(1) ,
 p_channel_press char(1) ,
 p_channel_event char(1) ,
 p_channel_demo char(1) ,
 p_channel_details varchar(100) ,
 p_purpose char(15) ,
 p_discount_active char(1)
) ;

CREATE TABLE customer_demographics
(
 cd_demo_sk integer not null,
 cd_gender char(1) ,
 cd_marital_status char(1) ,
 cd_education_status char(20) ,

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 99

 cd_purchase_estimate integer ,
 cd_credit_rating char(10) ,
 cd_dep_count integer ,
 cd_dep_employed_count integer ,
 cd_dep_college_count integer
) ;

CREATE TABLE customer_address
(
 ca_address_sk integer not null,
 ca_address_id char(16) not null,
 ca_street_number char(10) ,
 ca_street_name varchar(60) ,
 ca_street_type char(15) ,
 ca_suite_number char(10) ,
 ca_city varchar(60) ,
 ca_county varchar(30) ,
 ca_state char(2) ,
 ca_zip char(10) ,
 ca_country varchar(20) ,
 ca_gmt_offset decimal(5,2) ,
 ca_location_type char(20)
) ;

CREATE TABLE household_demographics
(
 hd_demo_sk integer not null,
 hd_income_band_sk integer ,
 hd_buy_potential char(15) ,
 hd_dep_count integer ,
 hd_vehicle_count integer
) ;

CREATE TABLE customer
(
 c_customer_sk integer not null,
 c_customer_id char(16) not null,
 c_current_cdemo_sk integer ,
 c_current_hdemo_sk integer ,
 c_current_addr_sk integer ,
 c_first_shipto_date_sk integer ,
 c_first_sales_date_sk integer ,
 c_salutation char(10) ,
 c_first_name char(20) ,
 c_last_name char(30) ,
 c_preferred_cust_flag char(1) ,
 c_birth_day integer ,
 c_birth_month integer ,
 c_birth_year integer ,
 c_birth_country varchar(20) ,
 c_login char(13) ,
 c_email_address char(50) ,
 c_last_review_date char(10)
) ;

CREATE TABLE income_band
(
 ib_income_band_sk integer not null,
 ib_lower_bound integer ,
 ib_upper_bound integer
) ;

3.10.3 Creating a Another Table After Design Optimization
This section contains the syntax of creating another table after the storage modes,
compression levels, distribution modes, and distribution keys are selected in this
practice.

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 100

CREATE TABLE store_sales
(
 ss_sold_date_sk integer ,
 ss_sold_time_sk integer ,
 ss_item_sk integer not null,
 ss_customer_sk integer ,
 ss_cdemo_sk integer ,
 ss_hdemo_sk integer ,
 ss_addr_sk integer ,
 ss_store_sk integer ,
 ss_promo_sk integer ,
 ss_ticket_number bigint not null,
 ss_quantity integer ,
 ss_wholesale_cost decimal(7,2) ,
 ss_list_price decimal(7,2) ,
 ss_sales_price decimal(7,2) ,
 ss_ext_discount_amt decimal(7,2) ,
 ss_ext_sales_price decimal(7,2) ,
 ss_ext_wholesale_cost decimal(7,2) ,
 ss_ext_list_price decimal(7,2) ,
 ss_ext_tax decimal(7,2) ,
 ss_coupon_amt decimal(7,2) ,
 ss_net_paid decimal(7,2) ,
 ss_net_paid_inc_tax decimal(7,2) ,
 ss_net_profit decimal(7,2)
)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY hash (ss_item_sk);

CREATE TABLE date_dim
(
 d_date_sk integer not null,
 d_date_id char(16) not null,
 d_date date ,
 d_month_seq integer ,
 d_week_seq integer ,
 d_quarter_seq integer ,
 d_year integer ,
 d_dow integer ,
 d_moy integer ,
 d_dom integer ,
 d_qoy integer ,
 d_fy_year integer ,
 d_fy_quarter_seq integer ,
 d_fy_week_seq integer ,
 d_day_name char(9) ,
 d_quarter_name char(6) ,
 d_holiday char(1) ,
 d_weekend char(1) ,
 d_following_holiday char(1) ,
 d_first_dom integer ,
 d_last_dom integer ,
 d_same_day_ly integer ,
 d_same_day_lq integer ,
 d_current_day char(1) ,
 d_current_week char(1) ,
 d_current_month char(1) ,
 d_current_quarter char(1) ,
 d_current_year char(1)
)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY replication;

CREATE TABLE store
(
 s_store_sk integer not null,
 s_store_id char(16) not null,
 s_rec_start_date date ,
 s_rec_end_date date ,

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 101

 s_closed_date_sk integer ,
 s_store_name varchar(50) ,
 s_number_employees integer ,
 s_floor_space integer ,
 s_hours char(20) ,
 s_manager varchar(40) ,
 s_market_id integer ,
 s_geography_class varchar(100) ,
 s_market_desc varchar(100) ,
 s_market_manager varchar(40) ,
 s_division_id integer ,
 s_division_name varchar(50) ,
 s_company_id integer ,
 s_company_name varchar(50) ,
 s_street_number varchar(10) ,
 s_street_name varchar(60) ,
 s_street_type char(15) ,
 s_suite_number char(10) ,
 s_city varchar(60) ,
 s_county varchar(30) ,
 s_state char(2) ,
 s_zip char(10) ,
 s_country varchar(20) ,
 s_gmt_offset decimal(5,2) ,
 s_tax_precentage decimal(5,2)
)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY replication;

CREATE TABLE item
(
 i_item_sk integer not null,
 i_item_id char(16) not null,
 i_rec_start_date date ,
 i_rec_end_date date ,
 i_item_desc varchar(200) ,
 i_current_price decimal(7,2) ,
 i_wholesale_cost decimal(7,2) ,
 i_brand_id integer ,
 i_brand char(50) ,
 i_class_id integer ,
 i_class char(50) ,
 i_category_id integer ,
 i_category char(50) ,
 i_manufact_id integer ,
 i_manufact char(50) ,
 i_size char(20) ,
 i_formulation char(20) ,
 i_color char(20) ,
 i_units char(10) ,
 i_container char(10) ,
 i_manager_id integer ,
 i_product_name char(50)
)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY replication;

CREATE TABLE time_dim
(
 t_time_sk integer not null,
 t_time_id char(16) not null,
 t_time integer ,
 t_hour integer ,
 t_minute integer ,
 t_second integer ,
 t_am_pm char(2) ,
 t_shift char(20) ,
 t_sub_shift char(20) ,
 t_meal_time char(20)

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 102

)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY replication;

CREATE TABLE promotion
(
 p_promo_sk integer not null,
 p_promo_id char(16) not null,
 p_start_date_sk integer ,
 p_end_date_sk integer ,
 p_item_sk integer ,
 p_cost decimal(15,2) ,
 p_response_target integer ,
 p_promo_name char(50) ,
 p_channel_dmail char(1) ,
 p_channel_email char(1) ,
 p_channel_catalog char(1) ,
 p_channel_tv char(1) ,
 p_channel_radio char(1) ,
 p_channel_press char(1) ,
 p_channel_event char(1) ,
 p_channel_demo char(1) ,
 p_channel_details varchar(100) ,
 p_purpose char(15) ,
 p_discount_active char(1)
)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY replication;

CREATE TABLE customer_demographics
(
 cd_demo_sk integer not null,
 cd_gender char(1) ,
 cd_marital_status char(1) ,
 cd_education_status char(20) ,
 cd_purchase_estimate integer ,
 cd_credit_rating char(10) ,
 cd_dep_count integer ,
 cd_dep_employed_count integer ,
 cd_dep_college_count integer
)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY hash (cd_demo_sk);

CREATE TABLE customer_address
(
 ca_address_sk integer not null,
 ca_address_id char(16) not null,
 ca_street_number char(10) ,
 ca_street_name varchar(60) ,
 ca_street_type char(15) ,
 ca_suite_number char(10) ,
 ca_city varchar(60) ,
 ca_county varchar(30) ,
 ca_state char(2) ,
 ca_zip char(10) ,
 ca_country varchar(20) ,
 ca_gmt_offset decimal(5,2) ,
 ca_location_type char(20)
)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY hash (ca_address_sk);

CREATE TABLE household_demographics
(
 hd_demo_sk integer not null,
 hd_income_band_sk integer ,
 hd_buy_potential char(15) ,
 hd_dep_count integer ,

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 103

 hd_vehicle_count integer
)
 WITH (ORIENTATION = column,COMPRESSION=middle)
 DISTRIBUTE BY replication;

 CREATE TABLE customer
(
 c_customer_sk integer not null,
 c_customer_id char(16) not null,
 c_current_cdemo_sk integer ,
 c_current_hdemo_sk integer ,
 c_current_addr_sk integer ,
 c_first_shipto_date_sk integer ,
 c_first_sales_date_sk integer ,
 c_salutation char(10) ,
 c_first_name char(20) ,
 c_last_name char(30) ,
 c_preferred_cust_flag char(1) ,
 c_birth_day integer ,
 c_birth_month integer ,
 c_birth_year integer ,
 c_birth_country varchar(20) ,
 c_login char(13) ,
 c_email_address char(50) ,
 c_last_review_date char(10)
)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY hash (c_customer_sk);

CREATE TABLE income_band
(
 ib_income_band_sk integer not null,
 ib_lower_bound integer ,
 ib_upper_bound integer
)
WITH (ORIENTATION = column,COMPRESSION=middle)
DISTRIBUTE BY replication;

3.10.4 Creating a Foreign Table
This section contains the syntax of foreign tables for obtaining sample data used
in this tutorial. The sample data is stored in an OBS bucket accessible to all
authenticated cloud users.

NO TE

● Note that <obs_bucket_name> in the following statement indicates the OBS bucket
name. Only some regions are supported. For details about the supported regions and
OBS bucket names, see Supported Regions. GaussDB(DWS) clusters do not support
cross-region access to OBS bucket data.

● You can replace ACCESS_KEY and SECRET_ACCESS_KEY with your own credentials in
this example.

● When an OBS foreign table is created, only the mapping relationship is created, and
data is not pulled to the GaussDB (DWS) disk.

CREATE FOREIGN TABLE obs_from_store_sales_001
(
 ss_sold_date_sk integer ,
 ss_sold_time_sk integer ,
 ss_item_sk integer not null,
 ss_customer_sk integer ,
 ss_cdemo_sk integer ,
 ss_hdemo_sk integer ,
 ss_addr_sk integer ,
 ss_store_sk integer ,
 ss_promo_sk integer ,

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 104

 ss_ticket_number bigint not null,
 ss_quantity integer ,
 ss_wholesale_cost decimal(7,2) ,
 ss_list_price decimal(7,2) ,
 ss_sales_price decimal(7,2) ,
 ss_ext_discount_amt decimal(7,2) ,
 ss_ext_sales_price decimal(7,2) ,
 ss_ext_wholesale_cost decimal(7,2) ,
 ss_ext_list_price decimal(7,2) ,
 ss_ext_tax decimal(7,2) ,
 ss_coupon_amt decimal(7,2) ,
 ss_net_paid decimal(7,2) ,
 ss_net_paid_inc_tax decimal(7,2) ,
 ss_net_profit decimal(7,2)
)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/store_sales',
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
WITH err_obs_from_store_sales_001;

CREATE FOREIGN TABLE obs_from_date_dim_001
(
 d_date_sk integer not null,
 d_date_id char(16) not null,
 d_date date ,
 d_month_seq integer ,
 d_week_seq integer ,
 d_quarter_seq integer ,
 d_year integer ,
 d_dow integer ,
 d_moy integer ,
 d_dom integer ,
 d_qoy integer ,
 d_fy_year integer ,
 d_fy_quarter_seq integer ,
 d_fy_week_seq integer ,
 d_day_name char(9) ,
 d_quarter_name char(6) ,
 d_holiday char(1) ,
 d_weekend char(1) ,
 d_following_holiday char(1) ,
 d_first_dom integer ,
 d_last_dom integer ,
 d_same_day_ly integer ,
 d_same_day_lq integer ,
 d_current_day char(1) ,
 d_current_week char(1) ,
 d_current_month char(1) ,
 d_current_quarter char(1) ,
 d_current_year char(1)
)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/date_dim' ,
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 105

REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
WITH err_obs_from_date_dim_001;

CREATE FOREIGN TABLE obs_from_store_001
(
 s_store_sk integer not null,
 s_store_id char(16) not null,
 s_rec_start_date date ,
 s_rec_end_date date ,
 s_closed_date_sk integer ,
 s_store_name varchar(50) ,
 s_number_employees integer ,
 s_floor_space integer ,
 s_hours char(20) ,
 s_manager varchar(40) ,
 s_market_id integer ,
 s_geography_class varchar(100) ,
 s_market_desc varchar(100) ,
 s_market_manager varchar(40) ,
 s_division_id integer ,
 s_division_name varchar(50) ,
 s_company_id integer ,
 s_company_name varchar(50) ,
 s_street_number varchar(10) ,
 s_street_name varchar(60) ,
 s_street_type char(15) ,
 s_suite_number char(10) ,
 s_city varchar(60) ,
 s_county varchar(30) ,
 s_state char(2) ,
 s_zip char(10) ,
 s_country varchar(20) ,
 s_gmt_offset decimal(5,2) ,
 s_tax_precentage decimal(5,2)
)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/store' ,
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
WITH err_obs_from_store_001;

CREATE FOREIGN TABLE obs_from_item_001
(
 i_item_sk integer not null,
 i_item_id char(16) not null,
 i_rec_start_date date ,
 i_rec_end_date date ,
 i_item_desc varchar(200) ,
 i_current_price decimal(7,2) ,
 i_wholesale_cost decimal(7,2) ,
 i_brand_id integer ,
 i_brand char(50) ,
 i_class_id integer ,
 i_class char(50) ,
 i_category_id integer ,
 i_category char(50) ,
 i_manufact_id integer ,
 i_manufact char(50) ,
 i_size char(20) ,

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 106

 i_formulation char(20) ,
 i_color char(20) ,
 i_units char(10) ,
 i_container char(10) ,
 i_manager_id integer ,
 i_product_name char(50)
)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/item' ,
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
WITH err_obs_from_item_001;

CREATE FOREIGN TABLE obs_from_time_dim_001
(
 t_time_sk integer not null,
 t_time_id char(16) not null,
 t_time integer ,
 t_hour integer ,
 t_minute integer ,
 t_second integer ,
 t_am_pm char(2) ,
 t_shift char(20) ,
 t_sub_shift char(20) ,
 t_meal_time char(20)
)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/time_dim' ,
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
WITH err_obs_from_time_dim_001;

CREATE FOREIGN TABLE obs_from_promotion_001
(
 p_promo_sk integer not null,
 p_promo_id char(16) not null,
 p_start_date_sk integer ,
 p_end_date_sk integer ,
 p_item_sk integer ,
 p_cost decimal(15,2) ,
 p_response_target integer ,
 p_promo_name char(50) ,
 p_channel_dmail char(1) ,
 p_channel_email char(1) ,
 p_channel_catalog char(1) ,
 p_channel_tv char(1) ,
 p_channel_radio char(1) ,
 p_channel_press char(1) ,
 p_channel_event char(1) ,
 p_channel_demo char(1) ,
 p_channel_details varchar(100) ,
 p_purpose char(15) ,
 p_discount_active char(1)

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 107

)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/promotion' ,
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
WITH err_obs_from_promotion_001;

CREATE FOREIGN TABLE obs_from_customer_demographics_001
(
 cd_demo_sk integer not null,
 cd_gender char(1) ,
 cd_marital_status char(1) ,
 cd_education_status char(20) ,
 cd_purchase_estimate integer ,
 cd_credit_rating char(10) ,
 cd_dep_count integer ,
 cd_dep_employed_count integer ,
 cd_dep_college_count integer
)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/customer_demographics' ,
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
WITH err_obs_from_customer_demographics_001;

CREATE FOREIGN TABLE obs_from_customer_address_001
(
ca_address_sk integer not null,
ca_address_id char(16) not null,
ca_street_number char(10) ,
ca_street_name varchar(60) ,
ca_street_type char(15) ,
ca_suite_number char(10) ,
ca_city varchar(60) ,
ca_county varchar(30) ,
ca_state char(2) ,
ca_zip char(10) ,
ca_country varchar(20) ,
ca_gmt_offset float4 ,
ca_location_type char(20)
)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/customer_address' ,
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 108

WITH err_obs_from_customer_address_001;

CREATE FOREIGN TABLE obs_from_household_demographics_001
(
 hd_demo_sk integer not null,
 hd_income_band_sk integer ,
 hd_buy_potential char(15) ,
 hd_dep_count integer ,
 hd_vehicle_count integer
)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/household_demographics' ,
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
WITH err_obs_from_household_demographics_001;

CREATE FOREIGN TABLE obs_from_customer_001
(
 c_customer_sk integer not null,
 c_customer_id char(16) not null,
 c_current_cdemo_sk integer ,
 c_current_hdemo_sk integer ,
 c_current_addr_sk integer ,
 c_first_shipto_date_sk integer ,
 c_first_sales_date_sk integer ,
 c_salutation char(10) ,
 c_first_name char(20) ,
 c_last_name char(30) ,
 c_preferred_cust_flag char(1) ,
 c_birth_day integer ,
 c_birth_month integer ,
 c_birth_year integer ,
 c_birth_country varchar(20) ,
 c_login char(13) ,
 c_email_address char(50) ,
 c_last_review_date char(10)
)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/customer' ,
FORMAT 'text',
DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
WITH err_obs_from_customer_001;

CREATE FOREIGN TABLE obs_from_income_band_001
(
 ib_income_band_sk integer not null,
 ib_lower_bound integer ,
 ib_upper_bound integer
)
SERVER gsmpp_server
OPTIONS (
LOCATION 'obs://<obs_bucket_name>/tpcds/income_band' ,
FORMAT 'text',

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 109

DELIMITER '|',
ENCODING 'utf8',
NOESCAPING 'true',
ACCESS_KEY 'access_key_value_to_be_replaced',
SECRET_ACCESS_KEY 'secret_access_key_value_to_be_replaced',
REJECT_LIMIT 'unlimited',
CHUNKSIZE '64'
)
WITH err_obs_from_income_band_001;

Data Warehouse Service
Best Practices 3 Table Optimization Practices

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 110

4 Advanced Features

4.1 Creating a Time Series Table

Scenarios
Time series tables inherit the syntax of common column-store and row-store
tables, making it easier to understand and use.

Time series tables can be managed through out data life cycle. Data increases
explosively every day with a lot of dimensions. New partitions need to be added to
the table periodically to store new data. Data generated a long time ago usually is
of low value and is not frequently accessed. Therefore, it can be periodically
deleted. Therefore, time series tables must have the capabilities of periodically
adding and deleting partitions.

This practice demonstrates how to quickly create your time series tables and
manage them by partitions. Specifying a proper type for a column helps improve
the performance of operations such as import and query, making your service
more efficient. The following figure uses genset data sampling as an example.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 111

Figure 4-1 Genset data sample

Figure 4-2 Genset data table

● The columns that describe generator attributes (generator information,
manufacturer, model, location, and ID) are set as tag columns. During table
creation, they are specified as TSTag

● The values of the sampling data metrics (voltage, power, frequency, and
current phase angle) vary with time. During table creation, they are specified
as TSField.

● The last column is specified as the time column, which stores the time
information corresponding to the data in the field columns. During table
creation, it is specified as TSTime.

Procedure

This practice takes about 30 minutes. The basic process is as follows:

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 112

1. Creating an ECS.
2. Creating a Stream Data Warehouse.
3. Using the gsql CLI Client to Connect to a Cluster.
4. Creating a time series table.

Creating an ECS

For details, see "Creating an ECS" in the lastic Cloud Server User Guide. When the
ECS is created, log in to the ECS. For details, see "Remotely Logging In to a Linux
ECS Using a Password (SSH)".

NO TICE

When creating an ECS, ensure that the ECS is in the same region, AZ, and VPC
subnet as the stream data warehouse. Select the OS used by the gsql client
(CentOS 7.6 is used as an example) as the ECS OS, and select using passwords to
log in.

Creating a Stream Data Warehouse

Step 1 Log in to the Huawei Cloud management console.

Step 2 Choose Service List > Analytics > Data Warehouse Service. On the page that is
displayed, click Create Cluster in the upper right corner.

Step 3 Configure the parameters according to Table 4-1.

Table 4-1 Software configuration

Parameter Configuration

Region Select Europe-Dublin.
NOTE

● CN North-Beijing4 is used as an example. You can select other regions
as required. Ensure that all operations are performed in the same
region.

● Ensure that GaussDB(DWS) and the ECS are in the same region, AZ, and
VPC subnet.

AZ AZ2

Product Stream data warehouse

Compute
Resource

ECS

Storage
Type

Cloud SSD

CPU
Architectur
e

X86

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 113

Parameter Configuration

Node
Flavor

dwsx2.rt.2xlarge.m6 (8 vCPU | 64GB | 100-4,000 GB SSD)
NOTE

If this flavor is sold out, select other AZs or flavors.

Hot
Storage

200 GB/node

Nodes 3

Cluster
Name

dws-demo01

Administra
tor
Account

dbadmin

Administra
tor
Password

User-defined

Confirm
Password

Enter the user-defined administrator password again.

Database
Port

8000

VPC vpc-default

Subnet subnet-default(192.168.0.0/24)
NOTICE

Ensure that the cluster and the ECS are in the same VPC subnet.

Security
Group

Automatic creation

EIP Buy now

Enterprise
Project

default

Advanced
settings

Default

Step 4 Confirm the information, click Next, and then click Submit.

Step 5 Wait for about 10 minutes. After the cluster is created, click the cluster name to
go to the Basic Information page. Choose Network, click a security group name,
and verify that a security group rule has been added. In this example, the client IP
address is 192.168.0.x (the private network IP address of the ECS where gsql is
located is 192.168.0.90). Therefore, you need to add a security group rule in which
the IP address is 192.168.0.0/24 and port number is 8000.

Step 6 Return to the Basic Information tab of the cluster and record the value of Private
Network IP Address.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 114

----End

Using the gsql CLI Client to Connect to a Cluster

Step 1 Remotely log in to the Linux server where gsql is to be installed as user root, and
run the following command in the Linux command window to download the gsql
client:
wget https://obs.eu-west-101.myhuaweicloud.com/dws/download/dws_client_8.1.x_redhat_x64.zip --no-
check-certificate

Step 2 Decompress the client.
cd <Path_for_storing_the_client> unzip dws_client_8.1.x_redhat_x64.zip

Where,

● <Path_for_storing_the_client>: Replace it with the actual path.
● dws_client_8.1.x_redhat_x64.zip: This is the client tool package name of

RedHat x64. Replace it with the actual name.

Step 3 Configure the GaussDB(DWS) client.
source gsql_env.sh

If the following information is displayed, the gsql client is successfully configured:

All things done.

Step 4 Use the gsql client to connect to a GaussDB(DWS) database (using the password
you defined when creating the cluster).
gsql -d gaussdb -p 8000 -h 192.168.0.86 -U dbadmin -W password -r

If the following information is displayed, the connection succeeded:

gaussdb=>

----End

Creating a Time Series Table
1. The following describes how to create a time series table GENERATOR for

storing the sample data of gensets.
CREATE TABLE IF NOT EXISTS GENERATOR(
genset text TSTag,
manufacturer text TSTag,
model text TSTag,
location text TSTag,
ID bigint TSTag,
voltage numeric TSField,
power bigint TSField,
frequency numeric TSField,
angle numeric TSField,
time timestamptz TSTime) with (orientation=TIMESERIES, period='1 hour', ttl='1 month') distribute by
hash(model);

2. Query the current time.
select now();
 now

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 115

2022-05-25 15:28:38.520757+08
(1 row)

3. Query the default partition and partition boundary.
SELECT relname, boundaries FROM pg_partition where parentid=(SELECT oid FROM pg_class where
relname='generator') order by boundaries ;
 relname | boundaries
 ----------------+----------------------------
default_part_1 | {"2022-05-25 16:00:00+08"}
default_part_2 | {"2022-05-25 17:00:00+08"}
p1653505200 | {"2022-05-25 18:00:00+08"}
p1653541200 | {"2022-05-25 19:00:00+08"}
p1653577200 | {"2022-05-25 20:00:00+08"}
......

The TSTAG columns support the text, char, bool, int, and big int types.
The TSTime column supports the timestamp with time zone and timestamp
without time zone types. It also supports the date type in databases
compatible with the Oracle syntax. If time zone-related operations are
involved, select a time type with time zone.
The data types supported by TSField columns are the same as those
supported by column-store tables.

NO TE

● When writing table creation statements, you can optimize the sequence of tag
columns. More unique columns (more distinct values) are written in the front to
improve the performance in time sequence scenarios.

● When creating a time series table, set the table-level parameter orientation to
timeseries.

● You do not need to manually specify DISTRIBUTE BY and PARTITION BY for a
time series table. By default, data is distributed based on all tag columns, and the
partition key is the TStime column.

● In the create table like syntax, the column names and the kv_type types are
automatically inherited from the source table. If the source table is a non-time
series table and the new table is a time series table, the kv_type type of the
corresponding column cannot be determined. As a result, the creation fails.

● One and only one TSTIME attribute must be specified. Columns of the TSTIME
type cannot be deleted. There must be at least one TSTag and TSField columns.
Otherwise, an error will be reported during table creation.

Time series tables use the TSTIME column as the partition key and have the
function of automatic partition management. Partition tables with the
automatic partition management function help users greatly reduce O&M
time. In the preceding table creation statement, you can see in the table-level
parameters that two parameters period and ttl are specified for the time
series table.
– period: interval for automatically creating partitions. The default value is

1 day. The value range is 1 hour ~ 100 years. By default, an auto-
increment partition task is created for the time series table. The auto-
increment partition task dynamically creates partitions to ensure that
sufficient partitions are available for importing data.

– ttl: time for automatically eliminate partitions. The value range is 1 hour
~ 100 years. By default, no partition elimination task is created. You need
to manually specify the partition elimination task when creating a table
or use the ALTER TABLE syntax to set the partition elimination task after
creating a table. The partition elimination policy is based on the condition
that nowtime - partition boundary > ttl. Partitions that meet this

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 116

condition will be eliminated. This feature helps users periodically delete
obsolete data.

NO TE

For partition boundaries
● If the period unit is hour, the start boundary value is the coming hour, and

the partition interval is the value of period.
● If the period unit is day, the start boundary value is 00:00 of the coming day,

and the partition interval is the value of period.
● If the period unit is month, the start boundary value is 00:00 of the coming

month, and the partition interval is the value of period.
● If the period unit is year, the start boundary value is 00:00 of the next year,

and the partition interval is the value of period.

Creating a Time Series Table (Manually Setting Partition Boundaries)
1. Manually specify the start boundary value. For example, create the time series

table GENERATOR1 with the default start boundary of partition P1 as
2022-05-30 16:32:45 and partition P2 as 2022-05-31 16:56:12.
CREATE TABLE IF NOT EXISTS GENERATOR1(
genset text TSTag,
manufacturer text TSTag,
model text TSTag,
location text TSTag,
ID bigint TSTag,
voltage numeric TSField,
power bigint TSField,
frequency numeric TSField,
angle numeric TSField,
time timestamptz TSTime) with (orientation=TIMESERIES, period='1 day') distribute by hash(model)
partition by range(time)
(
PARTITION P1 VALUES LESS THAN('2022-05-30 16:32:45'),
PARTITION P2 VALUES LESS THAN('2022-05-31 16:56:12')
);

2. Query the current time:
select now();
 now

2022-05-31 20:36:09.700096+08(1 row)

3. Run the following command to query partitions and partition boundaries:
SELECT relname, boundaries FROM pg_partition where parentid=(SELECT oid FROM pg_class where
relname='generator1') order by boundaries ;
 relname | boundaries
-------------+----------------------------
p1 | {"2022-05-30 16:32:45+08"}
p2 | {"2022-05-31 16:56:12+08"}
p1654073772 | {"2022-06-01 16:56:12+08"}
p1654160172 | {"2022-06-02 16:56:12+08"}
......

4.2 Best Practices of Hot and Cold Data Management

Scenarios
In massive big data scenarios, with the growing of data, data storage and
consumption increase rapidly. The need for data may vary in different time
periods, therefore, data is managed in a hierarchical manner, improving data

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 117

analysis performance and reducing service costs. In some data usage scenarios,
data can be classified into hot data and cold data by accessing frequency.

Hot and cold data is classified based on the data access frequency and update
frequency.

● Hot data: Data that is frequently accessed and updated and requires fast
response.

● Cold data: Data that cannot be updated or is seldom accessed and does not
require fast response

You can define cold and hot management tables to switch cold data that meets
the specified rules to OBS for storage. Cold and hot data can be automatically
determined and migrated by partition.

The hot and cold partitions can be switched based on LMT (Last Modify Time)
and HPN (Hot Partition Number) policies. LMT indicates that the switchover is
performed based on the last update time of the partition, and HPN indicates that
the switchover is performed based on the number of reserved hot partitions.

● LMT: Switch the hot partition data that is not updated in the last [day] days
to the OBS tablespace as cold partition data. [day] is an integer ranging from
0 to 36500, in days.

● HPN: indicates the number of hot partitions to be reserved. During the cold
and hot switchover, data needs to be migrated to OBS. HPN is an integer
ranging from 0 to 1600.

Constraints
● If a table has both cold and hot partitions, the query becomes slow because

cold data is stored on OBS and the read/write speed are lower than those of
local queries.

● Currently, cold and hot tables support only column-store partitioned tables of
version 2.0. Foreign tables do not support cold and hot partitions.

● Only hot data can be switched to cold data. Cold data cannot be switched to
hot data.

Procedure

This practice takes about 30 minutes. The basic process is as follows:

1. Creating a cluster.
2. Using the gsql CLI Client to Connect to a Cluster.
3. Creating Hot and Cold Tables.
4. Hot and Cold Data Switchover.
5. Viewing Data Distribution in Hot and Cold Tables.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 118

Creating a cluster

Step 1 Log in to the Huawei Cloud management console.

Step 2 Choose Service List > Analytics > Data Warehouse Service. On the page that is
displayed, click Create Cluster in the upper right corner.

Step 3 Configure the parameters according to Table 4-2.

Table 4-2 Software configuration

Parameter Configuration

Region Select EU-Dublin.
NOTE

EU-Dublin is used as an example. You can select other regions as required.
Ensure that all operations are performed in the same region.

AZ AZ2

Product Standard data warehouse

CPU
Architectur
e

X86

Node
Flavor

dws2.m6.4xlarge.8 (16 vCPUs | 128 GB | 2000 GB SSD)
NOTE

If this flavor is sold out, select other AZs or flavors.

Nodes 3

Cluster
Name

dws-demo

Administra
tor
Account

dbadmin

Administra
tor
Password

-

Confirm
Password

-

Database
Port

8000

VPC vpc-default

Subnet subnet-default(192.168.0.0/24)

Security
Group

Automatic creation

EIP Buy now

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 119

Parameter Configuration

Bandwidth 1Mbit/s

Advanced
Settings

Default

Step 4 Confirm the information, click Next, and then click Submit.

Step 5 Wait about 6 minutes. After the cluster is created, click next to the cluster
name. On the displayed cluster information page, record the value of Public
Network Address.

----End

Using the gsql CLI Client to Connect to a Cluster

Step 1 Remotely log in to the Linux server where gsql is to be installed as user root, and
run the following command in the Linux command window to download the gsql
client:
wget https://obs.eu-west-101.myhuaweicloud.com/dws/download/dws_client_8.1.x_redhat_x64.zip --no-
check-certificate

Step 2 Decompress the client.
cd <Path_for_storing_the_client> unzip dws_client_8.1.x_redhat_x64.zip

Where,

● <Path_for_storing_the_client>: Replace it with the actual path.
● dws_client_8.1.x_redhat_x64.zip: This is the client tool package name of

RedHat x64. Replace it with the actual name.

Step 3 Configure the GaussDB(DWS) client.
source gsql_env.sh

If the following information is displayed, the gsql client is successfully configured:

All things done.

Step 4 Use the gsql client to connect to a GaussDB(DWS) database (using the password
you defined when creating the cluster).
gsql -d gaussdb -p 8000 -h 192.168.0.86 -U dbadmin -W password -r

If the following information is displayed, the connection succeeded:

gaussdb=>

----End

Creating Hot and Cold Tables
Create a column-store cold and hot data management table lifecycle_table and
set the hot data validity period LMT to 100 days.
CREATE TABLE lifecycle_table(i int, val text) WITH (ORIENTATION = COLUMN, storage_policy = 'LMT:100')
PARTITION BY RANGE (i)

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 120

(
PARTITION P1 VALUES LESS THAN(5),
PARTITION P2 VALUES LESS THAN(10),
PARTITION P3 VALUES LESS THAN(15),
PARTITION P8 VALUES LESS THAN(MAXVALUE)
)
ENABLE ROW MOVEMENT;

Hot and Cold Data Switchover
Switch cold data to the OBS tablespace.
● Automatic switchover: The scheduler automatically triggers the switchover at

00:00 every day.
You can use the pg_obs_cold_refresh_time(table_name, time) function to
customize the automatic switchover time. For example, set the automatic
triggering time to 06:30 every morning based on service requirements.
SELECT * FROM pg_obs_cold_refresh_time('lifecycle_table', '06:30:00');
pg_obs_cold_refresh_time

 SUCCESS
(1 row)

● Manual
Run the ALTER TABLE statement to manually switch a single table.
ALTER TABLE lifecycle_table refresh storage;
ALTER TABLE

Use the pg_refresh_storage() function to switch all hot and cold tables in
batches.
SELECT pg_catalog.pg_refresh_storage();
 pg_refresh_storage

 (1,0)
(1 row)

Viewing Data Distribution in Hot and Cold Tables
● View the data distribution in a single table:

SELECT * FROM pg_catalog.pg_lifecycle_table_data_distribute('lifecycle_table');
schemaname | tablename | nodename | hotpartition | coldpartition | switchablepartition |
hotdatasize | colddatasize | switchabledatasize
------------+-----------------+--------------+--------------+---------------+---------------------+-------------
+--------------+--------------------
 public | lifecycle_table | dn_6001_6002 | p1,p2,p3,p8 | | | 96 KB | 0
bytes | 0 bytes
 public | lifecycle_table | dn_6003_6004 | p1,p2,p3,p8 | | | 96 KB | 0
bytes | 0 bytes
 public | lifecycle_table | dn_6005_6006 | p1,p2,p3,p8 | | | 96 KB | 0
bytes | 0 bytes
(3 rows)

● View data distribution in all hot and cold tables:
SELECT * FROM pg_catalog.pg_lifecycle_node_data_distribute();
schemaname | tablename | nodename | hotpartition | coldpartition | switchablepartition |
hotdatasize | colddatasize | switchabledatasize
------------+-----------------+--------------+--------------+---------------+---------------------+-------------
+--------------+--------------------
 public | lifecycle_table | dn_6001_6002 | p1,p2,p3,p8 | | | 98304 |
0 | 0
 public | lifecycle_table | dn_6003_6004 | p1,p2,p3,p8 | | | 98304 |
0 | 0
 public | lifecycle_table | dn_6005_6006 | p1,p2,p3,p8 | | | 98304 |
0 | 0
(3 rows)

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 121

4.3 Best Practices for Automatic Partition Management

Scenarios

For partition tables whose partition columns are time, the automatic partition
management function can be added to automatically create partitions and delete
expired partitions, reducing partition table maintenance costs and improving query
performance. To facilitate data query and maintenance, the time column is often
used as the partition column of a partitioned table that stores time-related data,
such as e-commerce order information and real-time IoT data. When the time-
related data is imported to a partitioned table, the table should have partitions of
the corresponding time ranges. Common partition tables do not automatically
create new partitions or delete expired partitions. Therefore, maintenance
personnel need to periodically create new partitions and delete expired partitions,
leading to increased O&M costs.

Addressing this, GaussDB(DWS) introduces the automatic partition management
feature. You can set the table-level parameters period and ttl to enable the
automatic partition management function, which automatically creates partitions
and deletes expired partitions, reducing partition table maintenance costs and
improving query performance.

period: interval for automatically creating partitions. The default value is 1 day.
The value range is 1 hour ~ 100 years.

ttl: time for automatically eliminate partitions. The value range is 1 hour ~ 100
years. The partition elimination policy is based on the condition that nowtime -
partition boundary > ttl. Partitions that meet this condition will be eliminated.

● Automatic partition creation

One or more partitions are automatically created at the interval specified by
period to make the maximum partition boundary time greater than nowTime
+ 30 x period. As long as there is an automatically created partition, real-time
data will not fail to be imported within the next 30 periods.

Figure 4-3 Automatic partition creation

● Automatically deleting expired partitions

Partitions whose boundary time is earlier than nowTime-ttl are considered
expired partitions. The automatic partition management function traverses all
partitions and deletes expired partitions after each period. If all partitions are
expired partitions, the system retains one partition and truncates the table.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 122

Constraints

When using the partition management function, ensure that the following
requirements are met:

● It cannot be used on midrange servers, acceleration clusters, or stand-alone
clusters.

● It can be used in clusters of version 8.1.3 or later.

● It can only be used for row-store range partitioned tables, column-store range
partitioned tables, time series tables, and cold and hot tables.

● The partition key must be unique and its type must be timestamp,
timestamptz, or date.

● The maxvalue partition is not supported.

● The value of (nowTime - boundaryTime)/period must be less than the
maximum number of partitions. nowTime indicates the current time, and
boundaryTime indicates the earliest partition boundary time.

● The values of period and ttl range from 1 hour to 100 years. In addition, in a
database compatible with Teradata or MySQL, if the partition key type is date,
the value of period cannot be less than 1day.

● The table-level parameter ttl cannot exist independently. You must set period
in advance or at the same time, and the value of ttl must be greater than or
equal to that of period.

● During online cluster scale-out, partitions cannot be automatically added.
Partitions reserved each time partitions are added will ensure that services are
not affected.

Creating an ECS

For details, see "Creating an ECS" in the lastic Cloud Server User Guide. When the
ECS is created, log in to the ECS. For details, see "Remotely Logging In to a Linux
ECS Using a Password (SSH)".

NO TICE

When creating an ECS, ensure that the ECS is in the same region, AZ, and VPC
subnet as the stream data warehouse. Select the OS used by the gsql client
(CentOS 7.6 is used as an example) as the ECS OS, and select using passwords to
log in.

Creating a cluster

Step 1 Log in to the Huawei Cloud management console.

Step 2 Choose Service List > Analytics > Data Warehouse Service. On the page that is
displayed, click Create Cluster in the upper right corner.

Step 3 Configure the parameters according to Table 4-3.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 123

Table 4-3 Software configuration

Parameter Configuration

Region Select EU-Dublin.
NOTE

EU-Dublin is used as an example. You can select other regions as required.
Ensure that all operations are performed in the same region.

AZ AZ2

Product Standard data warehouse

CPU
Architectur
e

X86

Node
Flavor

dws2.m6.4xlarge.8 (16 vCPUs | 128 GB | 2000 GB SSD)
NOTE

If this flavor is sold out, select other AZs or flavors.

Nodes 3

Cluster
Name

dws-demo

Administra
tor
Account

dbadmin

Administra
tor
Password

-

Confirm
Password

-

Database
Port

8000

VPC vpc-default

Subnet subnet-default(192.168.0.0/24)

Security
Group

Automatic creation

EIP Buy now

Bandwidth 1Mbit/s

Advanced
Settings

Default

Step 4 Confirm the information, click Next, and then click Submit.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 124

Step 5 Wait about 6 minutes. After the cluster is created, click next to the cluster
name. On the displayed cluster information page, record the value of Public
Network Address.

----End

Using the gsql CLI Client to Connect to a Cluster

Step 1 Remotely log in to the Linux server where gsql is to be installed as user root, and
run the following command in the Linux command window to download the gsql
client:
wget https://obs.eu-west-101.myhuaweicloud.com/dws/download/dws_client_8.1.x_redhat_x64.zip --no-
check-certificate

Step 2 Decompress the client.
cd <Path_for_storing_the_client> unzip dws_client_8.1.x_redhat_x64.zip

Where,

● <Path_for_storing_the_client>: Replace it with the actual path.
● dws_client_8.1.x_redhat_x64.zip: This is the client tool package name of

RedHat x64. Replace it with the actual name.

Step 3 Configure the GaussDB(DWS) client.
source gsql_env.sh

If the following information is displayed, the gsql client is successfully configured:

All things done.

Step 4 Use the gsql client to connect to a GaussDB(DWS) database (using the password
you defined when creating the cluster).
gsql -d gaussdb -p 8000 -h 192.168.0.86 -U dbadmin -W password -r

If the following information is displayed, the connection succeeded:

gaussdb=>

----End

Automatic partition management
The partition management function is bound to the table-level parameters period
and ttl. Automatic partition creation is enabled with the enabling of period, and
automatic partition deletion is enabled with the enabling of ttl. 30 seconds after
period or ttl is set, the automatic partition creation or deletion works for the first
time.

You can enable the partition management function in either of the following
ways:

● Specify period and ttl when creating a table.
This way is applicable when you create a partition management table. There
are two syntaxes for creating a partition management table. One specifies
partitions, and the other does not.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 125

If partitions are specified when a partition management table is created, the
syntax rules are the same as those for creating an ordinary partition table.
The only difference is that the syntax specifies the table-level parameters
period and ttl.
The following example shows how to create a partition management table
CPU1 and specify partitions.
CREATE TABLE CPU1(
 id integer,
 IP text,
 time timestamp
) with (TTL='7 days',PERIOD='1 day')
partition by range(time)
(
 PARTITION P1 VALUES LESS THAN('2023-02-13 16:32:45'),
 PARTITION P2 VALUES LESS THAN('2023-02-15 16:48:12')
);

When creating a partition management table, you can specify only the
partition key but not partitions. In this case, two default partitions will be
created with period as the partition time range. The boundary time of the
first default partition is the first hour, day, week, month, or year past the
current time. The time unit is selected based on the maximum unit of PERIOD.
The boundary time of the second default partition is the boundary time of the
first partition plus PERIOD. Assume that the current time is 2023-02-17
16:32:45, and the boundary of the first default partition is described in the
following table.

Table 4-4 Description of the period parameter

period Maximum PERIOD
Unit

Boundary of First Default
Partition

1hour Hour 2023-02-17 17:00:00

1day Day 2023-02-18 00:00:00

1month Month 2023-03-01 00:00:00

13months Year 2024-01-01 00:00:00

Run the following command to create the partition management table CPU2
with no partitions specified:
CREATE TABLE CPU2(
 id integer,
 IP text,
 time timestamp
) with (TTL='7 days',PERIOD='1 day')
partition by range(time);

● Run the ALTER TABLE RESET command to set period and ttl.
This method is used to add the partition management function to an ordinary
partitioned table that meets the partition management constraints.
– Run the following command to create an ordinary partition table CPU3:

CREATE TABLE CPU3(
 id integer,
 IP text,
 time timestamp

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 126

)
partition by range(time)
(
 PARTITION P1 VALUES LESS THAN('2023-02-14 16:32:45'),
 PARTITION P2 VALUES LESS THAN('2023-02-15 16:56:12')
);

– To enable the automatic partition creation and deletion functions, run the
following command:
ALTER TABLE CPU3 SET (PERIOD='1 day',TTL='7 days');

– To enable only the automatic partition creation function, run the
following command:
ALTER TABLE CPU3 SET (PERIOD='1 day');

– To enable only the automatic partition deletion function, run the
following command (If automatic partition creation is not enabled in
advance, the operation will fail):
ALTER TABLE CPU3 SET (TTL='7 days');

– Modify the period and ttl parameters to modify the partition
management function.
ALTER TABLE CPU3 SET (TTL='10 days',PERIOD='2 days');

● Disabling the partition management function
You can run the ALTER TABLE RESET command to delete the table-level
parameters period and ttl to disable the partition management function.

NO TE

● The period cannot be deleted separately with TTL.

● The time series table does not support ALTER TABLE RESET.

– Run the following command to disable the automatic partition creation
and deletion functions:
ALTER TABLE CPU1 RESET (PERIOD,TTL);

– To disable only the automatic partition deletion, run the following
command:
ALTER TABLE CPU3 RESET (TTL);

– To disable only the automatic partition creation function, run the
following command (If the table contains the ttl parameter, the
operation will fail):
ALTER TABLE CPU3 RESET (PERIOD);

4.4 GaussDB (DWS) View Decoupling and Automatic
Rebuilding

To solve the problem that base table objects cannot be modified independently
due to view and table dependency, GaussDB(DWS) implements view decoupling
and rebuilding. This document describes the application scenarios and use
methods of the automatic view rebuilding function.

Scenario

GaussDB(DWS) uses object identifiers (OIDs) to store reference relationships
between objects. When a view is defined, the OID of the database object on which
the view depends is bound to it. No matter how the view name changes, the
dependency does not change. If you modify some columns in the base table, an

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 127

error will be reported because the columns are strongly bound some objects. If
you want to delete a table column or the entire table, you need to use the
cascade keyword to delete the associated views. After the table column is deleted
or the table is re-created, you need to re-create the views of different levels one
by one. This increases the workload and deteriorates the usability.

To solve this problem, GaussDB(DWS) 8.1.0 decouples views from their dependent
base tables or other database objects (views, synonyms, functions, and table
columns), so that these objects can be deleted independently. After the base table
is rebuilt, you can run the ALTER VIEW view_name REBUILD command to rebuild
the dependency. In 8.1.1, automatic rebuilding is implemented. Dependency
relationships can be automatically rebuilt without being perceived. After
automatic rebuilding is enabled, lock conflicts may occur. Therefore, you are not
advised to enable automatic rebuilding.

Usage
Step 1 Create a cluster on the management console. For details, see section Creating a

Cluster.

Step 2 Enable the GUC parameter view_independent.

The GUC parameter view_independent controls whether to decouple a view from
its objects. This parameter is disabled by default. You need to manually enable the
parameter. To enable the view_independent parameter, log in to the
management console and click the cluster name. On the displayed Cluster Details
page, click the Parameters tab, search for view_independent, modify the
parameter, and save the modification.

Step 3 Use DAS to connect to a cluster. Locate the required cluster in the cluster list and
click Log In in the Operation column. On the DAS page that is displayed, enter
the username, database name, and password, and test the connection. If the
connection is successful, log in to the cluster. For details, see Using DAS to
Connect to a Cluster.

Step 4 Create a sample table t1 and insert data into the table.
SET current_schema='public';
CREATE TABLE t1 (a int, b int, c char(10)) DISTRIBUTE BY HASH (a);
INSERT INTO t1 VALUES(1,1,'a'),(2,2,'b');

Step 5 Create view v1 that depends on table t1, and create view v11 that depends on
view v1. Query view v11.
CREATE VIEW v1 AS SELECT a, b FROM t1;
CREATE VIEW v11 AS SELECT a FROM v1;

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 128

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0019.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0019.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0815.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0815.html

SELECT * FROM v11;
 a

 1
 2
(2 rows)

Step 6 After table t1 is deleted, an error is reported when you query the view v11.
However, the views still exist.

GaussDB(DWS) provides the GS_VIEW_INVALID view to query all invalid views
visible to the user. If the base table, function, or synonym that the view depends
on is abnormal, the validtype column of the view is displayed as "invalid".
DROP TABLE t1;

SELECT * FROM v11;
ERROR: relation "public.t1" does not exist

SELECT * FROM gs_view_invalid;
 oid | schemaname | viewname | viewowner | definition | validtype
--------+------------+----------+-----------+-----------------------------+-----------
 213563 | public | v1 | dbadmin | SELECT a, b FROM public.t1; | invalid
 213567 | public | v11 | dbadmin | SELECT a FROM public.v1; | invalid
(2 rows)

Step 7 In a cluster of a version earlier than recreates table t1, the view is automatically
recreated. The views are automatically refreshed only when they are used.
CREATE TABLE t1 (a int, b int, c char(10)) DISTRIBUTE BY HASH (a);
INSERT INTO t1 VALUES(1,1,'a'),(2,2,'b');

SELECT * from v1;
 a | b
---+---
 1 | 1
 2 | 2
(2 rows)

SELECT * FROM gs_view_invalid;
 oid | schemaname | viewname | viewowner | definition | validtype
--------+------------+----------+-----------+--------------------------+-----------
 213567 | public | v11 | dbadmin | SELECT a FROM public.v1; | invalid
(1 row)

SELECT * from v11;
 a

 1
 2
(2 rows)

SELECT * FROM gs_view_invalid;
 oid | schemaname | viewname | viewowner | definition | validtype
-----+------------+----------+-----------+------------+-----------
(0 rows)

----End

4.5 Best Practices of Column-Store Delta Tables

Working Principles
In GaussDB(DWS), data in a column-store table is stored by column. By default,
60,000 rows in each column are stored in a CU. A CU is the minimum unit for

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 129

storing data in a column-store table. After a CU is generated, data in it is fixed
and cannot be modified. No matter whether one or 60,000 data records are
inserted into a column-store table, only one CU is generated. When a small
amount of data is inserted into a column-store table for multiple times, it cannot
be well depressed. As a result, data bloating occurs, which affects the query
performance and disk usage.

Data in a CU file cannot be modified and can only be appended. Deleting the CU
file data is to mark the old data as invalid in the dictionary. Updating the CU file
data is to mark the old data as invalid and write a new record to the new CU. If a
column-store table is updated or deleted for multiple times or only a small
amount of data is inserted each time, the column-store table space bloats and a
large amount of space cannot be effectively used.

Column-store tables are designed to import a large amount of data and store it by
column for query. To solve the preceding problems, the delta table is introduced,
which is a row-store table attached to a column-store table. After the delta table
is enabled, when a single piece of data or a small batch of data is imported, the
data is stored in the delta table to avoid small CUs. The addition, deletion,
modification, and query of the delta table are the same as those of row-store
tables. After the delta table is enabled, the performance of importing column-
store tables is greatly improved.

Use Cases
The column-store delta table is used for hybrid row-column storage and is suitable
for real-time analysis and statistics. It solves the performance problem caused by
importing small batches of data and periodically merges the data to the primary
table to ensure the analysis and query performance. You need to determine
whether to enable delta tables based on the actual situation. Otherwise, the
advantages of GaussDB(DWS) column-store tables cannot be fully utilized,
wasting extra space and time.

Preparations
● You have registered a GaussDB(DWS) account and checked the account status

before using GaussDB(DWS). The account cannot be in arrears or frozen.
● You have obtained the AK and SK of the account.
● The sample data has been uploaded to the traffic-data folder in an OBS

bucket, and all Huawei Cloud accounts have been granted the read-only
permission for accessing the OBS bucket. For details, see Checkpoint Vehicle
Analysis.

Procedure

Step 1 Use DAS to connect to a cluster. Locate the required cluster in the cluster list and
click Log In in the Operation column. On the DAS page that is displayed, enter
the username, database name, and password, and test the connection. If the
connection is successful, log in to the cluster. For details, see Using DAS to
Connect to a Cluster.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 130

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0815.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0815.html

Step 2 Execute the following statement to create the traffic database:
CREATE DATABASE traffic encoding 'utf8' template template0;

Step 3 Run the following statements to create database tables GCJL and GCJL2 for
storing checkpoint vehicle information: By default, the delta table is not enabled
for GCJL but is enabled for GCJL2.
CREATE SCHEMA traffic_data;
SET current_schema= traffic_data;
DROP TABLE if exists GCJL;
CREATE TABLE GCJL
(
 kkbh VARCHAR(20),
 hphm VARCHAR(20),
 gcsj DATE ,
 cplx VARCHAR(8),
 cllx VARCHAR(8),
 csys VARCHAR(8)
)
with (orientation = column, COMPRESSION=MIDDLE)
distribute by hash(hphm);

DROP TABLE if exists GCJL2;
CREATE TABLE GCJL2
(
 kkbh VARCHAR(20),
 hphm VARCHAR(20),
 gcsj DATE ,
 cplx VARCHAR(8),
 cllx VARCHAR(8),
 csys VARCHAR(8)
)
with (orientation = column, COMPRESSION=MIDDLE, ENABLE_DELTA = TRUE)
distribute by hash(hphm);

NO TE

● Delta tables are disabled by default. To enable delta tables, set enable_delta to true
when creating column-store tables.

● You can also run the following command to enable delta tables:
ALTER TABLE table_name SET (enable_delta=TRUE);

● If the delta table has been enabled, you can run the following command to disable it
when required:
ALTER TABLE table_name SET (enable_delta=FALSE);

Step 4 Create a foreign table, which is used to identify and associate the source data on
OBS.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 131

NO TICE

● <obs_bucket_name> indicates the OBS bucket name. Only some regions are
supported. For details about the supported regions and OBS bucket names, see
Supported Regions. GaussDB(DWS) clusters do not support cross-region
access to OBS bucket data.

● , and replace <Access_Key_Id> and <Secret_Access_Key> with the actual value.
● If the message "ERROR: schema "xxx" does not exist Position" is displayed

when you create a foreign table, the schema does not exist. Perform the
previous step to create a schema.

DROP FOREIGN table if exists GCJL_OBS;
CREATE FOREIGN TABLE GCJL_OBS
(
 like traffic_data.GCJL
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/traffic-data/gcxx',
 format 'text',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on'
);

Step 5 Execute the following statement to import data from the foreign table to the
database table:
INSERT INTO traffic_data.GCJL select * from GCJL_OBS;
INSERT INTO traffic_data.GCJL2 select * from GCJL_OBS;

It takes some time to import data.

Step 6 Run the following statement to check the size of the storage space after the
database table is imported:
SELECT pg_size_pretty(pg_total_relation_size('traffic_data.GCJL'));
SELECT pg_size_pretty(pg_total_relation_size('traffic_data.GCJL2'));

After the delta table is enabled, the storage space usage is reduced from 8953 MB
to 6053 MB, greatly improving the import performance.

Step 7 Run the following statement to query data in the table. The query speed is
improved after the delta table is enabled.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 132

SELECT * FROM traffic_data.GCJL where hphm = 'YD38641';
SELECT * FROM traffic_data.GCJL2 where hphm = 'YD38641';

----End

Impact of Enabling the Delta Table
● Enabling the delta table function of a column-store table can prevent small

CUs from being generated when a single piece of data or a small amount of
data is imported to the table, hence improving performance. For example, if
100 pieces of data are imported each time in a cluster with 3 CNs and 6 DNs,
the import time can be reduced by 25%, the storage space usage can be
reduced by 97%. Therefore, you need to enable the delta table before
inserting a small batch of data for multiple times and disable the delta table
after confirming that no small batch of data needs to be imported.

● A delta table is a row-store table attached to a column-store table. After data
is inserted into a delta table, the high compression ratio of the column-store
table is lost. In normal cases, column-store tables are used to import a large
amount of data. Therefore, the delta table is disabled by default, if the delta
table is enabled when a large amount of data is imported, more time and
space are consumed. If the delta table is enabled when 10,000 data records
each time are imported in a cluster with 3 DNs and 6 DNs, the import speed
is four times slower and more than 10 times of the space is consumed than
that when the delta table is disabled. Therefore, exercise caution when
enabling the delta table.

Data Warehouse Service
Best Practices 4 Advanced Features

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 133

5 Database Management

5.1 Best Practices of Resource Management
This practice demonstrates how to use GaussDB(DWS) for resource management,
helping enterprises eliminate bottlenecks in concurrent query performance. SQL
jobs can run smoothly without affecting each other and consume less resources
than before.

Before the experiment preparation, if you do not have knowledge about resource
management, you are advised to read Resource Management Page Overview.

This practice takes about 60 minutes. The process is as follows:

1. Step 1: Create a Cluster
2. Step 2: Connect to a Cluster and Import Data
3. Step 3: Creating a Resource Pool
4. Step 4: Verify Exception Rules

Scenarios
When multiple database users execute SQL jobs on GaussDB(DWS) at the same
time, the following situations may occur:

1. Some complex SQL statements occupy cluster resources for a long time,
affecting the performance of other queries. For example, a group of database
users continuously submit complex and time-consuming queries, and another
group of users frequently submit short queries. In this case, short queries may
have to wait in the resource pool for the time-consuming queries to complete.

2. Some SQL statements occupy too much memory or disk space due to data
skew or unoptimized execution plans. As a result, the statements that fail to
apply for memory report errors, or the cluster switches to the read-only mode.

To increase the system throughput and improve SQL performance, you can use
workload management of GaussDB(DWS). For example, create a resource pool for
users who frequently submit complex query jobs, and allocate more resources to
this resource pool. The complex jobs submitted by these users can use only the
resources of this resource pool. Create another resource pool that occupies less

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 134

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_07231.html

resources and add users who submit short queries to this resource pool. In this
way, the two types of jobs can be smoothly executed at the same time.

For example, a bank processes online transaction processing (OLTP) and online
analytical processing (OLAP) services. The priority of the OLAP service is lower
than that of OLTP service. A large number of concurrent complex SQL queries may
cause server resource contention, whereas a large number of concurrent simple
SQL queries can be quickly processed without being queued. Resources must be
properly allocated and managed to ensure both OLAP and OLTP services can run
smoothly.

OLAP services are often complex, and do not require high priority or real-time
response. OLAP and OLTP services are operated by different users. For example,
the database user budget_config_user is used for core transaction services, and
the database user report_user is used for report services. The users are under
independent CPU and concurrency management to improve database stability.

Based on the workload survey, routine monitoring, and test and verification of
OLAP services, it is found that less than 50 concurrent SQL queries do not cause
server resource contention or slow service system response. OLAP users can use
20% CPU resources.

Based on the workload survey, routine monitoring, and test and verification of
OLTP services, it is found that less than 100 concurrent SQL queries do not pose
continuous pressure onto the system. OLTP users can use 60% of CPU resources.

● Resource configuration for OLAP users (corresponding to pool_1): CPU = 20%,
memory = 20%, storage = 1,024,000 MB, concurrency = 20.

● Resource configuration for OLTP users (corresponding to pool_2): CPU = 60%,
memory = 60%, storage = 1,024,000 MB, concurrency = 200.

Set the maximum memory that can be used by a single statement. An error will
be reported if the memory usage exceeds the value.

In Exception Rule, set Blocking Time to 1200s and Execution Time to 1800s. A
query job will be terminated after being executed for more than 1800 seconds.

Step 1: Create a Cluster

Create a cluster by referring to Creating a cluster.

Step 2: Connect to a Cluster and Import Data

Step 1 For details, see Using the gsql CLI Client to Connect to a Cluster Connecting to
a Cluster.

Step 2 Import sample data. For details, see Importing TPC-H Data.

Step 3 Run the following statements to create the OLTP user budget_config_user and
OLAP user report_user.
CREATE USER budget_config_user PASSWORD 'password';
CREATE USER report_user PASSWORD 'password';

Step 4 For test purposes, grant all permissions on all tables in schema tpch to both users.
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA tpch to budget_config_user,report_user;

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 135

https://support.huaweicloud.com/eu/bestpractice-dws/dws_05_0044.html#section3

Step 5 Check the resource allocation of the two users.
SELECT * FROM PG_TOTAL_USER_RESOURCE_INFO where username in ('budget_config_user' , 'report_user');

----End

Step 3: Creating a Resource Pool

Step 1 Log in to the GaussDB(DWS) management console, click a cluster name in the
cluster list. The Resource Management Configurations page is displayed.

Step 2 Click Add Resource Pool to create a resource pool. Create the report resource pool
pool_1 and transaction resource pool pool_2 by referring to Scenarios.

Step 3 Modify the exception rules.

1. Click the created pool_1.
2. In the Exception Rule area, set Blocking Time to 1200s and Execution Time

to 1800s.
3. Click Save.
4. Repeat the preceding steps to configure pool_2.

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 136

Step 4 Associate users.

1. Click pool_1 on the left.
2. Click Add on the right of User Association.
3. Select report_user and click OK.
4. Repeat the preceding steps to add budget_config_user to pool_2.

----End

Step 4: Verify Exception Rules

Step 1 Log in to the database as user report_user.

Step 2 Run the following command to check the resource pool to which the report_user
user belongs:
SELECT usename,respool FROM pg_user WHERE usename = 'report_user';

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 137

The query result shows that the resource pool to which the report_user user
belongs is pool_1.

Step 3 Verify the exception rule bound to the resource pool pool_1.
SELECT respool_name,mem_percent,active_statements,except_rule FROM pg_resource_pool WHERE
respool_name='pool_1';

It is confirmed that the exception rule rule_1 is bound to pool_1.

Step 4 View the rule type and threshold of the exception rule for the current user.
SELECT * FROM pg_except_rule WHERE name = 'rule_1';

The return shows that rule_1 has 1200 seconds of block time and 1800 seconds of
running duration.

NO TICE

● PG_EXCEPT_RULE records information about exception rules and is supported
only in cluster 8.2.0 or later.

● The relationship between parameters in the same exception rule is AND.

Step 5 When the block time of a job exceeds 1200s and the running duration exceeds
1800s, an error message is displayed, indicating that the exception rule is triggered
and the job is canceled.

If error information similar to "ERROR: canceling statement due to workload
manager exception." is displayed during job execution, the job is terminated
because it exceeds the threshold of the exception rule. If the rules do not need to
be modified, you need to optimize the service statements to reduce the execution
time.

For details about exception rules, see section Exception Rules.

----End

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 138

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_07231.html#section4

5.2 Excellent Practices for SQL Queries
Based on a large number of SQL execution mechanisms and practices, we can
optimize SQL statements following certain rules to more quickly execute SQL
statements and obtain correct results.

● Replacing UNION with UNION ALL

UNION eliminates duplicate rows while merging two result sets but UNION
ALL merges the two result sets without deduplication. Therefore, replace
UNION with UNION ALL if you are sure that the two result sets do not
contain duplicate rows based on the service logic.

● Adding NOT NULL to the join column

If there are many NULL values in the JOIN columns, you can add the filter
criterion IS NOT NULL to filter data in advance to improve the JOIN
efficiency.

● Converting NOT IN to NOT EXISTS

nestloop anti join must be used to implement NOT IN, and Hash anti join is
required for NOT EXISTS. If no NULL value exists in the JOIN column, NOT
IN is equivalent to NOT EXISTS. Therefore, if you are sure that no NULL value
exists, you can convert NOT IN to NOT EXISTS to generate hash joins and to
improve the query performance.

As shown in the following figure, the t2.d2 column does not contain null
values (it is set to NOT NULL) and NOT EXISTS is used for the query.
SELECT * FROM t1 WHERE NOT EXISTS (SELECT * FROM t2 WHERE t1.c1=t2.d2);

The generated execution plan is as follows:

Figure 5-1 NOT EXISTS execution plan

● Use hashagg.

If a plan involving groupAgg and SORT operations generated by the GROUP
BY statement is poor in performance, you can set work_mem to a larger
value to generate a hashagg plan, which does not require sorting and
improves the performance.

● Replace functions with CASE statements

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 139

The GaussDB(DWS) performance greatly deteriorates if a large number of
functions are called. In this case, you can modify the pushdown functions to
CASE statements.

● Do not use functions or expressions for indexes.

Using functions or expressions for indexes stops indexing. Instead, it enables
scanning on the full table.

● Do not use != or <> operators, NULL, OR, or implicit parameter conversion in
WHERE clauses.

● Split complex SQL statements.

You can split an SQL statement into several ones and save the execution
result to a temporary table if the SQL statement is too complex to be tuned
using the solutions above, including but not limited to the following scenarios:

– The same subquery is involved in multiple SQL statements of a task and
the subquery contains large amounts of data.

– Incorrect Plan cost causes a small hash bucket of subquery. For example,
the actual number of rows is 10 million, but only 1000 rows are in hash
bucket.

– Functions such as substr and to_number cause incorrect measures for
subqueries containing large amounts of data.

– BROADCAST subqueries are performed on large tables in multi-DN
environment.

For details about SQL tuning, see Typical SQL Optimization Methods.

5.3 Analyzing SQL Statements that Are Being Executed
During development, developers often encounter problems such as excessive SQL
connections, long SQL query time, and SQL query blocking. You can use the
PG_STAT_ACTIVITY and PGXC_THREAD_WAIT_STATUS views to analyze and
locate SQL problems. This section describes some common locating methods.

Table 5-1 Some PG_STAT_ACTIVITY fields

Name Type Description

usename name Name of the user
logging in to the
backend

client_addr inet IP address of the client
connected to the
backend null indicates
either that the client is
connected via a Unix
socket on the server
machine or that this is
an internal process such
as autovacuum.

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 140

https://support.huaweicloud.com/eu/performance-dws/dws_10_0013.html
https://support.huaweicloud.com/eu/devg-dws/dws_04_0755.html
https://support.huaweicloud.com/eu/devg-dws/dws_04_0826.html

Name Type Description

application_name text Name of the application
connected to the
backend

state text Overall state of the
backend. The values are:
● active: The backend is

executing queries.
● idle: The backend is

waiting for new client
commands.

● idle in transaction:
The backend is in a
transaction, but there
is no statement being
executed in the
transaction.

● idle in transaction
(aborted): The
backend is in a
transaction, but there
are statements failed
in the transaction.

● fastpath function
call: The backend is
executing a fast-path
function.

● disabled: This state is
reported if
track_activities is
disabled in this
backend.

NOTE
Common users can view
only the session status of
their own accounts. That
is, the state information of
other accounts is empty.

waiting boolean If the back end is
currently waiting for a
lock, the value is t.
Otherwise, the value is f.
● t stands for true.
● f stands for false.

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 141

Name Type Description

enqueue text Queuing status of a
statement. Its value can
be:
● waiting in global

queue: The statement
is queuing in the
global concurrent
queue. The number of
concurrent statements
exceeds the value of
max_active_stateme
nts configured for a
single CN.

● waiting in respool
queue: The statement
is queuing in the
resource pool and the
concurrency of simple
jobs is limited. The
main reason is that
the concurrency of
simple jobs exceeds
the upper limit
max_dop of the fast
track.

● waiting in ccn
queue: The job is in
the CCN queue, which
may be global
memory queuing,
slow lane memory
queuing, or
concurrent queuing.
The scenarios are:
1. The available

global memory
exceeds the upper
limit, the job is
queuing in the
global memory
queue.

2. Concurrent
requests on the
slow lane in the
resource pool
exceed the upper
limit, which is
specified by

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 142

Name Type Description

active_statements
.

3. The slow lane
memory of the
resource pool
exceeds the upper
limit, that is, the
estimated memory
of concurrent jobs
in the resource
pool exceeds the
upper limit
specified by
mem_percent.

● Empty or no waiting
queue: The statement
is running.

pid bigint ID of the backend
thread.

Viewing Connection Information
● Set track_activities to on.

SET track_activities = on;

The database collects the running information about active queries only if this
parameter is set to on.

● You can run the following SQL statements to check the current connection
user, connection address, connection application, status, whether to wait for a
lock, queuing status, and thread ID.
SELECT usename,client_addr,application_name,state,waiting,enqueue,pid FROM PG_STAT_ACTIVITY
WHERE DATNAME='database name';

The following command output is displayed:
 usename | client_addr | application_name | state | waiting | enqueue | pid
---------+---------------+------------------+--------+---------+---------+-----------------
 leo | 192.168.0.133 | gsql | idle | f | | 139666091022080
 dbadmin | 192.168.0.133 | gsql | active | f | | 139666212681472
 joe | 192.168.0.133 | | idle | f | | 139665671489280
(3 rows)

● End a session (only the system administrator has the permission).
SELECT PG_TERMINATE_BACKEND(pid);

Viewing SQL Running Information
● Run the following command to obtain all SQL information that the current

user has permission to view (if the current user has administrator or preset
role permission, all user query information can be displayed):
SELECT usename,state,query FROM PG_STAT_ACTIVITY WHERE DATNAME='database name';

If the value of state is active, the query column indicates the SQL statement
that is being executed. In other cases, the query column indicates the previous

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 143

query statement. If the value of state is idle, the connection is idle and waits
for the user to enter a command. The following command output is displayed:
 usename | state | query
---------+--------+---
 leo | idle | select * from joe.mytable;
 dbadmin | active | SELECT usename,state,query FROM PG_STAT_ACTIVITY WHERE
DATNAME='gaussdb';
 joe | idle | GRANT SELECT ON TABLE mytable to leo;
(3 rows)

● Run the following command to view the information about the SQL
statements that are not in the idle state:
SELECT datname,usename,query FROM PG_STAT_ACTIVITY WHERE state != 'idle' ;

Viewing Time-Consuming Statements
● Check the SQL statements that take a long time to execute.

SELECT current_timestamp - query_start as runtime, datname, usename, query FROM
PG_STAT_ACTIVITY WHERE state != 'idle' order by 1 desc;

Query statements are returned and sorted by execution time length in
descending order. The first record is the query statement that takes the
longest time to execute.
 runtime | datname | usename |
query
-----------------+----------+---------
+---

 00:04:47.054958 | gaussdb | leo | insert into mytable1 select generate_series(1, 10000000);
 00:00:01.72789 | gaussdb | dbadmin | SELECT current_timestamp - query_start as runtime, datname,
usename, query FROM PG_STAT_ACTIVITY WHERE state != 'idle' order by 1 desc;
(2 rows)

● Alternatively, you can set current_timestamp - query_start to be greater
than a threshold to identify query statements that are executed for a duration
longer than this threshold.
SELECT query from PG_STAT_ACTIVITY WHERE current_timestamp - query_start > interval '2 days';

Querying Blocked Statements
● Run the following command to view blocked query statements:

SELECT pid, datname, usename, state, query FROM PG_STAT_ACTIVITY WHERE state <> 'idle' and
waiting=true;

Run the following statement to end the blocked SQL session:
SELECT PG_TERMINATE_BACKEND(pid);

NO TE

● In most cases, blocking is caused by internal locks and waiting=true is displayed.
You can view the blocking in the pg_stat_activity view.

● The blocked statements about file write and event schedulers cannot be viewed in
the pg_stat_activity view.

● View information about the blocked query statements, tables, and schemas.
SELECT w.query as waiting_query,
w.pid as w_pid,
w.usename as w_user,
l.query as locking_query,
l.pid as l_pid,
l.usename as l_user,
t.schemaname || '.' || t.relname as tablename
from pg_stat_activity w join pg_locks l1 on w.pid = l1.pid
and not l1.granted join pg_locks l2 on l1.relation = l2.relation
and l2.granted join pg_stat_activity l on l2.pid = l.pid join pg_stat_user_tables t on l1.relation = t.relid
where w.waiting;

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 144

The command output includes a session ID, user information, query status,
and table or schema that caused the block.
After finding the blocked table or schema information, end the faulty session.
SELECT PG_TERMINATE_BACKEND(pid);

If information similar to the following is displayed, the session is successfully
terminated:
PG_TERMINATE_BACKEND

t
(1 row)

If information similar to the following is displayed, the user is attempting to
terminate the session, but the session will be reconnected rather than
terminated.
FATAL: terminating connection due to administrator command
FATAL: terminating connection due to administrator command
The connection to the server was lost. Attempting reset: Succeeded.

NO TE

If the PG_TERMINATE_BACKEND function is used by the gsql client to terminate the
background threads of the session, the client will be reconnected automatically rather
than be terminated.

5.4 Excellent Practices for Data Skew Queries

5.4.1 Real-Time Detection of Storage Skew During Data
Import

During the import, the system collects statistics on the number of rows imported
on each DN. After the import is complete, the system calculates the skew ratio. If
the skew ratio exceeds the specified threshold, an alarm is generated immediately.
The skew ratio is calculated as follows: Skew ratio = (Maximum number of rows
imported on a DN – Minimum number of rows imported on a DN)/Number of
imported rows. Currently, data can be imported only by running INSERT or COPY.

NO TE

enable_stream_operator must be set to on so that DNs can return the number of
imported rows at a time when a plan is delivered to them. Then, the skew ratio is
calculated on the CN based on the returned values.

Usage
1. Set parameters table_skewness_warning_threshold (threshold for triggering

a table skew alarm) and table_skewness_warning_rows (minimum number
of rows for triggering a table skew alarm).
– The value of table_skewness_warning_threshold ranges from 0 to 1.

The default value is 1, indicating that the alarm is disabled. Other values
indicate that the alarm is enabled.

– The value of table_skewness_warning_rows ranges from 0 to
2147483647. The default value is 100,000. The alarm is triggered only
when the following condition is met: Total number of imported rows >

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 145

https://support.huaweicloud.com/eu/devg-dws/dws_04_0909.html
https://support.huaweicloud.com/eu/devg-dws/dws_04_0945.html
https://support.huaweicloud.com/eu/devg-dws/dws_04_0945.html

Value of table_skewness_warning_rows x Number of DNs involving in
the import.

show table_skewness_warning_threshold;
set table_skewness_warning_threshold = xxx;
show table_skewness_warning_rows;
set table_skewness_warning_rows = xxx;

2. Import data by running the INSERT or COPY statement.

3. Detect and handle alarms. The alarm information includes the table name,
minimum number of rows, maximum number of rows, total number of rows,
average number of rows, skew rate, and prompt information about data
distribution or parameter modification.
WARNING: Skewness occurs, table name: xxx, min value: xxx, max value: xxx, sum value: xxx, avg
value: xxx, skew ratio: xxx
HINT: Please check data distribution or modify warning threshold

5.4.2 Quickly Locating the Tables That Cause Data Skew
Currently, the following skew query APIs are provided:
table_distribution(schemaname text, tablename text), table_distribution(),
and PGXC_GET_TABLE_SKEWNESS. You can select one based on service
requirements.

Scenario 1: Data Skew Caused by a Full Disk

First, use the pg_stat_get_last_data_changed_time(oid) function to query the
tables whose data is changed recently. The last change time of a table is recorded
only on the CN where INSERT, UPDATE, and DELETE operations are performed.
Therefore, you need to query tables that are changed within the last day (the
period can be changed in the function).

CREATE OR REPLACE FUNCTION get_last_changed_table(OUT schemaname text, OUT relname text)
RETURNS setof record
AS $$
DECLARE
row_data record;
row_name record;
query_str text;
query_str_nodes text;
BEGIN
query_str_nodes := 'SELECT node_name FROM pgxc_node where node_type = ''C''';
FOR row_name IN EXECUTE(query_str_nodes) LOOP
query_str := 'EXECUTE DIRECT ON (' || row_name.node_name || ') ''SELECT b.nspname,a.relname FROM
pg_class a INNER JOIN pg_namespace b on a.relnamespace = b.oid where
pg_stat_get_last_data_changed_time(a.oid) BETWEEN current_timestamp - 1 AND current_timestamp;''';
FOR row_data IN EXECUTE(query_str) LOOP
schemaname = row_data.nspname;
relname = row_data.relname;
return next;
END LOOP;
END LOOP;
return;
END; $$
LANGUAGE plpgsql;

Then, execute the table_distribution(schemaname text, tablename text)
function to query the storage space occupied by the tables on each DN.

SELECT table_distribution(schemaname,relname) FROM get_last_changed_table();

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 146

https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0062.html
https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0062.html
https://support.huaweicloud.com/eu/devg-dws/dws_04_0805.html
https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0065.html
https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0062.html

Scenario 2: Routine Data Skew Inspection
● If the number of tables in the database is less than 10,000, use the

PGXC_GET_TABLE_SKEWNESS view to query data skew of all tables in the
database.
SELECT * FROM pgxc_get_table_skewness ORDER BY totalsize DESC;

● If the number of tables in the database is no less than 10,000, you are advised
to use the table_distribution() function instead of the
PGXC_GET_TABLE_SKEWNESS view because the view takes a longer time
(hours) due to the query of the entire database for skew columns. When you
use the table_distribution() function, you can define the output based on
PGXC_GET_TABLE_SKEWNESS, optimizing the calculation and reducing the
output columns. For example:
SELECT schemaname,tablename,max(dnsize) AS maxsize, min(dnsize) AS minsize
FROM pg_catalog.pg_class c
INNER JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace
INNER JOIN pg_catalog.table_distribution() s ON s.schemaname = n.nspname AND s.tablename =
c.relname
INNER JOIN pg_catalog.pgxc_class x ON c.oid = x.pcrelid AND x.pclocatortype = 'H'
GROUP BY schemaname,tablename;

Scenario 3: Querying Data Skew of a Table
Run the following SQL statement to query the data skew of a table. Replace
table_name with the actual table name.

SELECT a.count,b.node_name FROM (SELECT count(*) AS count,xc_node_id FROM table_name GROUP BY
xc_node_id) a, pgxc_node b WHERE a.xc_node_id=b.node_id ORDER BY a.count desc;

The following is an example of the information returned. If the data distribution
deviation on each DN is less than 10%, data is evenly distributed. If it is greater
than 10%, data skew occurs.

gaussdb=>SELECT a.count,b.node_name FROM (select count(*) as count,xc_node_id FROM staffs GROUP BY
xc_node_id) a, pgxc_node b WHERE a.xc_node_id=b.node_id ORDER BY a.count desc;
count | node_name
------+-----------
11010 | datanode4
10000 | datanode3
12001 | datanode2
 8995 | datanode1
10000 | datanode5
 7999 | datanode6
 9995 | datanode7
10000 | datanode8
(8 rows)

5.5 Best Practices for User Management
A GaussDB(DWS) cluster mainly consists of system administrators and common
users. This section describes the permissions of system administrators and
common users and describes how to create users and query user information.

System Administrator
The user dbadmin created when you start a GaussDB(DWS) cluster is a system
administrator. It has the highest system permission and can perform all
operations, including operations on tablespaces, tables, indexes, schemas,
functions, and custom views, as well as query for system catalogs and views.

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 147

https://support.huaweicloud.com/eu/devg-dws/dws_04_0805.html
https://support.huaweicloud.com/eu/devg-dws/dws_04_0805.html

To create a database administrator, connect to the database as an administrator
and run the CREATE USER or ALTER USER statement with SYSADMIN specified.

Examples:

Create user Jim as a system administrator.

CREATE USER Jim WITH SYSADMIN password '{Password}';

Change user Tom to a system administrator. ALTER USER can be used only for
existing users.

ALTER USER Tom SYSADMIN;

Common User
You can run the CREATE USER SQL statement to create a common user. A
common user cannot create, modify, delete, or assign tablespaces, and needs to
be assigned the permission for accessing tablespaces. A common user has all
permissions for its own tables, schemas, functions, and custom views, creates
indexes on its own tables, and queries only some system catalogs and views.

The database cluster has one or more named databases. Users are shared within
the entire cluster, but their data is not shared.

Common user operations are as follows. Replace password with the actual
password.

1. Creating a user
CREATE USER Tom PASSWORD '{Password}';

2. Changing a user password
Change the login password of user Tom from password to newpassword.
ALTER USER Tom IDENTIFIED BY 'newpassword' REPLACE '{Password}';

3. Assigning permissions to a user
– Add CREATEDB when you create a user that has the permission for

creating a database.
CREATE USER Tom CREATEDB PASSWORD '{Password}';

– Add the CREATEROLE permission for a user.
ALTER USER Tom CREATEROLE;

4. Revoking user permissions
REVOKE ALL PRIVILEGES FROM Tom;

5. Locking or unlocking a user
– Lock user Tom.
ALTER USER Tom ACCOUNT LOCK;

– Unlock user Tom.
ALTER USER Tom ACCOUNT UNLOCK;

6. Deleting a user
DROP USER Tom CASCADE;

User Information Query
System views related to users, roles, and permissions include ALL_USERS,
PG_USER, and PG_ROLES, and system catalogs include PG_AUTHID and
PG_AUTH_MEMBERS.

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 148

● ALL_USERS displays all users in the database but does not show the details of
them.

● PG_USER displays user information, including user IDs, the permission to
create databases, and resource pools.

● PG_ROLES displays information about database roles.
● PG_AUTHID records information about database authentication identifiers

(roles), including role permissions to log in or create databases.
● PG_AUTH_MEMBERS stores information of roles contained in a role group.

1. You can run PG_USER to query all users in the database. User ID (USESYSID)
and permissions can also be queried.
SELECT * FROM pg_user;
 usename | usesysid | usecreatedb | usesuper | usecatupd | userepl | passwd | valbegin | valuntil |
respool | parent | spacelimit | useconfig | nodegroup | tempspacelimit | spillspacelim
it
---------+----------+-------------+----------+-----------+---------+----------+----------+----------+--------------
+--------+------------+-----------+-----------+----------------+--------------

 Ruby | 10 | t | t | t | t | ******** | | | default_pool | 0 |
| | | |
 kim | 21661 | f | f | f | f | ******** | | | default_pool | 0 |
| | | |
 u3 | 22662 | f | f | f | f | ******** | | | default_pool | 0 |
| | | |
 u1 | 22666 | f | f | f | f | ******** | | | default_pool | 0 |
| | | |
 dbadmin | 16396 | f | f | f | f | ******** | | | default_pool | 0
| | | | |
 u5 | 58421 | f | f | f | f | ******** | | | default_pool | 0 |
| | | |
(6 rows)

2. ALL_USERS displays all users in the database but does not show the details of
them.
SELECT * FROM all_users;
 username | user_id
----------+---------
 Ruby | 10
 manager | 21649
 kim | 21661
 u3 | 22662
 u1 | 22666
 u2 | 22802
 dbadmin | 16396
 u5 | 58421
(8 rows)

3. PG_ROLES stores information about roles that have accessed the database.
SELECT * FROM pg_roles;
 rolname | rolsuper | rolinherit | rolcreaterole | rolcreatedb | rolcatupdate | rolcanlogin | rolreplication |
rolauditadmin | rolsystemadmin | rolconnlimit | rolpassword | rolvalidbegin | rolv
aliduntil | rolrespool | rolparentid | roltabspace | rolconfig | oid | roluseft | rolkind | nodegroup |
roltempspace | rolspillspace
---------+----------+------------+---------------+-------------+--------------+-------------+----------------
+---------------+----------------+--------------+-------------+---------------+-----
----------+--------------+-------------+-------------+-----------+-------+----------+---------+-----------
+--------------+---------------
 Ruby | t | t | t | t | t | t | t | t | t
| -1 | ******** | |
 | default_pool | 0 | | | 10 | t | n | | |
 manager | f | t | f | f | f | f | f | f | f
| -1 | ******** | |
 | default_pool | 0 | | | 21649 | f | n | | |
 kim | f | t | f | f | f | t | f | f | f
| -1 | ******** | |
 | default_pool | 0 | | | 21661 | f | n | | |

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 149

 u3 | f | t | f | f | f | t | f | f | f
| -1 | ******** | |
 | default_pool | 0 | | | 22662 | f | n | | |
 u1 | f | t | f | f | f | t | f | f | f
| -1 | ******** | |
 | default_pool | 0 | | | 22666 | f | n | | |
 u2 | f | t | f | f | f | f | f | f | f
| -1 | ******** | |
 | default_pool | 0 | | | 22802 | f | n | | |
 dbadmin | f | t | f | f | f | t | f | f | t
| -1 | ******** | |
 | default_pool | 0 | | | 16396 | f | n | | |
 u5 | f | t | f | f | f | t | f | f | f
| -1 | ******** | |
 | default_pool | 0 | | | 58421 | f | n | | |
(8 rows)

4. To view user properties, query the system catalog PG_AUTHID, which stores
information about database authorization identifiers (roles). Each cluster, not
each database, has only one PG_AUTHID system catalog. Only users with
system administrator permissions can access the catalog.
SELECT * FROM pg_authid;
rolname | rolsuper | rolinherit | rolcreaterole | rolcreatedb | rolcatupdate | rolcanlogin | rolreplication |
rolauditadmin | rolsystemadmin | rolconnlimit
|

rolpassword
 | rolvalidbegin | rolvaliduntil | rolrespool | roluseft | rolparentid |
roltabspace | rolkind | rolnodegroup | roltempspace | rolspillspace | rolexcpdata | rolauthinfo
----------+----------+------------+---------------+-------------+--------------+-------------+----------------
+---------------+----------------+--------------
+---

-------------------+---------------+---------------+--------------+----------+-------------+-------------+---------
+--------------+--------------+---------------+-------------+-------------
 Ruby | t | t | t | t | t | t | t | t | t
| -1 |
sha256366f1e665be208e6015bc3c5795d13e4dc297a148dca6c60346018c80e5c04c9ba170384ce44609b
31baa741f09a3ea5bedc7dadb906286ca994067c3fbf672dc08c981929e326ca08c005d8df942994e146ed
3302af47000b36e9852b50e39dmd585de11aafebd90ec620b201fc36f07a5ecdficefade3a1456ec0aca9a0
ee01e3bf2971d1dbafd604e596149e2e2928be4060dec2bd8688776588b4cd8c64fd38f1b0beab1603129f
a396556ba8aa4c7d6e137a04623 | | | default_pool | t | 0 | |
n | 0 | | | |
 sysadmin | f | t | f | f | f | t | f | f | t
| -1 |
sha256ecaa7f0ca4436143af43074f16cdd825783ad1a5d659fd94f5e2fa5124e7da44045ecf40bda1a9797
5fcf5920dca0c8be375be5c71b51cb1eeeba0851fb3648cfa49f55989f83fd9baf1a9d5853ce19125f4fc29a7
c709c095ed02d00638410dmd556d6e2dcc41594dc7ad8ee909ef81637ecdficefadefd7d9704ee06affef958
1cd6a50a546607f88891198e96a5e84e7e83dccf56c5cd20a500bbc5248e8ea51f0bca70c5a8dcf00953f8b
62c7a181368153abce760 | | | default_pool | f | 0 | | n
| | | | |
 Tom | f | t | f | t | f | t | f | f | f
| -1 |
sha256f43c4f52ac51e297bc4dbdbc751fcf05319c15681dbf5a9c5777d2edce45cb592a948b25457a728e9
9a3e0608592f33b0a4312eba6124936522304ba298caa2002a04578860fecb0286d7c7baec09365eafd049
b2b99f74f21a08864dd7d3f2amd515ee49f0b18ef8e7d0cd27d91ce2fa9decdficefade16bab5f05b6d7c86a
19ae6406cc59c437506c3f6187bfdf3eefc7a7c7033afa076361b255cc8b6ccb6e19d4767effaec654b3308cc
72cebb891d00a4a10362da | | | default_pool | f | 0 | | n
| | | | |
(3 rows)

User Resource Query
1. Querying the resource quota and usage of all users

SELECT * FROM PG_TOTAL_USER_RESOURCE_INFO;

Example of the resource usage of all users:

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 150

 username | used_memory | total_memory | used_cpu | total_cpu | used_space | total_space |
used_temp_space | total_temp_space | used_spill_space | total_spill_space | read_kbytes | write_kbytes |
read_counts | write_counts | read_speed | write_speed
----------+-------------+--------------+----------+-----------+------------+-------------+-----------------
+------------------+------------------+-------------------+-------------+--------------+-------------+--------------
+------------+-------------
perfadm | 0 | 17250 | 0 | 0 | 0 | -1 | 0 | -1
| 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0
usern | 0 | 17250 | 0 | 48 | 0 | -1 | 0 | -1
| 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0
userg | 34 | 15525 | 23.53 | 48 | 0 | -1 | 0 | -1 |
814955731 | -1 | 6111952 | 1145864 | 763994 | 143233 | 42678 | 8001
userg1 | 34 | 13972 | 23.53 | 48 | 0 | -1 | 0 | -1 |
814972419 | -1 | 6111952 | 1145864 | 763994 | 143233 | 42710 | 8007
(4 rows)

2. Querying the resource quota and usage of a specified user
SELECT * FROM GS_WLM_USER_RESOURCE_INFO('username');

Example of the resource usage of user Tom:
SELECT * FROM GS_WLM_USER_RESOURCE_INFO('Tom');
userid | used_memory | total_memory | used_cpu | total_cpu | used_space | total_space |
used_temp_space | total_temp_space | used_spill_space | total_spill_space | read_kbytes | write_kbytes |
read_counts | write_counts | read_speed | write_speed
-------+-------------+--------------+----------+-----------+------------+-------------+-----------------
+------------------+------------------+-------------------+-------------+--------------+-------------+--------------
+------------+-------------
 16523 | 18 | 2831 | 0 | 19 | 0 | -1 | 0 | -1
| 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0
(1 row)

3. Querying the I/O usage of a specified user
SELECT * FROM pg_user_iostat('username');

Example of the I/O usage of user Tom:
SELECT * FROM pg_user_iostat('Tom');
userid | min_curr_iops | max_curr_iops | min_peak_iops | max_peak_iops | io_limits | io_priority
-------+---------------+---------------+---------------+---------------+-----------+-------------
 16523 | 0 | 0 | 0 | 0 | 0 | None
(1 row)

5.6 Viewing Table and Database Information

Querying Table Information
● Querying information about all tables in a database using the pg_tables

system catalog
SELECT * FROM pg_tables;

● Querying the table structure using \d+ command of the gsql tool.
Example: Create a table customer_t1 and insert data into the table.
CREATE TABLE customer_t1
(
 c_customer_sk integer,
 c_customer_id char(5),
 c_first_name char(6),
 c_last_name char(8)
)
with (orientation = column,compression=middle)
distribute by hash (c_last_name);
INSERT INTO customer_t1 (c_customer_sk, c_customer_id, c_first_name) VALUES
 (6885, 'map', 'Peter'),
 (4321, 'river', 'Lily'),
 (9527, 'world', 'James');

Query the table structure. If no schema is specified when you create a table,
the schema of the table defaults to public.

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 151

\d+ customer_t1;
 Table "public.customer_t1"
 Column | Type | Modifiers | Storage | Stats target | Description
---------------+--------------+-----------+----------+--------------+-------------
 c_customer_sk | integer | | plain | |
 c_customer_id | character(5) | | extended | |
 c_first_name | character(6) | | extended | |
 c_last_name | character(8) | | extended | |
Has OIDs: no
Distribute By: HASH(c_last_name)
Location Nodes: ALL DATANODES
Options: orientation=column, compression=middle, colversion=2.0, enable_delta=false

NO TE

The options may vary in different versions but the difference does not affect services.
The options here are for reference only. The actual options are subject to the version.

● Use pg_get_tabledef to query the table definition.
SELECT * FROM PG_GET_TABLEDEF('customer_t1');
 pg_get_tabledef

 SET search_path = tpchobs; +
 CREATE TABLE customer_t1 (+
 c_customer_sk integer, +
 c_customer_id character(5), +
 c_first_name character(6), +
 c_last_name character(8) +
) +
 WITH (orientation=column, compression=middle, colversion=2.0, enable_delta=false)+
 DISTRIBUTE BY HASH(c_last_name) +
 TO GROUP group_version1;
(1 row)

● Querying all data in customer_t1
SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name
---------------+---------------+--------------+-------------
 6885 | map | Peter |
 4321 | river | Lily |
 9527 | world | James |
(3 rows)

● Querying all data of a column in customer_t1 using SELECT
SELECT c_customer_sk FROM customer_t1;
 c_customer_sk

 6885
 4321
 9527
(3 rows)

● Check whether a table has been analyzed. The time when the table was
analyzed will be returned. If nothing is returned, it indicates that the table has
not been analyzed.
SELECT pg_stat_get_last_analyze_time(oid),relname FROM pg_class where relkind='r';

Query the time when the public table was analyzed.
SELECT pg_stat_get_last_analyze_time(c.oid),c.relname FROM pg_class c LEFT JOIN pg_namespace n
ON c.relnamespace = n.oid WHERE c.relkind='r' AND n.nspname='public';
 pg_stat_get_last_analyze_time | relname
-------------------------------+----------------------
 2022-05-17 07:48:26.923782+00 | warehouse_t19
 2022-05-17 07:48:26.964512+00 | emp
 2022-05-17 07:48:27.016709+00 | test_trigger_src_tbl
 2022-05-17 07:48:27.045385+00 | customer
 2022-05-17 07:48:27.062486+00 | warehouse_t1
 2022-05-17 07:48:27.114884+00 | customer_t1
 2022-05-17 07:48:27.172256+00 | product_info_input
 2022-05-17 07:48:27.197014+00 | tt1

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 152

 2022-05-17 07:48:27.212906+00 | timezone_test
(9 rows)

● Quickly query the column information of a table. If a view in
information_schema has a large number of objects in the database, it takes
a long time to return the result. You can run the following SQL statement to
quickly query the column information of one or more tables:
SELECT /*+ nestloop(a c)*/ c.column_name, c.data_type, c.ordinal_position, pgd.description, pp.partkey,
c.is_nullable, c.column_default, c.character_maximum_length, c.numeric_precision, c.numeric_scale,
c.datetime_precision, c.interval_type, c.udt_name from information_schema.columns as c left join
pg_namespace sp on sp.nspname = c.table_schema left join pg_class cla on cla.relname =
c.table_name and cla.relnamespace = sp.oid left join pg_catalog.pg_partition pp on (pp.parentid =
cla.oid and pp.parttype = 'r') left join pg_catalog.pg_description pgd on (pgd.objoid=cla.oid and
pgd.objsubid = c.ordinal_position)where c.table_name in ('tablename') and c.table_schema = 'public';

For example, to quickly query the column information of the customer_t1
table, run the following command:
SELECT /*+ nestloop(a c)*/ c.column_name, c.data_type, c.ordinal_position, pgd.description, pp.partkey,
c.is_nullable, c.column_default, c.character_maximum_length, c.numeric_precision, c.numeric_scale,
c.datetime_precision, c.interval_type, c.udt_name from information_schema.columns as c left join
pg_namespace sp on sp.nspname = c.table_schema left join pg_class cla on cla.relname =
c.table_name and cla.relnamespace = sp.oid left join pg_catalog.pg_partition pp on (pp.parentid =
cla.oid and pp.parttype = 'r') left join pg_catalog.pg_description pgd on (pgd.objoid=cla.oid and
pgd.objsubid = c.ordinal_position) where c.table_name in ('customer_t1') and c.table_schema = 'public';
 column_name | data_type | ordinal_position | description | partkey | is_nullable | column_default |
character_maximum_length | numeric_precision | numeric_scale | datetime_precision | interval_type |
udt_name
---------------+-----------+------------------+-------------+---------+-------------+----------------
+--------------------------+-------------------+-------------
--+--------------------+---------------+----------
 c_last_name | character | 4 | | | YES | | 8
| |
 | | | bpchar
 c_first_name | character | 3 | | | YES | | 6
| |
 | | | bpchar
 c_customer_id | character | 2 | | | YES | | 5
| |
 | | | bpchar
 c_customer_sk | integer | 1 | | | YES | |
| 32 |
0 | | | int4
(4 rows)

● Obtain the table definition by querying audit logs.
Use the pgxc_query_audit function to query audit logs of all CNs. The syntax
is as follows:
pgxc_query_audit(timestamptz startime,timestamptz endtime)

Query the audit records of multiple objects.
SET audit_object_name_format TO 'all';
SELECT object_name,result,operation_type,command_text FROM pgxc_query_audit('2022-08-26
8:00:00','2022-08-26 22:55:00') where command_text like '%student%';

Querying the Table Size
● Querying the total size of a table (indexes and data included)

SELECT pg_size_pretty(pg_total_relation_size('<schemaname>.<tablename>'));

Example:
First, create an index on customer_t1.
CREATE INDEX index1 ON customer_t1 USING btree(c_customer_sk);

Then, query the size of table customer_t1 of public.
SELECT pg_size_pretty(pg_total_relation_size('public.customer_t1'));
 pg_size_pretty

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 153

 264 kB
(1 row)

● Querying the size of a table (indexes excluded)
SELECT pg_size_pretty(pg_relation_size('<schemaname>.<tablename>'));

Example: Query the size of table customer_t1 of public.
SELECT pg_size_pretty(pg_relation_size('public.customer_t1'));
 pg_size_pretty

 208 kB
(1 row)

● Query all the tables, ranked by their occupied space.
SELECT table_schema || '.' || table_name AS table_full_name, pg_size_pretty(pg_total_relation_size('"' ||
table_schema || '"."' || table_name || '"')) AS size FROM information_schema.tables
ORDER BY
pg_total_relation_size('"' || table_schema || '"."' || table_name || '"') DESC limit xx;

Example 1: Query the 15 tables that occupy the most space.
SELECT table_schema || '.' || table_name AS table_full_name, pg_size_pretty(pg_total_relation_size('"' ||
table_schema || '"."' || table_name || '"')) AS size FROM information_schema.tables
ORDER BY
pg_total_relation_size('"' || table_schema || '"."' || table_name || '"') DESC limit 15;
 table_full_name | size
---------------------------+---------
 pg_catalog.pg_attribute | 2048 KB
 pg_catalog.pg_rewrite | 1888 KB
 pg_catalog.pg_depend | 1464 KB
 pg_catalog.pg_proc | 1464 KB
 pg_catalog.pg_class | 512 KB
 pg_catalog.pg_description | 504 KB
 pg_catalog.pg_collation | 360 KB
 pg_catalog.pg_statistic | 352 KB
 pg_catalog.pg_type | 344 KB
 pg_catalog.pg_operator | 224 KB
 pg_catalog.pg_amop | 208 KB
 public.tt1 | 160 KB
 pg_catalog.pg_amproc | 120 KB
 pg_catalog.pg_index | 120 KB
 pg_catalog.pg_constraint | 112 KB
(15 rows)

Example 2: Query the top 20 tables with the largest space usage in the public
schema.
SELECT table_schema || '.' || table_name AS table_full_name, pg_size_pretty(pg_total_relation_size('"' ||
table_schema || '"."' || table_name || '"')) AS size FROM information_schema.tables where
table_schema='public'
ORDER BY
pg_total_relation_size('"' || table_schema || '"."' || table_name || '"') DESC limit 20;
 table_full_name | size
-----------------------------+---------
 public.tt1 | 160 KB
 public.product_info_input | 112 KB
 public.customer_t1 | 96 KB
 public.warehouse_t19 | 48 KB
 public.emp | 32 KB
 public.customer | 0 bytes
 public.test_trigger_src_tbl | 0 bytes
 public.warehouse_t1 | 0 bytes
(8 rows)

Quickly Querying the Space Occupied by All Tables in the Database
In a large cluster with a large amount of data (more than 1000 tables), you are
advised to use the pgxc_wlm_table_distribution_skewness view to query all tables
in the database. This view can be used to query the tablespace usage and data
skew distribution in the database. The unit of total_size and avg_size is byte.

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 154

SELECT *, pg_size_pretty(total_size) as tableSize FROM pgxc_wlm_table_distribution_skewness ORDER BY
total_size desc;
 schema_name | table_name | total_size | avg_size | max_percent |
min_percent | skew_percent | tablesize
--------------------+---+------------+-----------+-------------
+-------------+--------------+-----------
 public | history_tbs_test_row_1 | 804347904 | 134057984 | 18.02 | 15.63
| 7.53 | 767 MB
 public | history_tbs_test_row_3 | 402096128 | 67016021 | 18.30 | 15.60
| 8.90 | 383 MB
 public | history_tbs_test_row_2 | 401743872 | 66957312 | 18.01 | 15.01
| 7.47 | 383 MB
 public | i_history_tbs_test_1 | 325263360 | 54210560 | 17.90 | 15.50
| 6.90 | 310 MB

The query result shows that the history_tbs_test_row_1 table occupies the largest
space and data skew occurs.

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 155

CA UTION

1. The pgxc_wlm_table_distribution_skewness view can be queried only when the
GUC parameters use_workload_manager and enable_perm_space are enabled.
In earlier versions, you are advised to use the table_distribution() function to
query the entire database. If only the size of a table is queried, the
table_distribution(schemaname text, tablename text) function is recommended.

2. In 8.2.1 and later cluster versions, GaussDB (DWS) supports the
pgxc_wlm_table_distribution_skewness view, which can be directly queried.

3. In the 8.1.3 cluster version, you can use the following definition to create a
view and then query the view:

CREATE OR REPLACE VIEW
pgxc_wlm_table_distribution_skewness AS
WITH skew AS
(
SELECT
schemaname,
tablename,
pg_catalog.sum(dnsize)
AS totalsize,
pg_catalog.avg(dnsize)
AS avgsize,
pg_catalog.max(dnsize)
AS maxsize,
pg_catalog.min(dnsize)
AS minsize,
(maxsize
- avgsize) * 100 AS skewsize
FROM
pg_catalog.gs_table_distribution()
GROUP
BY schemaname, tablename
)
SELECT
 schemaname AS schema_name,
 tablename AS table_name,
 totalsize AS total_size,
 avgsize::numeric(1000) AS avg_size,
 (
 CASE
 WHEN totalsize = 0 THEN 0.00
 ELSE (maxsize * 100 /
totalsize)::numeric(5, 2)
 END
) AS max_percent,
 (
 CASE
 WHEN totalsize = 0 THEN 0.00
 ELSE (minsize * 100 /
totalsize)::numeric(5, 2)
 END
) AS min_percent,
 (
 CASE
 WHEN totalsize = 0 THEN 0.00
 ELSE (skewsize /
maxsize)::numeric(5, 2)
 END
) AS skew_percent
FROM skew;

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 156

Querying Database Information
● Querying the database list using the \l meta-command of the gsql tool.

\l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+-------+-----------+---------+-------+-------------------
 gaussdb | Ruby | SQL_ASCII | C | C |
 template0 | Ruby | SQL_ASCII | C | C | =c/Ruby +
 | | | | | Ruby=CTc/Ruby
 template1 | Ruby | SQL_ASCII | C | C | =c/Ruby +
 | | | | | Ruby=CTc/Ruby
(3 rows)

NO TE

● If the parameters LC_COLLATE and LC_CTYPE are not specified during database
installation, the default values of them are C.

● If LC_COLLATE and LC_CTYPE are not specified during database creation, the
sorting order and character classification of the template database are used by
default.
For details, see CREATE DATABASE.

● Querying the database list using the pg_database system catalog
SELECT datname FROM pg_database;
 datname

 template1
 template0
 gaussdb
(3 rows)

Querying the Database Size
Querying the size of databases
select datname,pg_size_pretty(pg_database_size(datname)) from pg_database;

Example:

select datname,pg_size_pretty(pg_database_size(datname)) from pg_database;
 datname | pg_size_pretty
-----------+----------------
 template1 | 61 MB
 template0 | 61 MB
 postgres | 320 MB
(3 rows)

Querying the Size of a Table and the Size of the Corresponding Index in a
Specified Schema

SELECT
 t.tablename,
 indexname,
 c.reltuples AS num_rows,
 pg_size_pretty(pg_relation_size(quote_ident(t.tablename)::text)) AS table_size,
 pg_size_pretty(pg_relation_size(quote_ident(indexrelname)::text)) AS index_size,
 CASE WHEN indisunique THEN 'Y'
 ELSE 'N'
 END AS UNIQUE,
 idx_scan AS number_of_scans,
 idx_tup_read AS tuples_read,
 idx_tup_fetch AS tuples_fetched
FROM pg_tables t
LEFT OUTER JOIN pg_class c ON t.tablename=c.relname
LEFT OUTER JOIN
 (SELECT c.relname AS ctablename, ipg.relname AS indexname, x.indnatts AS number_of_columns,

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 157

https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0156.html#section3

idx_scan, idx_tup_read, idx_tup_fetch, indexrelname, indisunique FROM pg_index x
 JOIN pg_class c ON c.oid = x.indrelid
 JOIN pg_class ipg ON ipg.oid = x.indexrelid
 JOIN pg_stat_all_indexes psai ON x.indexrelid = psai.indexrelid)
 AS foo
 ON t.tablename = foo.ctablename
WHERE t.schemaname='public'
ORDER BY 1,2;

5.7 Best Practices of Database SEQUENCE
A sequence, also called a sequence, is a database object used to generate a unique
integer. The value of a sequence increases or decreases automatically based on
certain rules. Generally, a sequence is used as a primary key. In GaussDB (DWS),
when a sequence is created, a metadata table with the same name is created to
record sequence information. For example:
CREATE SEQUENCE seq_test;
CREATE SEQUENCE

SELECT * FROM seq_test;
 sequence_name | last_value | start_value | increment_by | max_value | min_value | cache_value |
log_cnt | is_cycled | is_called | uuid
---------------+------------+-------------+--------------+---------------------+-----------+-------------+---------
+-----------+-----------+---------
 seq_test | -1 | 1 | 1 | 9223372036854775807 | 1 | 1 | 0 | f |
f | 1400050
(1 row)

In the preceding command:

● sequence_name indicates the name of a sequence.
● last_value is meaningless.
● start_value indicates the initial value of the sequence.
● increment_by indicates the step of the sequence.
● max_value indicates the maximum value of a sequence.
● min_value indicates the minimum sequence value.
● cache_value indicates the number of sequence values that are pre-stored to

quickly obtain the next sequence value. (After the cache is defined, the
continuity of sequence values cannot be ensured, holes are generated, and
sequence number segments are wasted.)

● log_cnt indicates the number of sequence values recorded in WAL logs. In
GaussDB (DWS), sequence values are obtained and managed from GTM.
Therefore, log_cnt is meaningless.

● is_cycled indicates whether to continue the loop after the sequence reaches
the minimum or maximum value.

● is_called indicates whether the sequence has been invoked. (It only indicates
whether the sequence has been invoked on the current instance. For example,
after the sequence is invoked on cn1, the value of the original data table on
cn1 changes to t, and the value of the field on cn2 is still f.)

● uuid indicates the unique ID of the sequence.

Process of Creating a Sequence
In GaussDB (DWS), the Global Transaction Manager (GTM) generates and
maintains globally unique information, such as global transaction IDs, transaction

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 158

snapshots, and sequences. The following figure shows the process of creating a
sequence in GaussDB (DWS).

Figure 5-2 Process of Creating a Sequence

The specific process is as follows:

1. The CN that accepts the SQL command applies for a UUID from the GTM.
2. The GTM returns a UUID.
3. The CN binds the obtained UUID to the sequenceName created by the user.
4. The CN delivers the binding relationship to other nodes, and other nodes

create the sequence metadata table synchronously.
5. The CN sends the UUID and startID of the sequence to the GTM for

permanent storage.

Therefore, sequence maintenance and application are actually completed on the
GTM. When applying for nextval, each instance that invokes nextval applies for a
sequence value from the GTM based on the UUID of the sequence. The sequence
value range applied for each time is related to the cache. The instance applies for
a sequence value from the GTM only after the cache is used up. Therefore,
increasing the cache of the sequence helps reduce the number of times that the
CN/DN communicates with the GTM.

Two Methods of Creating a Sequence

Method 1: Run the CREATE SEQUENCE statement to create a sequence and use
nextval to invoke the sequence in the new table.

CREATE SEQUENCE seq_test increment by 1 minvalue 1 no maxvalue start with 1;
CREATE SEQUENCE

CREATE TABLE table_1(id int not null default nextval('seq_test'), name text);
CREATE TABLE

Method 2: If the serial type is used during table creation, a sequence is
automatically created and the default value of the column is set to nextval.

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 159

CREATE TABLE mytable(a int, b serial) distribute by hash(a);
NOTICE: CREATE TABLE will create implicit sequence "mytable_b_seq" for serial column "mytable.b"
CREATE TABLE

 \d+ mytable
 Table "dbadmin.mytable"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+---+---------+--------------+-------------
 a | integer | | plain | |
 b | integer | not null default nextval('mytable_b_seq'::regclass) | plain | |
Has OIDs: no
Distribute By: HASH(a)
Location Nodes: ALL DATANODES
Options: orientation=row, compression=no

In this example, a sequence named mytable_b_seq is automatically created.
Strictly speaking, the serial type is not a real type. It is only a concept for setting a
unique identifier in a table. When a serial type is created, a sequence is created
and associated with the column.

It is equivalent to the following statement:

CREATE TABLE mytable01(a int, b int) distribute by hash(a);
CREATE TABLE

CREATE SEQUENCE mytable01_b_seq owned by mytable.b;
CREATE SEQUENCE

ALTER SEQUENCE mytable01_b_seq owner to u1; --u1 is the owner of the mytable01 table. If the current
user is the owner, you do not need to run this statement.
ALTER SEQUENCE

ALTER TABLE mytable01 alter b set default nextval('mytable01_b_seq'), alter b set not null;
ALTER TABLE

\d+ mytable01
 Table "dbadmin.mytable01"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+---+---------+--------------+-------------
 a | integer | | plain | |
 b | integer | not null default nextval('mytable01_b_seq'::regclass) | plain | |
Has OIDs: no
Distribute By: HASH(a)
Location Nodes: ALL DATANODES
Options: orientation=row, compression=no

Common Usage of Sequences in Services
Sequences are often used to generate primary keys or unique columns during data
import in data migration scenarios. Different migration tools or service import
scenarios use different import methods. Common import methods are classified
into copy and insert. For seqeunce, the processing in the two scenarios is slightly
different.

● Scenario 1: Insert Pushdown
CREATE TABLE test1(a int, b serial) distribute by hash(a);
NOTICE: CREATE TABLE will create implicit sequence "test1_b_seq" for serial column "test1.b"
CREATE TABLE

CREATE TABLE test2(a int) distribute by hash(a);
CREATE TABLE

EXPLAIN VERBOSE INSERT INTO test1(a) SELECT a FROM test2;
 QUERY PLAN

 id | operation | E-rows | E-distinct | E-memory | E-width | E-costs

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 160

 ----+-------------------------------------+--------+------------+----------+---------+---------
 1 | -> Streaming (type: GATHER) | 1 | | | 4 | 16.34
 2 | -> Insert on dbadmin.test1 | 30 | | | 4 | 16.22
 3 | -> Seq Scan on dbadmin.test2 | 30 | | 1MB | 4 | 14.21

 RunTime Analyze Information
 --
 "dbadmin.test2" runtime: 9.586ms, sync stats

 Targetlist Information (identified by plan id)

 1 --Streaming (type: GATHER)
 Node/s: All datanodes
 3 --Seq Scan on dbadmin.test2
 Output: test2.a, nextval('test1_b_seq'::regclass)
 Distribute Key: test2.a

 ====== Query Summary =====

 System available mem: 1351680KB
 Query Max mem: 1351680KB
 Query estimated mem: 1024KB
 Parser runtime: 0.076 ms
 Planner runtime: 12.666 ms
 Unique SQL Id: 831364267
(26 rows)

In the INSERT scenario, nextval can be pushed down to DNs for execution.
Therefore, nextval is pushed down to DNs for execution regardless of whether
nextval with the default value is used or nextval is explicitly invoked. The
execution plan in the preceding example also shows that nextval is pushed
down to DNs for execution, the invoking of nextval is at the sequence layer,
indicating that nextval is executed on DNs. In this case, DNs directly apply for
sequence values from the GTM, and DNs execute the application concurrently.
Therefore, the efficiency is relatively high.

● Scenario 2: Copy Scenario
During service development, in addition to INSERT, COPY can be used to
import data to the database. This method is used to copy file content to the
database or use the CopyManager interface to import file content to the
database. In addition, the CDM data synchronization tool imports data to the

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 161

database in batches by copying data. If the target table to be copied uses the
default value nextval, the process is as follows:

In the copy scenario, the CN applies for sequence values from the GTM.
Therefore, when the cache value of sequence is small, the CN frequently
establishes connections with the GTM and applies for nextval, causing a
performance bottleneck. The Typical Optimization Scenarios Related to
Sequences describes the service performance in this scenario and provides
optimization methods.

Typical Optimization Scenarios Related to Sequences

Service scenario: In a service scenario, the CDM data synchronization tool is used
to migrate data and import data from the source end to the target GaussDB
(DWS). The import rate differs greatly from the empirical value. After the CDM
concurrency is changed from 1 to 5, the synchronization rate still cannot be
improved. Check the statement execution status. Except COPY, other services are
executed properly without performance bottlenecks or resource bottlenecks.
Therefore, it is preliminarily determined that the service has a bottleneck. Check
the job waiting view related to COPY.

As shown in the preceding figure, five CDM jobs are executed concurrently.
Therefore, you can see five COPY statements in the active view. Check the waiting
view based on query_id corresponding to the five COPY statements. Among the
five copies, only one copy is applying for a sequence value from the GTM at the
same time, and other copies are waiting for a lightweight lock. Therefore, even if

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 162

five concurrent jobs are enabled, the actual effect is not significantly improved
compared with that of one concurrent job.

Cause: The serial type is used when the target table is created. By default, the
cache of the created sequence is 1. As a result, when data is concurrently copied
to the database, the CN frequently establishes connections with the GTM, and
lightweight lock contention exists between multiple concurrent tasks, resulting in
low data synchronization efficiency.

Solution: In this scenario, increase the cache value of the sequence to prevent
bottlenecks caused by frequent GTM connection establishment. In this service
scenario example, about 100,000 data records are synchronized each time. Based
on service evaluation, change the cache value to 10000. (In practice, set a proper
cache value based on services to ensure quick access and avoid sequence number
waste.)

In cluster versions 8.2.1.100 and later, you can use ALTER SEQUENCE to change
the cache value.

In clusters of 8.2.1 and earlier versions, the cache value of GaussDB (DWS) cannot
be changed using ALTER SEQUENCE. You can change the cache value of an
existing sequence as follows (the mytable table is used as an example):

Step 1 Remove the association between the current sequence and the target table.
ALTER SEQUENCE mytable_b_seq owned by none;
ALTER TABLE mytable alter b drop default;

Step 2 Record the current sequence number as the start value of the new sequence.
SELECT nextval('mytable_b_seq');

Delete a sequence.

DROP SEQUENCE mytable_b_seq;

Step 3 Create seqeunce and bind it to the target table. Replace xxx with the value of
nextval obtained in the previous step.
CREATE SEQUENCE mytable_b_seq START with xxx cache 10000 owned by mytable.b;
ALTER SEQUENCE mytable_b_seq owner to u1;--u1 is the owner of the mytable table. If the current user is
the owner, you do not need to run this statement.
ALTER TABLE mytable alter b set default nextval('mytable_b_seq');

----End

Data Warehouse Service
Best Practices 5 Database Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 163

6 Sample Data Analysis

6.1 Checkpoint Vehicle Analysis
This practice shows you how to analyze passing vehicles at checkpoints. In this
practice, 890 million data records from checkpoints are loaded to a single
database table on GaussDB(DWS) for accurate and fuzzy query, demonstrating
the ability of GaussDB(DWS) to perform high-performance query for historical
data.

NO TE

The sample data has been uploaded to the traffic-data folder in an OBS bucket, and all
Huawei Cloud accounts have been granted the read-only permission for accessing the OBS
bucket.

General Procedure

This practice takes about 40 minutes. The basic process is as follows:

1. Making Preparations

2. Step 1: Creating a Cluster

3. Step 2: Using Data Studio to Connect to a Cluster

4. Step 3: Importing Sample Data

5. Step 4: Performing Vehicle Analysis

Supported Regions

Table 6-1 Regions and OBS bucket names

Region OBS Bucket

EU-Dublin dws-demo-eu-west-101

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 164

Making Preparations
● You have registered a GaussDB(DWS) account and checked the account status

before using GaussDB(DWS). The account cannot be in arrears or frozen.
● You have obtained the AK and SK of the account.

Step 1: Creating a Cluster

Step 1 Log in to the management console.

Step 2 Click Service List and choose Analytics > GaussDB(DWS).

Step 3 In the navigation pane on the left, choose Clusters. On the displayed page, click
Create Cluster in the upper right corner.

Step 4 Configure the parameters according to Table 6-2.

Table 6-2 Basic configurations

Parameter Configuration

Region Select CN North-Beijing4 or CN-Hong KongEU-Dublin.
NOTE

EU-Dublin is used as an example. You can select other regions as required.
Ensure that all operations are performed in the same region.

AZ AZ2

Resource Standard Warehouse

Compute
Resource

ECS

Storage
type

Cloud SSD

CPU
Architectur
e

X86

Node
Flavor

dws2.m6.4xlarge.8 (16 vCPUs | 128 GB | 2000 GB SSD)
NOTE

If this flavor is sold out, select other AZs or flavors.

Hot
Storage

100 GB/node

Nodes 3

Step 5 Verify that the information is correct and click Next: Configure Network.
Configure the network by referring to Table 6-3.

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 165

Table 6-3 Configuring the network

Parameter Configuration

VPC vpc-default

Subnet subnet-default(192.168.0.0/24)

Security
Group

Automatic creation

EIP Buy now

Bandwidth 1Mbit/s

ELB Do not use

Step 6 Verify that the information is correct and click Next: Configure Advanced
Settings. Configure the network by referring to Table 6-4.

Table 6-4 Configuring advanced settings

Parameter Configuration

Cluster
Name

dws-demo

Cluster
Version

Use the recommended version, for example, 8.1.3.311.

Administra
tor
Account

dbadmin

Administra
tor
Password

-

Confirm
Password

-

Database
Port

8000

Enterprise
Project

default

Advanced
Settings

Default

Step 7 Click Next: Confirm, confirm the configuration, and click Next.

Step 8 Wait about 6 minutes. After the cluster is created, click next to the cluster
name. On the displayed cluster information page, record the value of Public
Network Address.

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 166

----End

Step 2: Using Data Studio to Connect to a Cluster

Step 1 Ensure that JDK 1.8.0 or later has been installed on the client host. Choose PC >
Properties > Advanced System Settings > Environment Variables and set
JAVA_HOME (for example, C:\Program Files\Java\jdk1.8.0_191).
Add ;%JAVA_HOME%\bin to the variable path.

Step 2 On the Connections page of the GaussDB(DWS) console, download the Data
Studio GUI client.

Step 3 Decompress the downloaded Data Studio software package, go to the
decompressed directory, and double-click Data Studio.exe to start the client.

Step 4 On the Data Studio main menu, choose File > New Connection. In the dialog box
that is displayed, configure the connection based on Table 6-5.

Table 6-5 Data Studio software configuration

Parameter Configuration

Database
Type

GaussDB(DWS)

Connection
Name

dws-demo

Host dws-demov.dws.huaweicloud.com
The value of this parameter must be the same as the value of
Public Network Address queried in Step 1: Creating a Cluster.

Host Port 8000

Database
Name

gaussdb

User Name dbadmin

Password -

Enable SSL Disable

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 167

Step 5 Click OK.

----End

Step 3: Importing Sample Data
After connecting to the cluster using the SQL client tool, perform the following
operations on the SQL client tool to import the sample data from traffic
checkpoints and perform data queries.

Step 1 Execute the following statement to create the traffic database:
CREATE DATABASE traffic encoding 'utf8' template template0;

Step 2 Perform the following steps to switch to the new database:

1. In the Object Browser window of the Data Studio client, right-click the
database connection and choose Refresh from the shortcut menu. Then, the
new database is displayed.

2. Right-click the name of the new database traffic and choose Connect to DB
from the shortcut menu.

3. Right-click the name of the new database traffic and choose Open Terminal
from the shortcut menu. The SQL command window for connecting to the
specified database is displayed. Perform the following steps in the window.

Step 3 Execute the following statements to create a database table for storing vehicle
information from traffic checkpoints:
CREATE SCHEMA traffic_data;
SET current_schema= traffic_data;
DROP TABLE if exists GCJL;
CREATE TABLE GCJL
(
 kkbh VARCHAR(20),
 hphm VARCHAR(20),
 gcsj DATE ,
 cplx VARCHAR(8),
 cllx VARCHAR(8),
 csys VARCHAR(8)
)
with (orientation = column, COMPRESSION=MIDDLE)
distribute by hash(hphm);

Step 4 Create a foreign table, which is used to identify and associate the source data on
OBS.

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 168

NO TICE

● <obs_bucket_name> indicates the OBS bucket name. Only some regions are
supported. For details about the supported regions and OBS bucket names, see
Supported Regions. GaussDB(DWS) clusters do not support cross-region
access to OBS bucket data.

● , and replace <Access_Key_Id> and <Secret_Access_Key> with the value
obtained in Making Preparations.

● // Hard-coded or plaintext AK and SK are risky. For security purposes, encrypt
your AK and SK and store them in the configuration file or environment
variables.

● If the message "ERROR: schema "xxx" does not exist Position" is displayed
when you create a foreign table, the schema does not exist. Perform the
previous step to create a schema.

CREATE SCHEMA tpchobs;
SET current_schema = 'tpchobs';
DROP FOREIGN table if exists GCJL_OBS;
CREATE FOREIGN TABLE GCJL_OBS
(
 like traffic_data.GCJL
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/traffic-data/gcxx',
 format 'text',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on'
);

Step 5 Execute the following statement to import data from the foreign table to the
database table:
INSERT INTO traffic_data.GCJL SELECT * FROM tpchobs.GCJL_OBS;

It takes some time to import data.

----End

Step 4: Performing Vehicle Analysis
1. Performing ANALYZE

This statement collects statistics related to ordinary tables in databases. The
statistics are saved to the system catalog PG_STATISTIC. When you run the
planner, the statistics help you develop an efficient query execution plan.
Execute the following statement to generate the table statistics:
ANALYZE;

2. Querying the data volume of the data table
Execute the following statement to query the number of loaded data records:
SET current_schema= traffic_data;
SELECT count(*) FROM traffic_data.gcjl;

3. Accurate vehicle query

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 169

Run the following statements to query the driving route of a vehicle by the
license plate number and time segment. GaussDB(DWS) responds to the
request in seconds.
SET current_schema= traffic_data;
SELECT hphm, kkbh, gcsj
FROM traffic_data.gcjl
where hphm = 'YD38641'
and gcsj between '2016-01-06' and '2016-01-07'
order by gcsj desc;

4. Fuzzy vehicle query

Run the following statements to query the driving route of a vehicle by the
license plate number and time segment. GaussDB(DWS) responds to the
request in seconds.
SET current_schema= traffic_data;
SELECT hphm, kkbh, gcsj
FROM traffic_data.gcjl
where hphm like 'YA23F%'
and kkbh in('508', '1125', '2120')
and gcsj between '2016-01-01' and '2016-01-07'
order by hphm,gcsj desc;

6.2 Supply Chain Requirement Analysis of a Company
This practice describes how to load the sample data set from OBS to a data
warehouse cluster and perform data queries. This example comprises multi-table
analysis and theme analysis in the data analysis scenario.

NO TE

In this example, a standard TPC-H-1x data set of 1 GB size has been generated on
GaussDB(DWS), and has been uploaded to the tpch folder of an OBS bucket. All accounts
have been granted the read-only permission to access the OBS bucket. Users can easily
import the data set using their accounts.

General Procedure

This practice takes about 60 minutes. The process is as follows:

1. Making Preparations

2. Step 1: Importing Sample Data

3. Step 2: Performing Multi-Table Analysis and Theme Analysis

Supported Regions

Table 6-6 Regions and OBS bucket names

Region OBS Bucket

EU-Dublin dws-demo-eu-west-101

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 170

Scenario Description
Understand the basic functions of GaussDB(DWS) and how to import data.
Analyze the order data of a company and its suppliers as follows:

1. Analyze the revenue brought by suppliers in a region to the company. The
statistics can be used to determine whether a local allocation center needs to
be established in a given region.

2. Analyze the relationship between parts and suppliers to obtain the number of
suppliers for parts based on the specified contribution conditions. The
information can be used to determine whether suppliers are sufficient for
large order quantities when the task is urgent.

3. Analyze the revenue loss of small orders. You can query the average annual
revenue loss if there are no small orders. Filter out small orders that are lower
than 20% of the average supply volume, and calculate the total amount of
those small orders to figure out the average annual revenue loss.

Making Preparations
● You have registered a GaussDB(DWS) account and checked the account status

before using GaussDB(DWS). The account cannot be in arrears or frozen.
● You have obtained the AK and SK of the account.
● A cluster has been created and connected using Data Studio. For details, see

Checkpoint Vehicle Analysis.

Step 1: Importing Sample Data
After connecting to the cluster using the SQL client tool, perform the following
operations in the SQL client tool to import the TPC-H sample data and perform
data queries.

Step 1 Create a database table.

The TPC-H sample data consists of eight database tables whose associations are
shown in Figure 6-1.

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 171

Figure 6-1 TPC-H data tables

Execute the following statements to create tables in the gaussdb database.
CREATE SCHEMA tpch;
SET current_schema = tpch;

DROP TABLE if exists region;
CREATE TABLE REGION
(
 R_REGIONKEY INT NOT NULL ,
 R_NAME CHAR(25) NOT NULL ,
 R_COMMENT VARCHAR(152)
)
with (orientation = column, COMPRESSION=MIDDLE)
distribute by replication;

DROP TABLE if exists nation;
CREATE TABLE NATION
(
 N_NATIONKEY INT NOT NULL,
 N_NAME CHAR(25) NOT NULL,
 N_REGIONKEY INT NOT NULL,
 N_COMMENT VARCHAR(152)
)
with (orientation = column,COMPRESSION=MIDDLE)
distribute by replication;

DROP TABLE if exists supplier;
CREATE TABLE SUPPLIER

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 172

(
 S_SUPPKEY BIGINT NOT NULL,
 S_NAME CHAR(25) NOT NULL,
 S_ADDRESS VARCHAR(40) NOT NULL,
 S_NATIONKEY INT NOT NULL,
 S_PHONE CHAR(15) NOT NULL,
 S_ACCTBAL DECIMAL(15,2) NOT NULL,
 S_COMMENT VARCHAR(101) NOT NULL
)
with (orientation = column,COMPRESSION=MIDDLE)
distribute by hash(S_SUPPKEY);

DROP TABLE if exists customer;
CREATE TABLE CUSTOMER
(
 C_CUSTKEY BIGINT NOT NULL,
 C_NAME VARCHAR(25) NOT NULL,
 C_ADDRESS VARCHAR(40) NOT NULL,
 C_NATIONKEY INT NOT NULL,
 C_PHONE CHAR(15) NOT NULL,
 C_ACCTBAL DECIMAL(15,2) NOT NULL,
 C_MKTSEGMENT CHAR(10) NOT NULL,
 C_COMMENT VARCHAR(117) NOT NULL
)
with (orientation = column,COMPRESSION=MIDDLE)
distribute by hash(C_CUSTKEY);

DROP TABLE if exists part;
CREATE TABLE PART
(
 P_PARTKEY BIGINT NOT NULL,
 P_NAME VARCHAR(55) NOT NULL,
 P_MFGR CHAR(25) NOT NULL,
 P_BRAND CHAR(10) NOT NULL,
 P_TYPE VARCHAR(25) NOT NULL,
 P_SIZE BIGINT NOT NULL,
 P_CONTAINER CHAR(10) NOT NULL,
 P_RETAILPRICE DECIMAL(15,2) NOT NULL,
 P_COMMENT VARCHAR(23) NOT NULL
)
with (orientation = column,COMPRESSION=MIDDLE)
distribute by hash(P_PARTKEY);

DROP TABLE if exists partsupp;
CREATE TABLE PARTSUPP
(
 PS_PARTKEY BIGINT NOT NULL,
 PS_SUPPKEY BIGINT NOT NULL,
 PS_AVAILQTY BIGINT NOT NULL,
 PS_SUPPLYCOST DECIMAL(15,2) NOT NULL,
 PS_COMMENT VARCHAR(199) NOT NULL
)
with (orientation = column,COMPRESSION=MIDDLE)
distribute by hash(PS_PARTKEY);

DROP TABLE if exists orders;
CREATE TABLE ORDERS
(
 O_ORDERKEY BIGINT NOT NULL,
 O_CUSTKEY BIGINT NOT NULL,
 O_ORDERSTATUS CHAR(1) NOT NULL,
 O_TOTALPRICE DECIMAL(15,2) NOT NULL,
 O_ORDERDATE DATE NOT NULL ,
 O_ORDERPRIORITY CHAR(15) NOT NULL,
 O_CLERK CHAR(15) NOT NULL ,
 O_SHIPPRIORITY BIGINT NOT NULL,
 O_COMMENT VARCHAR(79) NOT NULL
)
with (orientation = column,COMPRESSION=MIDDLE)

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 173

distribute by hash(O_ORDERKEY);

DROP TABLE if exists lineitem;
CREATE TABLE LINEITEM
(
 L_ORDERKEY BIGINT NOT NULL,
 L_PARTKEY BIGINT NOT NULL,
 L_SUPPKEY BIGINT NOT NULL,
 L_LINENUMBER BIGINT NOT NULL,
 L_QUANTITY DECIMAL(15,2) NOT NULL,
 L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL,
 L_DISCOUNT DECIMAL(15,2) NOT NULL,
 L_TAX DECIMAL(15,2) NOT NULL,
 L_RETURNFLAG CHAR(1) NOT NULL,
 L_LINESTATUS CHAR(1) NOT NULL,
 L_SHIPDATE DATE NOT NULL,
 L_COMMITDATE DATE NOT NULL ,
 L_RECEIPTDATE DATE NOT NULL,
 L_SHIPINSTRUCT CHAR(25) NOT NULL,
 L_SHIPMODE CHAR(10) NOT NULL,
 L_COMMENT VARCHAR(44) NOT NULL
)
with (orientation = column,COMPRESSION=MIDDLE)
distribute by hash(L_ORDERKEY);

Step 2 Create a foreign table, which is used to identify and associate the source data on
OBS.

NO TICE

● <obs_bucket_name> indicates the OBS bucket name. Only some regions are
supported. For details about the supported regions and OBS bucket names, see
Supported Regions. GaussDB(DWS) clusters do not support cross-region
access to OBS bucket data.

● , and replace <Access_Key_Id> and <Secret_Access_Key> with the value
obtained in Making Preparations.

● // Hard-coded or plaintext AK and SK are risky. For security purposes, encrypt
your AK and SK and store them in the configuration file or environment
variables.

● If the message "ERROR: schema "xxx" does not exist Position" is displayed
when you create a foreign table, the schema does not exist. Perform the
previous step to create a schema.

CREATE SCHEMA tpchobs;
SET current_schema='tpchobs';
DROP FOREIGN table if exists region;
CREATE FOREIGN TABLE REGION
(
 like tpch.region
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/tpch/region.tbl',
 format 'text',
 delimiter '|',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on'
);

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 174

DROP FOREIGN table if exists nation;
CREATE FOREIGN TABLE NATION
(
 like tpch.nation
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/tpch/nation.tbl',
 format 'text',
 delimiter '|',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on'
);

DROP FOREIGN table if exists supplier;
CREATE FOREIGN TABLE SUPPLIER
(
 like tpch.supplier
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/tpch/supplier.tbl',
 format 'text',
 delimiter '|',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on'
);

DROP FOREIGN table if exists customer;
CREATE FOREIGN TABLE CUSTOMER
(
 like tpch.customer
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/tpch/customer.tbl',
 format 'text',
 delimiter '|',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on'
);
DROP FOREIGN table if exists part;
CREATE FOREIGN TABLE PART
(
 like tpch.part

)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/tpch/part.tbl',
 format 'text',
 delimiter '|',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on'
);
DROP FOREIGN table if exists partsupp;

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 175

CREATE FOREIGN TABLE PARTSUPP
(
 like tpch.partsupp
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/tpch/partsupp.tbl',
 format 'text',
 delimiter '|',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on'
);
DROP FOREIGN table if exists orders;
CREATE FOREIGN TABLE ORDERS
(
 like tpch.orders
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/tpch/orders.tbl',
 format 'text',
 delimiter '|',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on'
);
DROP FOREIGN table if exists lineitem;
CREATE FOREIGN TABLE LINEITEM
(
 like tpch.lineitem
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/tpch/lineitem.tbl',
 format 'text',
 delimiter '|',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on'
);

Step 3 Copy and execute the following statements to import the foreign table data to the
corresponding database table.

Run the insert command to import the data in the OBS foreign table to the
GaussDB(DWS) database table. The database kernel concurrently imports the OBS
data at a high speed to GaussDB(DWS).

INSERT INTO tpch.lineitem SELECT * FROM tpchobs.lineitem;
INSERT INTO tpch.part SELECT * FROM tpchobs.part;
INSERT INTO tpch.partsupp SELECT * FROM tpchobs.partsupp;
INSERT INTO tpch.customer SELECT * FROM tpchobs.customer;
INSERT INTO tpch.supplier SELECT * FROM tpchobs.supplier;
INSERT INTO tpch.nation SELECT * FROM tpchobs.nation;
INSERT INTO tpch.region SELECT * FROM tpchobs.region;
INSERT INTO tpch.orders SELECT * FROM tpchobs.orders;

It takes 10 minutes to import data.

----End

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 176

Step 2: Performing Multi-Table Analysis and Theme Analysis
The following uses standard TPC-H query as an example to demonstrate how to
perform basic data query on GaussDB(DWS).

Before querying data, run the Analyze command to generate statistics related to
the database table. The statistics data is stored in system table PG_STATISTIC and
is useful when you run the planner, which provides you with an efficient query
execution plan.

The following are querying examples:

● Querying revenue of a supplier in a region (TPCH-Q5)
By executing the TPCH-Q5 query statement, you can query the revenue
statistics of a spare parts supplier in a region. The revenue is calculated based
on sum(l_extendedprice * (1 - l_discount)). The statistics can be used to
determine whether a local allocation center needs to be established in a given
region.
Copy and execute the following TPCH-Q5 statement for query. This statement
features multi-table join query with GROUP BY, ORDER BY, and AGGREGATE.
SET current_schema='tpch';
SELECT
n_name,
sum(l_extendedprice * (1 - l_discount)) as revenue
FROM
customer,
orders,
lineitem,
supplier,
nation,
region
where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'ASIA'
and o_orderdate >= '1994-01-01'::date
and o_orderdate < '1994-01-01'::date + interval '1 year'
group by
n_name
order by
revenue desc;

● Querying relationships between spare parts and suppliers (TPCH-Q16)
By executing the TPCH-Q16 query statement, you can obtain the number of
suppliers that can supply spare parts with the specified contribution
conditions. This information can be used to determine whether there are
sufficient suppliers when the order quantity is large and the task is urgent.
Copy and execute the following TPCH-Q16 statement for query. The
statement features multi-table connection operations with group by, sort by,
aggregate, deduplicate, and NOT IN subquery.
SET current_schema='tpch';
SELECT
p_brand,
p_type,
p_size,
count(distinct ps_suppkey) as supplier_cnt
FROM

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 177

partsupp,
part
where
p_partkey = ps_partkey
and p_brand <> 'Brand#45'
and p_type not like 'MEDIUM POLISHED%'
and p_size in (49, 14, 23, 45, 19, 3, 36, 9)
and ps_suppkey not in (
 select
 s_suppkey
 from
 supplier
 where
 s_comment like '%Customer%Complaints%'
)
group by
p_brand,
p_type,
p_size
order by
supplier_cnt desc,
p_brand,
p_type,
p_size
limit 100;

● Querying revenue loss of small orders (TPCH-Q17)
You can query the average annual revenue loss if there are no small orders.
Filter out small orders that are lower than the 20% of the average supply
volume, and calculate the total amount of those small orders to figure out
the average annual revenue loss.
Copy and execute the following TPCH-Q17 statement for query. The
statement features multi-table connection operations with aggregate and
aggregate subquery.
SET current_schema='tpch';
SELECT
sum(l_extendedprice) / 7.0 as avg_yearly
FROM
lineitem,
part
where
p_partkey = l_partkey
and p_brand = 'Brand#23'
and p_container = 'MED BOX'
and l_quantity < (
 select 0.2 * avg(l_quantity)
 from lineitem
 where l_partkey = p_partkey
);

6.3 Operations Status Analysis of a Retail Department
Store
Background

In this practice, the daily business data of each retail store is loaded from OBS to
the corresponding table in the data warehouse cluster for summarizing and
querying KPIs. This data includes store turnover, customer flow, monthly sales
ranking, monthly customer flow conversion rate, monthly price-rent ratio, and
sales per unit area. This example demonstrates the multidimensional query and
analysis of GaussDB(DWS) in the retail scenario.

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 178

NO TE

The sample data has been uploaded to the retail-data folder in an OBS bucket, and all
HUAWEI CLOUD accounts have been granted the read-only permission to access the OBS
bucket.

General Procedure

This practice takes about 60 minutes. The process is as follows:

1. Preparations
2. Step 1: Importing Sample Data from the Retail Department Store
3. Step 2: Performing Operations Status Analysis

Supported Regions

Table 6-7 Regions and OBS bucket names

Region OBS Bucket

EU-Dublin dws-demo-eu-west-101

Preparations
● You have registered a GaussDB(DWS) account, and the account is not in

arrears or frozen.
● You have obtained the AK and SK of the account.
● A cluster has been created and connected using Data Studio. For details, see

Step 1: Creating a Cluster and Step 2: Using Data Studio to Connect to a
Cluster.

Step 1: Importing Sample Data from the Retail Department Store

After connecting to the cluster using the SQL client tool, perform the following
operations in the SQL client tool to import the sample data from retail
department stores and perform queries.

Step 1 Execute the following statement to create the retail database:
CREATE DATABASE retail encoding 'utf8' template template0;

Step 2 Perform the following steps to switch to the new database:

1. In the Object Browser window of the Data Studio client, right-click the
database connection and choose Refresh from the shortcut menu. Then, the
new database is displayed.

2. Right-click the name of the new database retail and choose Connect to DB
from the shortcut menu.

3. Right-click the name of the new database retail and choose Open Terminal
from the shortcut menu. The SQL command window for connecting to the
specified database is displayed. Perform the following steps in the window.

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 179

Step 3 Create a database table.

The sample data consists of 10 database tables whose associations are shown in
Figure 6-2.

Figure 6-2 Sample data tables of retail department stores

Copy and execute the following statements to switch to create a database table of
retail department store information.
CREATE SCHEMA retail_data;
SET current_schema='retail_data';

DROP TABLE IF EXISTS STORE;
CREATE TABLE STORE (
 ID INT,
 STORECODE VARCHAR(10),
 STORENAME VARCHAR(100),
 FIRMID INT,
 FLOOR INT,
 BRANDID INT,
 RENTAMOUNT NUMERIC(18,2),
 RENTAREA NUMERIC(18,2)
)
WITH (ORIENTATION = COLUMN, COMPRESSION=MIDDLE) DISTRIBUTE BY REPLICATION;

DROP TABLE IF EXISTS POS;
CREATE TABLE POS(
 ID INT,
 POSCODE VARCHAR(20),
 STATUS INT,
 MODIFICATIONDATE DATE
)
WITH (ORIENTATION = COLUMN, COMPRESSION=MIDDLE) DISTRIBUTE BY REPLICATION;

DROP TABLE IF EXISTS BRAND;
CREATE TABLE BRAND (
 ID INT,
 BRANDCODE VARCHAR(10),
 BRANDNAME VARCHAR(100),
 SECTORID INT
)
WITH (ORIENTATION = COLUMN, COMPRESSION=MIDDLE) DISTRIBUTE BY REPLICATION;

DROP TABLE IF EXISTS SECTOR;

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 180

CREATE TABLE SECTOR(
 ID INT,
 SECTORCODE VARCHAR(10),
 SECTORNAME VARCHAR(20),
 CATEGORYID INT
)
WITH (ORIENTATION = COLUMN, COMPRESSION=MIDDLE) DISTRIBUTE BY REPLICATION;

DROP TABLE IF EXISTS CATEGORY;
CREATE TABLE CATEGORY(
 ID INT,
 CODE VARCHAR(10),
 NAME VARCHAR(20)
)
WITH (ORIENTATION = COLUMN, COMPRESSION=MIDDLE) DISTRIBUTE BY REPLICATION;

DROP TABLE IF EXISTS FIRM;
CREATE TABLE FIRM(
 ID INT,
 CODE VARCHAR(4),
 NAME VARCHAR(40),
 CITYID INT,
 CITYNAME VARCHAR(10),
 CITYCODE VARCHAR(20)
)
WITH (ORIENTATION = COLUMN, COMPRESSION=MIDDLE) DISTRIBUTE BY REPLICATION;

DROP TABLE IF EXISTS DATE;
CREATE TABLE DATE(
 ID INT,
 DATEKEY DATE,
 YEAR INT,
 MONTH INT,
 DAY INT,
 WEEK INT,
 WEEKDAY INT
)
WITH (ORIENTATION = COLUMN, COMPRESSION=MIDDLE) DISTRIBUTE BY REPLICATION;

DROP TABLE IF EXISTS PAYTYPE;
CREATE TABLE PAYTYPE(
 ID INT,
 CODE VARCHAR(10),
 TYPE VARCHAR(10),
 SIGNDATE DATE
)
WITH (ORIENTATION = COLUMN, COMPRESSION=MIDDLE) DISTRIBUTE BY REPLICATION;

DROP TABLE IF EXISTS SALES;
CREATE TABLE SALES(
 ID INT,
 POSID INT,
 STOREID INT,
 DATEKEY INT,
 PAYTYPE INT,
 TOTALAMOUNT NUMERIC(18,2),
 DISCOUNTAMOUNT NUMERIC(18,2),
 ITEMCOUNT INT,
 PAIDAMOUNT NUMERIC(18,2)
)
WITH (ORIENTATION = COLUMN, COMPRESSION=MIDDLE) DISTRIBUTE BY HASH(ID);

DROP TABLE IF EXISTS FLOW;
CREATE TABLE FLOW (
 ID INT,
 STOREID INT,
 DATEKEY INT,
 INFLOWVALUE INT

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 181

)
WITH (ORIENTATION = COLUMN, COMPRESSION=MIDDLE) DISTRIBUTE BY HASH(ID);

Step 4 Create a foreign table, which is used to identify and associate the source data on
OBS.

NO TICE

● <obs_bucket_name> indicates the OBS bucket name. Only some regions are
supported. For details about the supported regions and OBS bucket names, see
Supported Regions. GaussDB(DWS) clusters do not support cross-region
access to OBS bucket data.

● , and replace <Access_Key_Id> and <Secret_Access_Key> with the value
obtained in Preparations.

● // Hard-coded or plaintext AK and SK are risky. For security purposes, encrypt
your AK and SK and store them in the configuration file or environment
variables.

● If the message "ERROR: schema "xxx" does not exist Position" is displayed
when you create a foreign table, the schema does not exist. Perform the
previous step to create a schema.

CREATE SCHEMA retail_obs_data;
SET current_schema='retail_obs_data';
DROP FOREIGN table if exists SALES_OBS;
CREATE FOREIGN TABLE SALES_OBS
(
 like retail_data.SALES
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/retail-data/sales',
 format 'csv',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on',
 header 'on'
);

DROP FOREIGN table if exists FLOW_OBS;
CREATE FOREIGN TABLE FLOW_OBS
(
 like retail_data.flow
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/retail-data/flow',
 format 'csv',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on',
 header 'on'
);

DROP FOREIGN table if exists BRAND_OBS;
CREATE FOREIGN TABLE BRAND_OBS

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 182

(
 like retail_data.brand
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/retail-data/brand',
 format 'csv',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on',
 header 'on'
);

DROP FOREIGN table if exists CATEGORY_OBS;
CREATE FOREIGN TABLE CATEGORY_OBS
(
 like retail_data.category
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/retail-data/category',
 format 'csv',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on',
 header 'on'
);

DROP FOREIGN table if exists DATE_OBS;
CREATE FOREIGN TABLE DATE_OBS
(
 like retail_data.date
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/retail-data/date',
 format 'csv',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on',
 header 'on'
);

DROP FOREIGN table if exists FIRM_OBS;
CREATE FOREIGN TABLE FIRM_OBS
(
 like retail_data.firm
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/retail-data/firm',
 format 'csv',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on',
 header 'on'

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 183

);

DROP FOREIGN table if exists PAYTYPE_OBS;
CREATE FOREIGN TABLE PAYTYPE_OBS
(
 like retail_data.paytype
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/retail-data/paytype',
 format 'csv',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on',
 header 'on'
);

DROP FOREIGN table if exists POS_OBS;
CREATE FOREIGN TABLE POS_OBS
(
 like retail_data.pos
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/retail-data/pos',
 format 'csv',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on',
 header 'on'
);

DROP FOREIGN table if exists SECTOR_OBS;
CREATE FOREIGN TABLE SECTOR_OBS
(
 like retail_data.sector
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/retail-data/sector',
 format 'csv',
 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on',
 header 'on'
);

DROP FOREIGN table if exists STORE_OBS;
CREATE FOREIGN TABLE STORE_OBS
(
 like retail_data.store
)
SERVER gsmpp_server
OPTIONS (
 encoding 'utf8',
 location 'obs://<obs_bucket_name>/retail-data/store',
 format 'csv',

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 184

 delimiter ',',
 access_key '<Access_Key_Id>',
 secret_access_key '<Secret_Access_Key>',
 chunksize '64',
 IGNORE_EXTRA_DATA 'on',
 header 'on'
);

Step 5 Copy and execute the following statements to import the foreign table data to the
cluster:
INSERT INTO retail_data.store SELECT * FROM retail_obs_data.STORE_OBS;
INSERT INTO retail_data.sector SELECT * FROM retail_obs_data.SECTOR_OBS;
INSERT INTO retail_data.paytype SELECT * FROM retail_obs_data.PAYTYPE_OBS;
INSERT INTO retail_data.firm SELECT * FROM retail_obs_data.FIRM_OBS;
INSERT INTO retail_data.flow SELECT * FROM retail_obs_data.FLOW_OBS;
INSERT INTO retail_data.category SELECT * FROM retail_obs_data.CATEGORY_OBS;
INSERT INTO retail_data.date SELECT * FROM retail_obs_data.DATE_OBS;
INSERT INTO retail_data.pos SELECT * FROM retail_obs_data.POS_OBS;
INSERT INTO retail_data.brand SELECT * FROM retail_obs_data.BRAND_OBS;
INSERT INTO retail_data.sales SELECT * FROM retail_obs_data.SALES_OBS;

It takes some time to import data.

Step 6 Copy and execute the following statement to create the v_sales_flow_details
view:
SET current_schema='retail_data';
CREATE VIEW v_sales_flow_details AS
SELECT
FIRM.ID FIRMID, FIRM.NAME FIRNAME, FIRM. CITYCODE,
CATEGORY.ID CATEGORYID, CATEGORY.NAME CATEGORYNAME,
SECTOR.ID SECTORID, SECTOR.SECTORNAME,
BRAND.ID BRANDID, BRAND.BRANDNAME,
STORE.ID STOREID, STORE.STORENAME, STORE.RENTAMOUNT, STORE.RENTAREA,
DATE.DATEKEY, SALES.TOTALAMOUNT, DISCOUNTAMOUNT, ITEMCOUNT, PAIDAMOUNT, INFLOWVALUE
FROM SALES
INNER JOIN STORE ON SALES.STOREID = STORE.ID
INNER JOIN FIRM ON STORE.FIRMID = FIRM.ID
INNER JOIN BRAND ON STORE.BRANDID = BRAND.ID
INNER JOIN SECTOR ON BRAND.SECTORID = SECTOR.ID
INNER JOIN CATEGORY ON SECTOR.CATEGORYID = CATEGORY.ID
INNER JOIN DATE ON SALES.DATEKEY = DATE.ID
INNER JOIN FLOW ON FLOW.DATEKEY = DATE.ID AND FLOW.STOREID = STORE.ID;

----End

Step 2: Performing Operations Status Analysis
The following uses standard query of retail information from department stores as
an example to demonstrate how to perform basic data query on GaussDB(DWS).

Before querying data, run the Analyze command to generate statistics related to
the database table. The statistics data is stored in system table PG_STATISTIC and
is useful when you run the planner, which provides you with an efficient query
execution plan.

The following are querying examples:

● Querying the monthly sales revenue of each store
Copy and execute the following statements to query the total revenue of each
store in a certain month:
SET current_schema='retail_data';
SELECT DATE_TRUNC('month',datekey)
AT TIME ZONE 'UTC' AS __timestamp,
SUM(paidamount)

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 185

AS sum__paidamount
FROM v_sales_flow_details
GROUP BY DATE_TRUNC('month',datekey) AT TIME ZONE 'UTC'
ORDER BY SUM(paidamount) DESC;

● Querying the sales revenue and price-rent ratio of each store
Copy and execute the following statement to query the sales revenue and
price-rent ratio of each store:
SET current_schema='retail_data';
SELECT firname AS firname,
storename AS storename,
SUM(paidamount)
AS sum__paidamount,
AVG(RENTAMOUNT)/SUM(PAIDAMOUNT)
AS rentamount_sales_rate
FROM v_sales_flow_details
GROUP BY firname, storename
ORDER BY SUM(paidamount) DESC;

● Analyzing the sales revenue of each city
Copy and execute the following statement to analyze and query the sales
revenue of all provinces:
SET current_schema='retail_data';
SELECT citycode AS citycode,
SUM(paidamount)
AS sum__paidamount
FROM v_sales_flow_details
GROUP BY citycode
ORDER BY SUM(paidamount) DESC;

● Analyzing and comparing the price-rent ratio and customer flow
conversion rate of each store
SET current_schema='retail_data';
SELECT brandname AS brandname,
firname AS firname,
SUM(PAIDAMOUNT)/AVG(RENTAREA) AS sales_rentarea_rate,
SUM(ITEMCOUNT)/SUM(INFLOWVALUE) AS poscount_flow_rate,
AVG(RENTAMOUNT)/SUM(PAIDAMOUNT) AS rentamount_sales_rate
FROM v_sales_flow_details
GROUP BY brandname, firname
ORDER BY sales_rentarea_rate DESC;

● Analyzing brands in the retail industry
SET current_schema='retail_data';
SELECT categoryname AS categoryname,
brandname AS brandname,
SUM(paidamount) AS sum__paidamount
FROM v_sales_flow_details
GROUP BY categoryname,
brandname
ORDER BY sum__paidamount DESC;

● Querying daily sales information of each brand
SET current_schema='retail_data';
SELECT brandname AS brandname,
DATE_TRUNC('day', datekey) AT TIME ZONE 'UTC' AS __timestamp,
SUM(paidamount) AS sum__paidamount
FROM v_sales_flow_details
WHERE datekey >= '2016-01-01 00:00:00'
AND datekey <= '2016-01-30 00:00:00'
GROUP BY brandname,
DATE_TRUNC('day', datekey) AT TIME ZONE 'UTC'
ORDER BY sum__paidamount ASC
LIMIT 50000;

Data Warehouse Service
Best Practices 6 Sample Data Analysis

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 186

7 Security Management

7.1 Role-based Access Control (RBAC)

What is RBAC?
● Role-based access control (RBAC) is to grant permissions to roles and let

users obtain permissions by associating with roles.

● A role is a set of permissions.
● RBAC greatly simplifies permissions management.

What is the RBAC Model?

Assign appropriate permissions to roles.

Associate users with the roles.

Scenarios

Assume there are two schemas, s1 and s2.

There are two groups of users:

● Users u1 and u2 can query all the tables in s1 and update all the tables in s2.

Data Warehouse Service
Best Practices 7 Security Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 187

● Users u3 and u4 can query all the tables in s2 and update all the tables in s1.

Procedure for Granting Permissions

Step 1 Connect to the DWS database as user dbadmin.

Step 2 Run the following statements to create schemas s1 and s2 and users u1 to u4:

NO TE

Replace {password} with the actual password.
CREATE SCHEMA s1;
CREATE SCHEMA s2;
CREATE USER u1 PASSWORD '{password}';
CREATE USER u2 PASSWORD '{password}';
CREATE USER u3 PASSWORD '{password}';
CREATE USER u4 PASSWORD '{password}';

Step 3 Copy and run the following statements to create the s1.t1 and s2.t1 tables:
CREATE TABLE s1.t1 (c1 int, c2 int);
CREATE TABLE s2.t1 (c1 int, c2 int);

Step 4 Run the following statement to insert data to the tables:
INSERT INTO s1.t1 VALUES (1,2);
INSERT INTO s2.t1 VALUES (1,2);

Data Warehouse Service
Best Practices 7 Security Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 188

Step 5 Run the following statements to create four roles, each having the query or
update permission of table s1 or s2:
CREATE ROLE rs1_select PASSWORD disable; -- Permission to query s1
CREATE ROLE rs1_update PASSWORD disable; -- Permission to update s1
CREATE ROLE rs2_select PASSWORD disable; -- Permission to query s2
CREATE ROLE rs2_update PASSWORD disable; -- Permission to update s2

Step 6 Run the following statements to grant the access permissions of schemas s1 and
s2 to the roles:
GRANT USAGE ON SCHEMA s1, s2 TO rs1_select, rs1_update,rs2_select, rs2_update;

Step 7 Run the following statements to grant specific permissions to the roles:
GRANT SELECT ON ALL TABLES IN SCHEMA s1 TO rs1_select; -- Grant the query permission on all the
tables in s1 to the rs1_select role.
GRANT SELECT,UPDATE ON ALL TABLES IN SCHEMA s1 TO rs1_update; -- Grant the query and update
permissions on all the tables in s1 to the rs1_update role.
GRANT SELECT ON ALL TABLES IN SCHEMA s2 TO rs2_select; -- Grant the query permission on all the
tables in s2 to the rs2_select role.
GRANT SELECT,UPDATE ON ALL TABLES IN SCHEMA s2 TO rs2_update; -- Grant the query and update
permissions on all the tables in s2 to the rs2_update role.

Step 8 Run the following statements to grant roles to users:
GRANT rs1_select, rs2_update TO u1, u2; -- Users u1 and u2 have the permissions to query s1 and update
s2.
GRANT rs2_select, rs1_update TO u3, u4; -- Users u3 and u4 have the permissions to query s2 and update
s1.

Step 9 Run the following statement to view the role bound to a specific user:
\du u1;

Step 10 Start another session. Connect to the database as user u1.
gsql -d gaussdb -h GaussDB(DWS)_EIP -U u1 -p 8000 -r -W {password};

Step 11 Run the following statements in the new session verify that user u1 can query but
cannot update s1.t1:
SELECT * FROM s1.t1;
UPDATE s1.t1 SET c2 = 3 WHERE c1 = 1;

Step 12 Run the following statements in the new session to verify that user u1 can update
s2.t1:
SELECT * FROM s2.t1;
UPDATE s2.t1 SET c2 = 3 WHERE c1 = 1;

Data Warehouse Service
Best Practices 7 Security Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 189

----End

7.2 Encrypting and Decrypting Data Columns
Data encryption is widely used in various information systems as a technology to
effectively prevent unauthorized access and prevent data leakage. As the core of
the information system, the GaussDB(DWS) data warehouse also provides data
encryption functions, including transparent encryption and encryption using SQL
functions. This section describes SQL function encryption.

NO TE

Currently, GaussDB(DWS) does not support decrypting data encrypted in Oracle, Teradata,
and MySQL databases. The encryption and decryption of Oracle, Teradata, and MySQL
databases are different from those of GaussDB(DWS). GaussDB(DWS) can only decrypt
unencrypted data migrated from Oracle, Teradata, and MySQL databases.

Background
● Hash Functions

The hash function is also called the digest algorithm. It maps input data of an
arbitrary length to an output of fixed length. For example, Hash(data)=result.
This process is irreversible. That is, the hash function does not have an inverse
function, and data cannot be obtained from the result. In scenarios where
plaintext passwords should not be stored (passwords are sensitive) or known
by system administrators, hash algorithms should be used to store one-way
hash values of passwords.
In actual use, salt values and iteration are added to prevent same hash values
generated by same passwords, hence to prevent rainbow table attacks.

Figure 7-1 Hash functions

Data Warehouse Service
Best Practices 7 Security Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 190

● Symmetric Encryption Algorithms
Symmetric encryption algorithms use the same key to encrypt and decrypt
data. There are two subcategories of symmetric encryption algorithms: block
ciphers and stream ciphers.
Block ciphers break the plaintext into fixed-length groups of bits known as
blocks and Each block then gets encrypted as a unit. And if there's not
enough data to completely fill a block, "padding" is then used to ensure that
the blocks meet the fixed-length requirements. Due to padding, the length of
the ciphertext obtained by block ciphers is greater than that of the plaintext.
In stream ciphers, encryption and decryption parties use same pseudo-random
encrypted data stream as keys, and plaintext data is sequentially encrypted by
these keys. In practice, data is encrypted one bit at a time using an XOR
operation. Stream cyphers do not need to be padded. Therefore the length of
the obtained ciphertext is same as the length of the plaintext.

Figure 7-2 Symmetric encryption algorithms

Technical Details
GaussDB(DWS) provides hash functions and symmetric cryptographic algorithms
to encrypt and decrypt data columns. Hash functions support sha256, sha384,
sha512, and SM3. Symmetric cryptographic algorithms support AES128, AES192,
AES256, and SM4.

● Hash Functions
– md5(string)

Use MD5 to encrypt string and return a hexadecimal value. MD5 is
insecure and is not recommended.

– gs_hash(hashstr, hashmethod)
Obtains the digest string of a hashstr string based on the algorithm
specified by hashmethod. hashmethod can be sha256, sha384, sha512,
or sm3.

● Symmetric Encryption Algorithms
– gs_encrypt(encryptstr, keystr, cryptotype, cryptomode, hashmethod)

Encrypts an encryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the
HMAC algorithm specified by hashmethod, and returns the encrypted
string.

Data Warehouse Service
Best Practices 7 Security Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 191

– gs_decrypt(decryptstr, keystr, cryptotype, cryptomode, hashmethod)
Decrypts a decryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the
HMAC algorithm specified by hashmethod, and returns the decrypted
string. The keystr used for decryption must be consistent with that used
for encryption.

– gs_encrypt_aes128(encryptstr,keystr)
Encrypts encryptstr strings using keystr as the key and returns encrypted
strings. The length of keystr ranges from 1 to 16 bytes.

– gs_decrypt_aes128(decryptstr,keystr)
Decrypts a decryptstr string using the keystr key and returns the
decrypted string. The keystr used for decryption must be consistent with
that used for encryption. keystr cannot be empty.

For more information about functions, see Using Functions for Encryption
and Decryption.

Examples

Step 1 Connect to the database.

For details, see Using the gsql CLI Client to Connect to a Cluster.

Step 2 Create the table student with the attributes id, name, and score. Then use hash
functions to encrypt and save names, and use symmetric cryptographic algorithms
to save scores.
CREATE TABLE student (id int, name text, score text, subject text);
INSERT INTO student VALUES (1, gs_hash('alice', 'sha256'), gs_encrypt('95', '12345', 'aes128', 'cbc',
'sha256'),gs_encrypt_aes128('math', '1234'));
INSERT INTO student VALUES (2, gs_hash('bob', 'sha256'), gs_encrypt('92', '12345', 'aes128', 'cbc',
'sha256'),gs_encrypt_aes128('english', '1234'));
INSERT INTO student VALUES (3, gs_hash('peter', 'sha256'), gs_encrypt('98', '12345', 'aes128', 'cbc',
'sha256'),gs_encrypt_aes128('science', '1234'));

Step 3 Query the table student without using keys. The query result shows that the
encrypted data in the name and score columns cannot be viewed even if you have
the SELECT permission.
select * from student;
 id | name |
score |
 subject
----+--
+--
+-----------

 1 | 2bd806c97f0e00af1a1fc3328fa763a9269723c8db8fac4f93af71db186d6e90 | AAAAAAAAAABAuUC3VQ
+MvPCDAaTUySl1e2gGLr4/ATdCUjTEvova3cb/Ba3ZKqIn1yNVGEFBvJnTq/3sLF4//
Gm8qG7AyfNbbqdW3aYErLVpbE/QWFX9Ig== | aFEWQR2gkj
iu6sfsAad+dHzfFDHePZ6xd44zyekh+qVFlh9FODZ0DoaFAJXctwUsiqaiitTxW8cCSEaNjS/E7Ke1ruY=
 2 | 81b637d8fcd2c6da6359e6963113a1170de795e4b725b84d1e0b4cfd9ec58ce9 | AAAAAAAAAABAuUC3VQ
+MvPCDAaTUySl1taXxAoDqE793hgyCJvC0ESdAX5Mtgdq2LXI1f5ZxraQ73WIJVtIBX8oe3gTDxoXGlHbHht4kzM
4U8dOwr5rjgg== | aFEWQR2gkj
iu6sfsAad+dM8tPTDo/Pds6ZmqdmjGiKxf39+Wzx5NoQ6c8FrzihnRzgc0fycWSu5YGWNOKYWhRsE84Ac=
 3 | 026ad9b14a7453b7488daa0c6acbc258b1506f52c441c7c465474c1a564394ff |
AAAAAAAAAACnyusORPeApqMUgh56ucQu3uso/
Llw5MbPFMkOXuspEzhhnc9vErwOFe6cuGtx8muEyHCX7V5yXs+8FxhNh3n5L3419LDWJJLY2O4merHpSg== |
zomphRfHV4
H32hTtgkio1PyrobVO8N+hN7kAKwtygKP2E7Aaf1vsjmtLHcL88jyeJNe1lxe0fAvodzPJAxAuV3UJN4M=
(3 rows)

Data Warehouse Service
Best Practices 7 Security Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 192

https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0048.html
https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0048.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0093.html

Step 4 Query the table student using keys. The query result shows that the data is
decrypted by the function gs_decrypt (corresponding to gs_encrypt) and can be
viewed.
select id, gs_decrypt(score, '12345', 'aes128', 'cbc', 'sha256'),gs_decrypt_aes128(subject, '1234') from student;
 id | gs_decrypt | gs_decrypt_aes128
----+------------+-------------------
 1 | 95 | math
 2 | 92 | english
 3 | 98 | science
(3 rows)

----End

7.3 Managing and Controlling Data Permissions
Through Views

Use views to grant different users the permission to query different data in the
same table, providing data permission management and security.

Scenario
After connecting to the cluster as user dbadmin, create a sample table customer.

CREATE TABLE customer (id bigserial NOT NULL, province_id bigint NOT NULL, user_info varchar, primary
key (id)) DISTRIBUTE BY HASH(id);

Insert test data into the sample table customer.

INSERT INTO customer(province_id,user_info) VALUES (1,'Alice'),(1,'Jack'),(2,'Jack'),(3,'Matu');
INSERT 0 4

Query the customer table.

SELECT * FROM customer;
 id | province_id | user_info
----+-------------+-----------
 3 | 2 | Jack
 1 | 1 | Alice
 2 | 1 | Jack
 4 | 3 | Matu
(4 rows)

Requirement: User u1 can view only the data of province 1 (province_id=1), and
user u2 can view only the data of province 2 (province_id=2).

Implementation
You can create a view to meet the requirements in the preceding scenario. The
procedure is as follows:

Step 1 After connecting to the cluster as user dbadmin, create views v1 and v2 for
provinces 1 and 2 in dbadmin mode.

Run the CREATE VIEW statement to create view v1 for querying the data of
province 1.
CREATE VIEW v1 AS
 SELECT * FROM customer WHERE province_id=1;

Run the CREATE VIEW statement to create view v2 for querying the data of
province 2.

Data Warehouse Service
Best Practices 7 Security Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 193

CREATE VIEW v2 AS
 SELECT * FROM customer WHERE province_id=2;

Step 2 Create users u1 and u2.
CREATE USER u1 PASSWORD '*********';
CREATE USER u2 PASSWORD '*********';

Step 3 Run the GRANT statement to grant the data query permission to the target user.

Grant the permission on the schema view corresponding to u1 and u2.

GRANT USAGE ON schema dbadmin TO u1,u2;

Grant u1 the permission to query data of province 1 in the v1 view.

GRANT SELECT ON v1 TO u1;

Grant u2 the permission to query data of province 2 in the V2 view.

GRANT SELECT ON v2 TO u2;

----End

Verifying the Query Result
● Switch to the u1 account to connect to the cluster.

SET ROLE u1 PASSWORD '*********';

This interface is used to query the v1 view. u1 can query only the v1 view
data.
SELECT * FROM dbadmin.v1;
 id | province_id | user_info
----+-------------+-----------
 1 | 1 | Alice
 2 | 1 | Jack
(2 rows)

If u1 attempts to query data in view v2, the following error information is
displayed:
SELECT * FROM dbadmin.v2;
ERROR: SELECT permission denied to user "u1" for relation "dbadmin.v2"

The result shows that user u1 can view only the data of province 1
(province_id=1).

● Use the u2 account to connect to the cluster.
SET ROLE u2 PASSWORD '*********';

This interface is used to query the v2 view. u2 can query only the v2 view
data.
SELECT * FROM dbadmin.v2;
 id | province_id | user_info
----+-------------+-----------
 3 | 2 | Jack
(1 row)

If u2 attempts to query data in view v1, the following error information is
displayed:
SELECT * FROM dbadmin.v1;
ERROR: SELECT permission denied to user "u2" for relation "dbadmin.v1"

The result shows that user u2 can view only the data of province 2
(province_id=2).

Data Warehouse Service
Best Practices 7 Security Management

Issue 04 (2024-03-05) Copyright © Huawei Technologies Co., Ltd. 194

	Contents
	1 Import and Export
	1.1 Best Practices for Data Import
	1.2 GDS Practice Guide
	1.3 Tutorial: Importing Data from OBS to a Cluster
	1.4 Tutorial: Using GDS to Import Data from a Remote Server
	1.5 Tutorial: Importing Remote GaussDB(DWS) Data Sources

	2 Data Migration
	2.1 Migrating Data From Oracle to GaussDB(DWS)
	2.1.1 Migration Process
	2.1.2 Required Tools
	2.1.3 Migrating Table Definitions
	2.1.3.1 Installing the PL/SQL Developer on the Local Host
	2.1.3.2 Migrating Table Definitions and Syntax

	2.1.4 Migrating Full Table Data
	2.1.4.1 Configuring a GaussDB(DWS) Data Source Connection
	2.1.4.2 Configuring an Oracle Data Source Connection
	2.1.4.3 Migrating Tables
	2.1.4.4 Verification

	2.1.5 Migrating SQL Statements
	2.1.5.1 Migrating Syntax
	2.1.5.2 Verification

	2.2 Synchronizing MySQL Table Data to GaussDB(DWS) in Real Time
	2.3 Using DLI Flink Jobs to Write Kafka Data to GaussDB(DWS) in Real Time
	2.4 Practice of Data Interconnection Between Two DWS Clusters Based on GDS

	3 Table Optimization Practices
	3.1 Table Structure Design
	3.2 Table Optimization Overview
	3.3 Selecting a Table Model
	3.4 Step 1: Creating an Initial Table and Loading Sample Data
	3.5 Step 2: Testing System Performance of the Initial Table and Establishing a Baseline
	3.6 Step 3: Optimizing a Table
	3.7 Step 4: Creating Another Table and Loading Data
	3.8 Step 5: Testing System Performance in the New Table
	3.9 Step 6: Evaluating the Performance of the Optimized Table
	3.10 Appendix: Table Creation Syntax
	3.10.1 Usage
	3.10.2 Creating an Initial Table
	3.10.3 Creating a Another Table After Design Optimization
	3.10.4 Creating a Foreign Table

	4 Advanced Features
	4.1 Creating a Time Series Table
	4.2 Best Practices of Hot and Cold Data Management
	4.3 Best Practices for Automatic Partition Management
	4.4 GaussDB (DWS) View Decoupling and Automatic Rebuilding
	4.5 Best Practices of Column-Store Delta Tables

	5 Database Management
	5.1 Best Practices of Resource Management
	5.2 Excellent Practices for SQL Queries
	5.3 Analyzing SQL Statements that Are Being Executed
	5.4 Excellent Practices for Data Skew Queries
	5.4.1 Real-Time Detection of Storage Skew During Data Import
	5.4.2 Quickly Locating the Tables That Cause Data Skew

	5.5 Best Practices for User Management
	5.6 Viewing Table and Database Information
	5.7 Best Practices of Database SEQUENCE

	6 Sample Data Analysis
	6.1 Checkpoint Vehicle Analysis
	6.2 Supply Chain Requirement Analysis of a Company
	6.3 Operations Status Analysis of a Retail Department Store

	7 Security Management
	7.1 Role-based Access Control (RBAC)
	7.2 Encrypting and Decrypting Data Columns
	7.3 Managing and Controlling Data Permissions Through Views

