Data Encryption Workshop

Best Practices

Issue 10
Date 2025-09-15

V.

HUAWEI

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.

Address: Huawei Cloud Data Center Jiaoxinggong Road
Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Data Encryption Workshop

Best Practices Contents

Contents
T Key ManagemeEnt SEIVICE....... . uieiirieienneeeecnneneecnnesnesansssssasessssssesssssssssessesssssasssssssssssassasss 1
1.1 Using KMS to ENCrypt OFffliNg Data......ccuoieuieeiieieieieeiceeeeisises st sses s sssss s s s st sassesssssassssnsanes 1
1.1.1 Encrypting or Decrypting @ Small AMouNt Of Data.......cceueueeeieiiiiirieeeeeeeeisis sttt saeses 1
1.1.2 Encrypting or Decrypting a Large AMOUNt Of Data......ccccoorreririnenininsisesississssississssse e sssssssssssssssssssssssnsanes 4
1.2 Using KMS to Encrypt and Decrypt Data for CloUd SErVICES........eiieirieeieisieesieestessiesssesessesesseseesseesans 12
T.2.T OVRIVIBW....e ettt ettt ettt ettt bt s et s et st b b et e b e b et e ae et ettt ae b e st e aebebetaeassesetaen 12
1.2.2 ENCrypting DAt iN ECS...... ettt ettt sttt sttt st eaasseeas 14
1.2.3 ENCrypting DAta N EVS ...ttt sttt as st ss s s st s s s s esssansssessssssssessnsssssans 15
1.2.4 ENCryPLiNG DAt iN IMS....e ettt ettt sttt ass s st s ettt as s s st enassensssenssssnsns 19
1.2.5 ENCrypting Data iN OBS..... ettt sttt sttt sttt sttt sttt seens 22
1.2.6 ENCrypting @n RDS DB INSTANCE........coovririieerieirieeieirecsietees sttt sssssss e assss s sssssssssesssssssssssssssssssssssssesessssssssesans 29
1.2.7 ENCrypting @ DDS DB INSTANCE......coieiriririreeieeeiees ettt st ss s sssss s ssssssssssssssssssssssssessssesssssssssssssssens 29
1.3 Using the Encryption SDK to Encrypt and Decrypt LOCAl Files........ooeruririnrinrneneneniees e 30
1.4 Encrypting and Decrypting Data Through Cross-region DR...........ccirinreenieeseesees et sssesssenens 33
1.5 USiNg KIMIS t0 ProteCt File INEEGITTY....oieieeieeieieirieeiseteeteee sttt ss bbb sas bbbt s s sassansanses 36
2 Cloud Secret ManagemMeENt SEIVICE.........ccirruiererriennnsusssensnnessssanssssssssssssassssssnsossssssssssssssns 40
2.1 Using CSMS to Change Hard-coded Database ACCOUNt PASSWOITS.........ccocviuiurriereeeenieninisssiesissseseesessanssssanes 40
2.2 Using CSMS to Prevent AK/SK LEAKAGE. ...ttt ssssssssssssssssssssssssssssssssssses 44
2.3 SEIVICES USING CSIMS.....ceiiieieterieis ettt st s ss e st s s st ses e st e b et s ssesesesssssssssssssssssnssssssnsesnsnns 50
2.3.7T CCE Srvers USING CSIMS....... ettt ettt ettt b ettt s et et easasbessean 50
IS 1= 1] - | OO RORRR 52
3.1 Retrying Failed DEW Requests by Using Exponential Backoff.........cccooieieieieirinninnieseeeeeesisesis e 52

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Data Encryption Workshop
Best Practices 1 Key Management Service

Key Management Service

1.1 Using KMS to Encrypt Offline Data

1.1.1 Encrypting or Decrypting a Small Amount of Data

Scenario
You can use online tools on the Key Management Service (KMS) console or call
the necessary KMS APIs to directly encrypt or decrypt small-size data with a
customer master key (CMK), such as passwords, certificates, or phone numbers.
Restrictions

Currently, a maximum of 4 KB of data can be encrypted or decrypted in this way.

Encryption and Decryption Using Online Tools
e Encrypting data

Step 1 Log in to the DEW console.
Step 2 Click ' in the upper left corner and select a region or project.

Step 3 Click the name of the target custom key to access the key details page. Click the
Tool tab.

Step 4 Click Encrypt. In the text box on the left, enter the data to be encrypted, as shown
in Figure 1-1.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://console.eu.huaweicloud.com/dew/?locale=en-us#/dew/

Data Encryption Workshop
Best Practices 1 Key Management Service

Figure 1-1 Encrypting data

Basic Information Tool Rotation Policy Grants Tags Region Attributes Alias
Online Tool
Use the current key to encrypt your data. The system will automatically identify and use this key when you decrypt the data.
sfadfsisa
10512
o)
Execute (Cear)
Encryption/Decryption Result
Encryption result
BQB MuhUcDquaC50GGAX3C: j TXPOWJMTK10GYIY2NmOCOOZWY ZLThIN2YIZmRIY TVJOGEWOGVhAAAAABOZ GBCWFRQTEREQDWAND AsKCQgHBgUE AwiBSAQOREke OzVwTui

15RUZMIOFXI04RICNESzDIAG+Q= [}

Decryption result (original plaintext)

ecryption result (Base64-encoded;

I o

Step 5 Click Execute. The encrypted data is displayed in the Encryption/Decryption
Result area.

(10 NOTE

e Use the current CMK to encrypt the data.
e To clear your input, click Clear.

e In the Encryption result area, click O'to copy the encrypted data and save it to a local
file.

----End
e Decrypting data
Step 1 Click a non-default key in the Enabled state and go to the Tool tab.

Step 2 Click Decrypt and enter the data to be decrypted in the text box, as shown in
Figure 1-2.

(11 NOTE

e The tool will identify the original encryption CMK and use it to decrypt the data.
e If the key has been deleted, the decryption will fail.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Data Encryption Workshop

Best Practices

1 Key Management Service

Figure 1-2 Decrypting data

Basic Information Tool Rotation Policy Grants Tags Region Attributes Alias

Online Tool

Use

the current key to encrypt your data. The system will automatically idenfify and use this key when you decrypt the data.

EQBNAL 2DIPAATCMS[ZPZWdYk++ TNUIRPPZWEECFCBDKKAQR/VRZKCYSY mMx OTUAZI]Y 2V ALTRIZVIOGU3ZI JNNWMAYTA4Z) QTENEQDWANDASKCQIHBQUEAWIBeb00TAPTWFRXO0
yEWeyw HowR ="

e
... 3§

Encryption/Decryption Result

Decry

Deary

dsfafdssa ('

ncryption resuit

ption result (original plaintex}

plion result (Base64-encoded

ZHNMYWZke3Nh (5

188/5,648

Clear

Step 3 Click Execute. The decrypted data is displayed in the Encryption/Decryption
Result area.

(11 NOTE

e In the Decryption result area, click 0'to copy the decrypted data and save it to a local

file.

e The information to be encrypted using commands or APIs cannot contain special
characters. Otherwise, the decryption result may fail to be displayed on the console.

e Enter the plaintext on the console, the text will be encoded to Base64 format before

encryption.

The decryption result returned via APl will be in Base64 format. Perform Base64

decoding to obtain the plaintext entered on the console.

--—-End

Calling APIs for Encryption and Decryption

Figure 1-3 shows an example about how to call KMS APIs to encrypt and decrypt
an HTTPS certificate.

Issue 10 (2025-09-15)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

Data Encryption Workshop
Best Practices 1 Key Management Service

Figure 1-3 Encrypting and decrypting an HTTPS certificate

| User ! | KMS !
| —— 1.Create a CMK. ; |
e ; ~ | e
! T ' i
i . ™~ | !
| s | !
| [, S ' !
! e ' n Iy ! !
| O | D H“‘\.H\ HH\“&_‘H E E
ey ™~ i
™~ 2. Encrypt the !
i certificate. ! |
3. Deploy the i . S !
certificate. ! H‘“m‘ x‘“‘u“: '
i ™~ TK“'\I\ |
| L |
: — P |
! hod 4. Decrypt the
— certificate. i !
HTTP server ! 5 CMK !

o Ciphertext Plaintext

— certificate certificate

The procedure is as follows:

1. Create a CMK on KMS.

2. Call the KMS API for encrypting a data key and use the specified CMK to
encrypt the plaintext certificate.

3. Deploy the certificate onto a server.
4. The server calls the KMS API for decrypting a data key and decrypts the
ciphertext certificate.

(10 NOTE

If you enter and encrypt text on the console, the text will be encoded to Base64
format before being transferred to the backend for encryption. The decryption result
returned via API will be in Base64 format. Text encrypted via APl cannot be decrypted
on the console, or garbled characters will be returned.

1.1.2 Encrypting or Decrypting a Large Amount of Data

Scenario

If you want to encrypt or decrypt large volumes of data, such as pictures, videos,
and database files, you can use envelope encryption, which allows you to encrypt
and decrypt files without having to transfer a large amount of data over the
network.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/eu/api-dew/EncryptDatakey.html
https://support.huaweicloud.com/eu/api-dew/DecryptDatakey.html

Data Encryption Workshop

Best Practices 1 Key Management Service

Encryption and Decryption Processes
e Large-size data encryption

Figure 1-4 Encrypting a local file

User LOKM
- 1.Create a CMK. ——+—=
| N |
3. Encrypt the - \\\ E
plaintext file. e - '
N o |

! ! 2. Create a DEK. !
! P L !
< P NN
: : : Sy |
_____________________________ ! : \\ :

4. SZDll’E the | % ~

file arld key. \\

Persistent
storage device

x‘ Ciphertext file ? Ciphertext DEK
Plaintext file Plaintext DEK
The process is as follows:
a. Create a CMK on KMS.

b. Call the create-datakey API of KMS to create a DEK. A plaintext DEK and
a ciphertext DEK will be generated. The ciphertext DEK is generated when

you use a CMK to encrypt the plaintext DEK.

c. Use the plaintext DEK to encrypt a plaintext file, generating a ciphertext

file.

d. Store the ciphertext DEK and the ciphertext file together in a permanent

storage device or a storage service.
e Large-size data decryption

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Data Encryption Workshop
Best Practices 1 Key Management Service

Figure 1-5 Decrypting a local file

User KMS
; ~! i @
1 ™ :
* ! S
\.
=7
2. Decrypt the
) i ciphertext DEK.
1. Obtain the | ~ ~
- . i ~ N
ciphertext file and | ~§ \
ciphertext DEK. m ! \\ o |
| . i
| ! NN

3. Decrypt the i E\\
ciphertext file. | ;

o= l ~ 9
(s —|
[— |
(o — |
o |
Persistent i CMK
storage device i
h" Ciphertext file (’F Ciphertext DEK

Plaintext file Plaintext DEK

The process is as follows:

a. Read the ciphertext DEK and the ciphertext file from the permanent
storage device or storage service.

b. Call the decrypt-datakey APl of KMS and use the corresponding CMK
(the one used for encrypting the DEK) to decrypt the ciphertext DEK.
Then you get the plaintext DEK.

If the CMK is deleted, the decryption will fail. Properly keep your CMKs.
c. Use the plaintext DEK to decrypt the ciphertext file.

APIs Related to Envelope Encryption

You can use the following APIs to encrypt and decrypt data.

API Description

Creating a DEK Create a DEK.

Encrypting a DEK Encrypt a DEK with the specified
master key.

Decrypting a DEK Decrypt a DEK with the specified
master key.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/eu/api-dew/CreateDatakey.html
https://support.huaweicloud.com/eu/api-dew/EncryptDatakey.html
https://support.huaweicloud.com/eu/api-dew/DecryptDatakey.html

Data Encryption Workshop
Best Practices 1 Key Management Service

Encrypting a Local File

Create a CMK on the management console. For details, see Creating a Key.
2. Prepare basic authentication information.

- ACCESS_KEY: access key of the Huawei ID

- SECRET_ACCESS_KEY: secret access key of the Huawei ID

- PROJECT_ID: project ID of a Huawei Cloud site. For details, see
Obtaining Account, IAM User, Group, Project, Region, and Agency
Information.

- KMS_ENDPOINT: endpoint for accessing KMS.

- There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

- In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

3. Encrypt a local file.
The example code is shown below.

- CMK s the ID of the key created on the Huawei Cloud management
console.

- The plaintext data file is FirstPlainFile.jpg.
- The data file generated after encryption is SecondEncryptFile.jpg.

import com.huaweicloud.sdk.core.auth.BasicCredentials;

import com.huaweicloud.sdk.kms.v1.KmsClient;

import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequestBody;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyResponse;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequestBody;

import javax.crypto.Cipher;

import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;
import java.io.lOException;

import java.nio.file.Files;

import java.security.SecureRandom;

*k

* Use a DEK to encrypt and decrypt files.
* To enable the assert syntax, add -ea to enable VM_OPTIONS.

*

public class FileStreamEncryptionExample {

private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");

private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
private static final String PROJECT_ID = "<ProjectI|D>";

private static final String KMS_ENDPOINT = "<KmsEndpoint>";

*k

* AES algorithm flags:
* - AES_KEY_BIT_LENGTH: bit length of the AES256 key

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html

Data Encryption Workshop
Best Practices

1 Key Management Service

* - AES_KEY_BYTE_LENGTH: byte length of the AES256 key

* - AES_ALG: AES256 algorithm. In this example, the Group mode is GCM and the padding
mode is PKCS5Padding.

* - AES_FLAG: AES algorithm flag

* - GCM_TAG_LENGTH: GCM tag length

* - GCM_IV_LENGTH: length of the GCM initial vector

*/

private static final String AES_KEY_BIT_LENGTH = "256";

private static final String AES_KEY_BYTE_LENGTH = "32";

private static final String AES_ALG = "AES/GCM/PKCS5Padding";

private static final String AES_FLAG = "AES";

private static final int GCM_TAG_LENGTH = 16;

private static final int GCM_IV_LENGTH = 12;

public static void main(final String[] args) {
/] ID of the CMK you created on the Huawei Cloud management console
final String keyld = args[0];

encryptFile(keyld);
}

*k

* Using a DEK to encrypt and decrypt a file

* @param keyld: user CMK 1D
*/
static void encryptFile(String keyld) {
// 1. Prepare the authentication information for accessing Huawei Cloud.
final BasicCredentials auth = new
BasicCredentials().withAk (ACCESS_KEY).withSk(SECRET_ACCESS_KEY)
.withProjectld (PROJECT_ID);

// 2. Initialize the SDK and transfer the authentication information and the address for the
KMS to access the client.

final KmsClient kmsClient =
KmsClient.newBuilder().withCredential(auth).withEndpoint(KMS_ENDPOINT).build();

// 3. Assemble the request message for creating a DEK.
final CreateDatakeyRequest createDatakeyRequest = new CreateDatakeyRequest()
.withBody (new
CreateDatakeyRequestBody().withKeyld(keyld).withDatakeyLength(AES_KEY_BIT_LENGTH));

// 4. Create a DEK.
final CreateDatakeyResponse createDatakeyResponse =
kmsClient.createDatakey(createDatakeyRequest);

// 5. Receive the created DEK information.

// It is recommended that the ciphertext key and key ID be stored locally so that the
plaintext key can be easily obtained for data decryption.

// The plaintext key should be used immediately after being created. Before using it,
convert the hexadecimal plaintext key to a byte array.

final String cipherText = createDatakeyResponse.getCipherText();

final byte[] plainKey = hexToBytes(createDatakeyResponse.getPlainText());

// 6. Prepare the file to be encrypted.
// inFile: file to be encrypted
// outEncryptFile: file generated after encryption

final File inFile = new File(" FirstPlainFile.jpg");
final File outEncryptFile = new File("SecondEncryptFile.jpg");

// 7. If the AES algorithm is used for encryption, you can create an initial vector.
final byte[] iv = new byte[GCM_IV_LENGTH];

final SecureRandom secureRandom = new SecureRandom();
secureRandom.nextBytes(iv);

// 8. Encrypt the file and store the encrypted file.
doFileFinal(Cipher.ENCRYPT_MODE, inFile, outEncryptFile, plainKey, iv);

Issue 10 (2025-09-15)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Data Encryption Workshop
Best Practices 1 Key Management Service

}

/**
* Encrypting and decrypting a file

* @param cipherMode: Encryption mode. It can be Cipher.ENCRYPT_MODE or
Cipher.DECRYPT_MODE.

* @param infile: file to be encrypted or decrypted

* @param outFile: file generated after encryption and decryption

* @param keyPlain: plaintext key

* @param iv: initial vector

static void doFileFinal(int cipherMode, File infile, File outFile, byte[] keyPlain, byte[] iv) {

try (BufferedinputStream bis = new BufferedinputStream(new FilelnputStream(infile));
BufferedOutputStream bos = new BufferedOutputStream(new
FileOutputStream(outFile))) {
final byte[] bytln = new byte[(int) infile.length()];
final int fileLength = bis.read(bytIn);

assert fileLength > 0;

final SecretKeySpec secretKeySpec = new SecretKeySpec(keyPlain, AES_FLAG);
final Cipher cipher = Cipher.getinstance(AES_ALG);
final GCMParameterSpec gcmParameterSpec = new
GCMParameterSpec(GCM_TAG_LENGTH * Byte.SIZE, iv);

cipher.init(cipherMode, secretKeySpec, gcmParameterSpec);
final byte[] bytOut = cipher.doFinal(bytIn);
bos.write(bytOut);

} catch (Exception e) {
throw new RuntimeException(e.getMessage());

}

}

}

Decrypting a Local File

1. Prepare basic authentication information.
- ACCESS_KEY: access key of the Huawei ID
- SECRET_ACCESS_KEY: secret access key of the Huawei ID

- PROIJECT_ID: project ID of a Huawei Cloud site. For details, see
Obtaining Account, IAM User, Group, Project, Region, and Agency
Information.

- KMS_ENDPOINT: endpoint for accessing KMS.

- There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

- In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

2. Decrypt a local file.
The example code is shown below.

- CMK s the ID of the key created on the Huawei Cloud management
console.

- The data file generated after encryption is SecondEncryptFile.jpg.

- The data file generated after encryption and decryption is
ThirdDecryptFile.jpg.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html

Data Encryption Workshop
Best Practices 1 Key Management Service

import com.huaweicloud.sdk.core.auth.BasicCredentials;

import com.huaweicloud.sdk.kms.v1.KmsClient;

import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequestBody;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyResponse;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequestBody;

import javax.crypto.Cipher;

import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;
import java.io.lOException;

import java.nio.file.Files;

import java.security.SecureRandom;

/**
* Use a DEK to encrypt and decrypt files.
* To enable the assert syntax, add -ea to enable VM_OPTIONS.

*

public class FileStreamEncryptionExample {

private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");

private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
private static final String PROJECT_ID = "<ProjectID>";

private static final String KMS_ENDPOINT = "<KmsEndpoint>";

/**

* AES algorithm flags:

* - AES_KEY_BIT_LENGTH: bit length of the AES256 key

* - AES_KEY_BYTE_LENGTH: byte length of the AES256 key

* - AES_ALG: AES256 algorithm. In this example, the Group mode is GCM and the padding
mode is PKCS5Padding.

* - AES_FLAG: AES algorithm flag

* - GCM_TAG_LENGTH: GCM tag length

* - GCM_IV_LENGTH: length of the GCM initial vector

*/

private static final String AES_KEY_BIT_LENGTH = "256";

private static final String AES_KEY_BYTE_LENGTH = "32";

private static final String AES_ALG = "AES/GCM/PKCS5Padding";

private static final String AES_FLAG = "AES";

private static final int GCM_TAG_LENGTH = 16;

private static final int GCM_IV_LENGTH = 12;

public static void main(final String[] args) {
/] ID of the CMK you created on the Huawei Cloud management console
final String keyld = args[0];
// // Returned ciphertext DEK after DEK creation
final String cipherText = args[1];

decryptFile(keyld, cipherText);
}

*k

* Using a DEK to encrypt and decrypt a file

* @param keyld: user CMK 1D

* @param cipherText: ciphertext data key

*/

static void decryptFile(String keyld, String cipherText) {
// 1. Prepare the authentication information for accessing Huawei Cloud.
final BasicCredentials auth = new

BasicCredentials().withAk(ACCESS_KEY).withSk(SECRET_ACCESS_KEY)
.withProjectld (PROJECT_ID);

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Data Encryption Workshop
Best Practices 1 Key Management Service

// 2. Initialize the SDK and transfer the authentication information and the address for the
KMS to access the client.

final KmsClient kmsClient =
KmsClient.newBuilder().withCredential(auth).withEndpoint(KMS_ENDPOINT).build();

// 3. Prepare the file to be encrypted.

// inFile: file to be encrypted

// outEncryptFile: file generated after encryption

// outDecryptFile: file generated after encryption and decryption
final File inFile = new File(" FirstPlainFile.jpg");

final File outEncryptFile = new File("SecondEncryptFile.jpg");
final File outDecryptFile = new File(" ThirdDecryptFile.jpg");

// 4. Use the same initial vector for AES encryption and decryption.
final byte[] iv = new byte[GCM_IV_LENGTH];

// 5. Assemble the request message for decrypting the DEK. cipherText is the ciphertext
DEK returned after DEK creation.
final DecryptDatakeyRequest decryptDatakeyRequest = new DecryptDatakeyRequest()
.withBody(new DecryptDatakeyRequestBody()
.withKeyld(keyld).withCipherText(cipherText).withDatakeyCipherLength(AES_KEY
_BYTE_LENGTH));

// 6. Decrypt the DEK and convert the returned hexadecimal plaintext key into a byte array.
final byte[] decryptDataKey =
hexToBytes(kmsClient.decryptDatakey(decryptDatakeyRequest).getDataKey());

// 7. Decrypt the file and store the decrypted file.
// ivat the end of the statement is the initial vector created in the encryption example.
doFileFinal(Cipher.DECRYPT_MODE, outEncryptFile, outDecryptFile, decryptDataKey, iv);

// 8. Compare the original file with the decrypted file.
assert getFileSha256Sum(inFile).equals(getFileSha256Sum (outDecryptFile));

}

/**
* Encrypting and decrypting a file

* @param cipherMode: Encryption mode. It can be Cipher.ENCRYPT_MODE or
Cipher.DECRYPT_MODE.

* @param infile: file to be encrypted or decrypted

* @param outFile: file generated after encryption and decryption

* @param keyPlain: plaintext key

* @param iv: initial vector

static void doFileFinal(int cipherMode, File infile, File outFile, byte[] keyPlain, byte[] iv) {

try (BufferedinputStream bis = new BufferedinputStream(new FilelnputStream(infile));
BufferedOutputStream bos = new BufferedOutputStream(new
FileOutputStream(outFile))) {
final byte[] bytln = new byte[(int) infile.length()];
final int fileLength = bis.read(bytln);

assert fileLength > 0;

final SecretKeySpec secretKeySpec = new SecretKeySpec(keyPlain, AES_FLAG);

final Cipher cipher = Cipher.getinstance(AES_ALG);

final GCMParameterSpec gcmParameterSpec = new
GCMParameterSpec(GCM_TAG_LENGTH * Byte.SIZE, iv);

cipher.init(cipherMode, secretKeySpec, gcmParameterSpec);

final byte[] bytOut = cipher.doFinal(bytIn);

bos.write(bytOut);

} catch (Exception e) {
throw new RuntimeException(e.getMessage());

}

/**

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Data Encryption Workshop
Best Practices 1 Key Management Service

* Converting a hexadecimal string to a byte array

* @param hexString: a hexadecimal string
* @return: byte array
static byte[] hexToBytes(String hexString) {
final int stringLength = hexString.length();
assert stringLength > 0;
final byte[] result = new byte[stringLength / 2];
intj=0;
for (inti = 0; i < stringLength; i += 2) {
result[j++] = (byte) Integer.parselnt(hexString.substring(i, i + 2), 16);

return result;

}

*k

* Calculate the SHA256 digest of the file.
* @param file
* @return SHA256 digest
*/
static String getFileSha256Sum (File file) {
int length;
MessageDigest sha256;
byte[] buffer = new byte[1024];
try {
sha256 = MessageDigest.getinstance("SHA-256");
} catch (NoSuchAlgorithmException e) {
throw new RuntimeException(e.getMessage());

try (FilelnputStream inputStream = new FilelnputStream(file)) {
while ((length = inputStream.read(buffer)) '=-1) {
sha256.update(buffer, 0, length);

}
return new BigInteger(1, sha256.digest()).toString(16);

} catch (IOException e) {
throw new RuntimeException(e.getMessage());
}
}
}

1.2 Using KMS to Encrypt and Decrypt Data for Cloud
Services

1.2.1 Overview

After your cloud services are integrated with KMS, to encrypt data on cloud, you
simply need to select a CMK managed by KMS for encryption.

You can select a default key automatically created by a cloud service through
KMS, or a key you created or imported to KMS. For details, see What Is a
Customer Master Key?

This section describes how to use KMS for encryption.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://support.huaweicloud.com/eu/dew_faq/dew_01_0044.html
https://support.huaweicloud.com/eu/dew_faq/dew_01_0044.html

Data Encryption Workshop

Best Practices 1 Key Management Service

Table 1-1 Cloud services integrated with KMS

Category

Service

Encryption Mode

Computing

Elastic Cloud
Server (ECS)

You can encrypt an image or EVS disk in ECS.

e When creating an ECS, if you select an
encrypted image, the system disk of the
created ECS automatically has encryption
enabled, with its encryption mode same
as the image encryption mode.

e When creating an ECS, you can encrypt
added data disks.

Image
Management
Service (IMS)

Encrypting Data in IMS

Storage

Obiject Storage
Service (OBS)

Encrypting Data in OBS

Elastic Volume
Service (EVS)

Encrypting Data in EVS

Volume Backup
Service (VBS)

VBS generally creates online backups for a
single EVS disk (system or data disk) of the
server. If it is encrypted, its backup data will
be stored in encrypted mode.

Cloud Server
Backup Service
(CSBS)

CSBS mainly creates consistency backups
online for all EVS disks of the server. CSBS
backups will also be displayed on the VBS
page. If it is encrypted, its backup data will
be stored in encrypted mode.

Database

RDS for MySQL

RDS for
PostgreSQL

RDS for SQL Server

Encrypting an RDS DB Instance

Document
Database Service
(DDS)

Encrypting a DDS DB Instance

Encryption Process

Huawei Cloud services use the envelope encryption technology and call KMS APIs
to encrypt service resources. Your CMKs are under your own management. With
your grant, Huawei Cloud services use a specific CMK of yours to encrypt data.

Issue 10 (2025-09-15)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

13

Data Encryption Workshop

Best Practices

1 Key Management Service

Figure 1-6 How Huawei Cloud uses KMS for encryption

I
3. Encrypt the
plaintext file.

M Ciphertext file ? Ciphertext DEK

Plaintext file Plaintext DEK

The encryption process is as follows:

1.
2.

Create a CMK on KMS.

A Huawei Cloud service calls the create-datakey API of the KMS to create a
DEK. A plaintext DEK and a ciphertext DEK are generated.

(1] NOTE

Ciphertext DEKs are generated when you use a CMK to encrypt the plaintext DEKs.

The Huawei Cloud service uses the plaintext DEK to encrypt a plaintext file,
generating a ciphertext file.

The Huawei Cloud service saves the ciphertext DEK and the ciphertext file
together in a permanent storage device or a storage service.

(11 NOTE

When users download the data from the Huawei Cloud service, the service uses the CMK
specified by KMS to decrypt the ciphertext DEK, uses the decrypted DEK to decrypt data,
and then provides the decrypted data for users to download.

1.2.2 Encrypting Data in ECS

Overview

KMS supports one-click encryption for ECS. The images and data disks of ECS can
be encrypted.

Issue 10 (2025-09-15)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Data Encryption Workshop
Best Practices 1 Key Management Service

e When creating an ECS, if you select an encrypted image, the system disk of
the created ECS automatically has encryption enabled, with its encryption
mode same as the image encryption mode.

e When creating an ECS, you can encrypt added data disks.
For details about how to encrypt an image, see Encrypting Data in IMS.

For details about how to encrypt a data disk, see Encrypting Data in EVS.

1.2.3 Encrypting Data in EVS

KMS encrypts created cloud disks to ensure data security.

(1 NOTE

e The encryption attribute of a disk cannot be changed after the disk is created.
e For details about how to create an encrypted disk, see Purchasing an EVS Disk.

e Disk encryption is used for data disks only. System disk encryption relies on the image.
For details, see Encrypting Data in IMS.

Scenario

You can use the key provided by KMS to encrypt data on the disk as required
during EVS disk creation. You do not need to build or maintain the key
management infrastructure, ensuring security and convenience.

KMS keys include default keys, custom keys, and shared keys.

e Default key: The key that is automatically created by EVS through KMS and
named evs/default.

The default key cannot be disabled and does not support scheduled deletion.

e Custom key: Keys created by users. You can select an existing key or create
one. For details, see "Key Management Service" > "Creating a Key" in Data
Encryption Workshop (DEW) User Guide.

(10 NOTE

You will be billed for the custom keys you use. If pay-per-use keys are used, ensure
that you have sufficient account balance. If yearly/monthly keys are used, renew your
order timely. Or, your services may be interrupted and data may never be restored if
encrypted disks become inaccessible.

e Shared key: You can create KMS resources using DEW to share your keys with
other accounts. For details, see "Permission Management" > "Sharing" >
"Shared KMS" in Data Encryption Workshop (DEW) User Guide.

When an encrypted disk is attached, EVS accesses KMS, and KMS sends the data
key (DK) to the host memory for use. The disk uses the DK plaintext to encrypt
and decrypt disk 1/Os. The DK plaintext is only stored in the memory of the host
housing the ECS and is not stored persistently on the media. If the custom key is
deleted or disabled in KMS, the disk encrypted using the key can still use the DK
plaintext stored in the host memory. However, if the disk is detached, the DK
plaintext will be deleted from the memory, and the disk cannot be read or written.
Before you re-attach this encrypted disk, ensure that the key is enabled.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/eu/usermanual-evs/en-us_topic_0021738346.html

Data Encryption Workshop
Best Practices

1 Key Management Service

If disks are encrypted using a custom key, which is then disabled or scheduled for
deletion, the disks can no longer be read or written, and data on these disks may
never be restored. For details, see Table 1-2.

Table 1-2 Impact on encrypted disks after a custom key becomes unavailable

Custom
Key Status

Impact on

Encrypted Disks

Restoration Method

Disabled

Scheduled
deletion

Deleted

e If an encrypted
disk is then
attached to an
ECS, the disk can
still be used, but
normal read/write
operations are not
guaranteed
permanently.

e If an encrypted
disk is then
detached, re-
attaching the disk
will fail.

Enable the CMK. For details, see
Enabling a Key.

CMKs.

Cancel the scheduled deletion for the
CMK. For details, see Canceling the
Scheduled Deletion of One or More

Data on the disks can never be restored.

Resource and Cost Planning

Table 1-3 Resources and costs

Resource

Description

Monthly Fee

EVS

e Billing mode: Pay-per-

use

Purchase method: A
data disk can be
purchased along with
the server or separately.

For details about billing
rules, see Billing for
Disks.

KMS

Billing mode: Pay-per-
use

Key type: Default key. In
this case, ims/default is
used.

For details about billing
rules, see Billing Items.

User Permissions

e Security administrators (users having Security Administrator rights) can grant

the KMS access rights to EVS for using disk encryption.

e When a common user who does not have the Security Administrator rights
needs to use the disk encryption feature, the condition varies depending on

Issue 10 (2025-09-15)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/productdesc-evs/evs_01_0124.html
https://support.huaweicloud.com/eu/productdesc-evs/evs_01_0124.html
https://support.huaweicloud.com/eu/price-dew/dew_03_0006.html

Data Encryption Workshop
Best Practices 1 Key Management Service

whether the user is the first one ever in the current region or project to use
this feature.

- If the user is the first, the user must contact a user having the Security
Administrator rights to grant the KMS access rights to EVS. Then, the user
can use the disk encryption feature.

- If the user is not the first, the user can use the disk encryption function
directly.

From the perspective of a tenant, as long as the KMS access rights have been
granted to EVS in a region, all users in the same region can directly use the disk
encryption feature.

If there are multiple projects in the current region, the KMS access permissions
need to be granted to each project in this region.
Using KMS to Encrypt a Disk (on the Console)
Step 1 Log in to the EVS console.
Step 2 Click Buy Disk in the upper right corner of the EVS console.

Step 3 Select the Encryption check box.
1. Click More. The Encryption check box is displayed.

Figure 1-7 More

More Share SCsl Encryption

Advanced Settings Share (3) SCS (3 Encryption (%)

2. Create an agency.
Select Encryption. If EVS is not authorized to access KMS, the Create Agency

dialog box is displayed. In this case, click Yes to authorize it. After the
authorization, EVS can obtain KMS keys to encrypt and decrypt disks.

(10 NOTE

Before you use the disk encryption function, KMS access rights need to be granted to
EVS. If you have the right for granting, grant the KMS access rights to EVS directly. If
you do not have the permission, contact a user with the Security Administrator
permission for authorization, and then try again.

3. Select Encryption. The Encryption Settings dialog box is displayed.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://console.eu.huaweicloud.com/evs/?locale=en-us#/evs/

Data Encryption Workshop
Best Practices

1 Key Management Service

Figure 1-8 Encryption Settings dialog box

Encryption Setting x
o If KMS encryption is used, what you use beyond the free quota given by KMS will be billed. View X
pricing details
KMS Encryption IZEZI Select an existing key Enter a key ID
KMS Key W () View KMS Key
KMS Key ID o

Key Encryption Algorithm AES_256

Data Encryption Algorithm AES_256 W

4. Set KMS Encryption.
a. Select an existing key.
i. Click © and select the key used for encryption.
The key name identifies a key. You can select the following keys:
o Default keys: After the KMS access permission is granted to EVS,
the system automatically creates a default key evs/default.
o Custom keys: Keys you already have or just created. For details,
see Creating a Key.
ii. Click View KMS Key to view all keys.
iii. Click OK.
b. Enter a key ID.

Figure 1-9 Entering a key ID

Encryption Setting

o If KMS encryption is used, what you use beyond the free quota given by KMS will be billed. View X
pricing details

KMS Encryption Select an existing key IZEZI Enter a key ID

Key ID Enter a key

The KMS key must be in the current region.

Data Encryption Algorithm AES_256 v

s ™
C |

i. Enter the ID of the key used for encryption.
ii. Click OK.

Issue 10 (2025-09-15)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html

Data Encryption Workshop
Best Practices 1 Key Management Service

Step 4 Configure other parameters and click Buy now.

--—-End

Using KMS to Encrypt a Disk (Through an API)

You can call the required API of EVS to purchase an encrypted EVS disk. For
details, see Elastic Volume Service AP/ Reference.

1.2.4 Encrypting Data in IMS

You can use KMS encryption to create private images in Image Management
Service (IMS) to securely store data.

Scenario

The IMS server (image) is a template used to create servers or disks, including
public images, private images, shared images, and KooGallery images. When you
create a private image in IMS, you can use KMS encryption to ensure data security.

You can create an encrypted image in either of the following ways:

e Method 1: Create an encrypted image using an external image file.

When you register an image file as a private image, select KMS encryption
and select a key.

e Method 2: Create an encrypted image using an encrypted ECS.

When you use an ECS to create a private image, if the system disk of the ECS
is encrypted, the private image created using the ECS is also encrypted. The
key used for encrypting the image must be the same as that used for
encrypting the system disk.

This section describes how to use default KMS keys to encrypt IMS image files.

Solution Architecture

Figure 1-10 describes how to use KMS to encrypt an IMS image file.

Figure 1-10 Encrypting IMS

1. Prepare the image file.

2. Upload the image file.
) e Windows and Linus system
Creating an encrypted image disk images supported

using an external image fie T __ 3 Register the image (KMS encryption). ‘

4. Create an ECS using the image.

Creating an encrypted image

_ Encrypt the cloud disk.
using an encrypted ECS -

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Data Encryption Workshop
Best Practices

1 Key Management Service

Resource and Cost Planning

Table 1-4 Resources and costs

Resource

Description

Monthly Fee

OBS buckets

e Billing mode: Yearly/
Monthly

e Resource package type:
Standard storage
(multi-AZ)

e Specifications: 100 GB
e Quantity: 1

For details about billing
rules, see Billing Items.

IMS

e Image type: System disk
image

e Billing Mode: Free

Free. For details about

billing rules, see Billing.

KMS

e Billing mode: Pay-per-
use

e Key type: Default key. In
this case, ims/default is
used.

For details about billing
rules, see Billing Items.

Restrictions

e An encrypted image cannot be shared with other users.

e An encrypted image cannot be published in the Marketplace.

e The key used for encrypting an image cannot be changed.

e If the key used for encrypting an image is disabled or deleted, the image is
unavailable.

e The system disk of an ECS created using an encrypted image is also
encrypted, and its key is the same as the image key.

Method 1: Creating an Encrypted Image Using an External Image File

Step 1 Prepare an external image file.

e For Windows, prepare an image by referring to Windows Private Images.

e For Linux, prepare an image by referring to Linux Private Images.

Step 2 Upload the external image file to the OBS bucket. For details, see Creating a
Windows System Disk Image from an External Image File.

Step 3 Create a private image. Log in to the IMS console. Click the Private Images tab

and click Create Image in the upper right corner.

e Type: Select Import Image.

e Image Type: Select System disk image.

e Select Image File: Select the bucket that stores the image file in Step 2.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

20

https://support.huaweicloud.com/eu/price-obs/obs_42_0001.html
https://support.huaweicloud.com/eu/productdesc-ims/en-us_topic_0030713145.html
https://support.huaweicloud.com/eu/price-dew/dew_03_0006.html
https://support.huaweicloud.com/eu/usermanual-ims/en-us_topic_0047501112.html
https://support.huaweicloud.com/eu/usermanual-ims/en-us_topic_0047501133.html
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section2
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section2

Data Encryption Workshop

Best Practices

1 Key Management Service

e Encryption: Select KMS encryption. Select an existing key is selected by
default. The default key name is ims/default.

e For details about other parameters, see Creating a Windows System Disk

Image from an External Image File.

Figure 1-11 Encryption configuration

Encryption KNS encryption (2)

Select an existing key Enter a key 1D

Key Name ims/default v | (1 Create KMS key

View pricing details

Key 1D 86a4b7ad-2088-4203-a0c1-2a48a5683177

Step 4 Create an ECS using an image.

For details, see Creating an ECS from an Image.
Note for setting the parameters:

e Region: Select the region where the private image is located.

e Specifications: Select a flavor based on the OS type in the image and the OS

versions described in OSs Supported by Different Types of ECSs.

e Image: Select Private image and then choose the image created in Step 3
from the drop-down list.

e (Optional) Data Disk: Add a data disk, which is created using the image

created with the system disk image. In this way, the system disk and data disk
data of the VM on the original platform can be migrated to the current cloud

platform.

--—-End

Method 2: Creating an Encrypted Image Using an Encrypted ECS

Step 1
Step 2
Step 3

When you use an ECS to create a private image, if the system disk of the ECS is

encrypted, the private image created using the ECS is also encrypted. The key used

for encrypting the image is the one used for creating the system disk.

Encrypt the EVS system disk. For details, see Encrypting Data in EVS.

When purchasing an ECS, set Disk Type to the encrypted system disk in Step 1.
Create a private image. Log in to the IMS console. Click the Private Images tab
and click Create Image in the upper right corner.

e Type: Select Create Image.

e Image Type: Select System disk image.

e Source: Select the ECS purchased in Step 2 from the ECS list.

e For details about other parameters, see Creating a Windows System Disk
Image from an External Image File.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

21

https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section4
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section4
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0302.html
https://support.huaweicloud.com/eu/productdesc-ims/ims_01_0007.html
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section4
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section4

Data Encryption Workshop

Best Practices

1 Key Management Service

Step 4

Figure 1-12 Creating a private image
Image Type and Source

Region 9 v

Regions are g -specific and cannat be used across regions through internal network connections. For low network

latency and qu

0
Type Create Image Import Image @
2
 Image Type System disk image Ful-ECS image Data disk image @

Source ECS BMS
+ Only ECSs in the running or stopped state can be used fo create privale images.
» Before creating an image, configure and oplimize the ECS. Ensure Cloud-Init is installed if the ECS runs Linux and Cloudbase-Init is installed if the ECS
runs Windows. Learn more
« Do not parform any operation on the selected ECS or associated resources when an image is being created.
All statuses v Name ~ Entera keyword. Q Q
o Name os Status Private IP Address Created
v FE'\ ecs Huawei Cloud EulerOS 2 Running 10 Jun 04, 2024 16:34:08
~ ecs- -poc ‘Other Windows(64 bit) @ Stopped 10. Jun 04, 2024 14:26:44
Selected: ecs- lest | OS: Huawei Cloud EulerOS 2.0 64bit | System Disk: General Purpose SSD | 40 GiB
Buy ECS

Related Operations

Using KMS to encrypt a private image (API): You can call IMS APIs to create an
encrypted image. For details, see /mage Management Service APl Reference.

1.2.5 Encrypting Data in OBS

Scenario

You can use KMS to encrypt all or certain objects in an OBS bucket. When you use
KMS encryption in OBS, KMS envelope encryption ensures data encryption and
decryption without transmitting a large amount of data over the network.
Envelope encryption ensures the confidentiality of data transmission, the efficiency
and convenience of data decryption, and information security during object
upload and download.

e Full encryption: Encrypt all objects uploaded to an OBS bucket.

In this case, you only need to encrypt the OBS bucket, as the objects in the
bucket inherit the bucket encryption configurations by default. For details, see
Enabling Server-Side Encryption When Creating an OBS Bucket or
Enabling Encryption for a Created OBS Bucket.

After an OBS bucket is encrypted, Inherit from bucket is enabled by default
when you upload objects to the bucket. In this case, the OBS bucket and its
objects share the same encryption method. To change the encryption method
for the objects, disable Inherit from bucket when you upload the objects, and
modify the encryption method. For details, see Uploading Objects to an OBS
Bucket.

e Partial encryption: Encrypt only certain objects uploaded to an OBS bucket.

In this case, you do not need to encrypt the OBS bucket. Instead, you can
directly upload objects to the OBS bucket and configure the encryption
method. For details, see Uploading Objects to an OBS Bucket.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Data Encryption Workshop

Best Practices 1 Key Management Service

Figure 1-13 OBS encryption

Step 1- Encrypt the OBS bucket

Server-side encryption is enabled by default. The objects inherit the

—— Fullencryption (i) encryption policy of the bucket.

| Slep2 Upload objects fothe 0BS buckel. ¢ SEAS

'\ Modify the encryption method for objects. G

. : { SSE-0BS
OBS encryption &% AN
SSE-KNIS

 Upload objects o the OBS bucket. () Enable server-side encryption and select an encrypfion method. G
‘—— Parfial encrypfion % SSE-0BS

Solution Architecture

The following figures show how objects uploaded to OBS are encrypted and
decrypted.

e Encryption principle

Figure 1-14 Encryption principle

KMS .
Encryption SDK 0OBS

KMS generates ¢ The encrypted objects are @

a data key. T stored in OBS in ciphertext.

The uploaded objects are
encrypted into ciphertext through
encryption SDKs.

Objects

a. Obtain the encryption key.
Generate a data encryption key (DEK) on KMS to encrypt objects in an
OBS bucket.

b. Upload encrypted data to the OBS bucket.

The encryption SDKs encrypt the uploaded data plaintext using the
obtained DEK and store the encrypted object ciphertext to OBS.

e Decryption principle

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Data Encryption Workshop
Best Practices 1 Key Management Service

Figure 1-15 Decryption principle

OBS KMS
Download. KMS generates
i a data key.
. The object ciphertext is (Obtain the .
Encrypted decrypted using SDKs. Encryption original objects. Objects
objects SDK

a. Download the objects.
Download the encrypted object data from OBS.
b. Decrypt the objects.

The encrypted objects obtain the corresponding ciphertext DEK using the
encryption SDKs, and decrypt the ciphertext DEK using KMS to obtain the
decrypted original objects.

Constraints

A key in use cannot be deleted. Otherwise, the object encrypted with this key
cannot be downloaded.

Enabling Server-Side Encryption When Creating an OBS Bucket

Step 1 Log in to the OBS console.

Step 2 In the navigation pane on the left, choose Buckets. On the displayed page, click
Create Bucket in the upper right corner.

Step 3 Under Properties, enable Server-Side Encryption, select SSE-KMS for Encryption
Metod, and select an encryption key type.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://console.eu.huaweicloud.com/obs/?locale=en-us#/obs/

Data Encryption Workshop
Best Practices 1 Key Management Service

Figure 1-16 Encrypting data in OBS

Server-Side Encryption

(:) Enablg

If server-side encryption is enabled. new objects uploaded to this bucket wil be automafically encrypted. Afer a bucketis created, you can also change this encryption configuration on the buckefs ovenview pag

Encryption is recommended to keep data secure. Any requests filed over the quota imit will be billed. Pricing details (7

Encryption Method

Encryption keys managed by KMS are used to encrypt your abjects

Encryption Algorim

Choose the algoriiim you want to encrypt your data.

Encryption Key Type

Default Shared

You can use a custom key below o encrypt your objects

Project

Custom

AES256/ KMS-3117 v | [View KNS Keys

(11 NOTE

OBS uses the encryption key provided by KMS. You can select any of the following keys:

e Default key obs/default. If you do not have a default key, OBS automatically creates
one when you upload an object for the first time.

e Custom keys created on KMS. For details, see Creating a Key.

e Keys using the SM4 cryptographic algorithm, which is supported only in CN North-
Ulangab 1.

Step 4 Configure other parameters and click Create Now.

--—-End

Enabling Encryption for a Created OBS Bucket

Step 1 In the navigation pane on the left, choose Buckets. Click the target bucket and
access the Objects page.

Step 2 In the navigation pane on the left, choose Overview.
Step 3 In the Basic Configurations area, click Server-Side Encryption.

Step 4 In the displayed dialog box, enable server-side encryption, set Encryption Method
to SSE-KMS, and select an encryption key type.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html

Data Encryption Workshop
Best Practices 1 Key Management Service

Figure 1-17 Enabling server-side encryption

Server-Side Encryption

o Data is automatically encrypted upon upload, improving data storage security Learn more (4

Server-Side (} Enabled

Encryplion f server-side encryption is enabled, new objects uploaded to this bucket will be automatically
crypted. Learn more [(3

Encryption Method SSE-KMS SSE-OBS

Encryption keys managed by KMS are used to encrypt your objects. Leamn more (5

Encryption Algorithm E

Choose the algorithm you want to encrypt your data.

Encryption Key Type Default Shared

You can use a custom key below to encrypt your objects.
Project ~
Custom AES256 | KMS-4aca v Q1 | View KMS Keys
Bucket Key
Use an OBS bucket key for SSE-KMS. This will reduce the number of calls to KMS, which wil
lower encryption costs.
s ™
| Cancel) OK
. "y
{11 NOTE

OBS uses the encryption key provided by KMS. You can select any of the following keys:

e Default key obs/default. If you do not have a default key, OBS automatically creates
one when you upload an object for the first time.

e Custom keys created on KMS. For details, see Creating a Key.

e Keys using the SM4 cryptographic algorithm, which is supported only in CN North-
Ulangab 1.

Step 5 Configure other parameters and click OK.

--—-End

Uploading Objects to an OBS Bucket
Step 1 Click the target bucket in the list on the OBS console.
Step 2 In the navigation pane on the left, choose Objects.
Step 3 Click Upload Obiject.
Step 4 In the displayed dialog box, add files to be uploaded.

Step 5 For Server-Side Encryption, select an encryption method, and select a default key
or custom key from the drop-down list, as shown in Figure 1-18.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html

Data Encryption Workshop
Best Practices 1 Key Management Service

Figure 1-18 Uploading an object with server-side encryption enabled (OBS bucket
encryption enabled)

Upload Object

@ - Upload actions will generate requests. After the upload, you will be billed for data storage
- The total size of files to be uploaded at a time cannot exceed 5 GE. For more flexible upload options, use OBS Browser+, obsutil, APIs,
or SDKs

Storage Class

Inherit from bucket Infrequent Access Archive Deep Archive

Optimized for frequently accessed (multiple times per month) data such as small and essential files that require low latency.
If you do not change this setting, your uploaded objects will be stored using the default storage class you selected during bucket creation.
Leam more (£

Upload Object

A\ The file or folder you newly upload will overwrite any existing file or folder with the same name. To keep different versions of the
same file or folder, enable versioning for the current bucket.

@

Drag and drop files or folders, or add files
(A maximum of 100 files can be uploaded at a time. The total size cannot exceed 5 GB.)

Server-Side Encryption

Enabled

If server-side encryption is enabled, new objects uploaded to this bucket will be automatically encrypted. After a bucket is created, you can
also change this encryption configuration on the bucket's overview page. Leam more - (Ed

Encryption is recommended to keep data secure. Any requests filled over the guota imit will be billed. Pricing details (3

Encryption Method

Inherit from bucket SSE-KMS SSE-OBS

If server-side encryption is enabled, new objects uploaded to this bucket will be automatically encrypted. After a bucket is created, you can
also change this encryption configuration on the bucket's overview page. Learn more

Cancel

(11 NOTE

e After server-side encryption is enabled for the OBS bucket, the encryption configuration
is inherited by default when an object is uploaded.

e To modify the encryption configuration, you need to disable Inherit from bucket and
select SSE-KMS or SSE-OBS as required.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Data Encryption Workshop
Best Practices 1 Key Management Service

Figure 1-19 Uploading an object with server-side encryption enabled (OBS bucket
encryption disabled)

Upload Object

) - Upload actions will generate requests. Afler the upload, you will be biled for dats storage.
The total size of fles (o be vplcaded a1 a tims cannat exceed 5 GB. For more flexible uplaad cotions, use OBS Browsers, choutl, APz,
or SDis.

policy has been enabled for the buckel If #ie policy allows public read or pulilc nead and wrile, uploaded objects may have data security
remien

Siorage Class

Ikt froem Buckist It A Deep Archive

Uplawd Object

Thee file or falder you newly splced will Queoetite any existing fike or folder with e same name. To keep different versions of the
=ame file ar folder. enable versioning for #ie curnent budet

2]
Drag and drop files. or folders, o add files
A maxirum of 100 fles can be uploaded at a time. The ot see connol exceed § GB.)

Ex s s keep data secure. A 2 lir be bllled. Fricing det=ls (7

Encrypson Algorithm

AESIEE

EncrypSan Key Type

Praject
Cusiom
AESISE) KMS-3117 e f:} Viea KIS Koy

If OBS bucket encryption is not enabled, you need to enable server-side encryption when
uploading objects.

Step 6 After uploading the object, click it to view its encryption status.
{11 NOTE

e The object encryption status cannot be changed.

e A key in use cannot be deleted. Otherwise, the object encrypted with this key cannot be
downloaded.

--—-End

Related Operations

Alternatively, you can call OBS APIs to upload a file with server-side encryption
using KMS-managed keys (SSE-KMS). For details, see Configuring Bucket
Encryption.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

https://support.huaweicloud.com/eu/api-obs/obs_04_0062.html
https://support.huaweicloud.com/eu/api-obs/obs_04_0062.html

Data Encryption Workshop
Best Practices 1 Key Management Service

1.2.6 Encrypting an RDS DB Instance

Overview
Relational Database Service (RDS) supports MySQL and PostgreSQL engines.
After encryption is enabled, disk data will be encrypted and stored on the server
when you create a DB instance or expand disk capacity. When you download
encrypted objects, the encrypted data will be decrypted on the server and
displayed in plaintext.

Restrictions

e The KMS Administrator right must be granted to the user in the region of RDS
by using Identity and Access Management (IAM). For details about how to
assign permissions to user groups, see "How Do | Manage User Groups and
Grant Permissions to Them?" in /dentity and Access Management User Guide.

e To use a user-defined key to encrypt objects to be uploaded, create a key
using DEW.

e Once the disk encryption function is enabled, you cannot disable it or change
the key after a DB instance is created. The backup data stored in OBS will not
be encrypted.

e After an RDS DB instance is created, do not disable or delete the key that is
being used. Otherwise, RDS will be unavailable and data cannot be restored.

e If you scale up a DB instance with disks encrypted, the expanded storage
space will be encrypted using the original encryption key.

Using KMS to Encrypt a DB Instance (on the Console)

When purchasing a DB instance on the RDS console, you can enable disk
encryption to use KMS-provided keys to encrypt DB instance disks.

Figure 1-20 Encrypting data in RDS

Disk Encryption Disable m ®

Key Name | KMS-1834 Y | C View Key Name List

Using KMS to Encrypt a DB Instance (Through an API)

You can also call the required API of RDS to purchase encrypted DB instances. For
details, see Relational Database Service APl Reference.

1.2.7 Encrypting a DDS DB Instance

Overview

After encryption is enabled, disk data will be encrypted and stored on the server
when you create a DB instance or expand disk capacity. When you download

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Data Encryption Workshop
Best Practices 1 Key Management Service

encrypted objects, the encrypted data will be decrypted on the server and
displayed in plaintext.

Restrictions

e The KMS Administrator right must be added in the region of RDS using IAM.
For details about how to assign permissions to user groups, see "How Do |
Manage User Groups and Grant Permissions to Them?" in /dentity and Access
Management User Guide.

e To use a user-defined key to encrypt objects to be uploaded, create a key
using DEW. For details, see Creating a Key.

e Once the disk encryption function is enabled, you cannot disable it or change
the key after a DB instance is created. The backup data stored in OBS will not
be encrypted.

e After a Document Database Service (DDS) DB instance is created, do not
disable or delete the key that is being used. Otherwise, DDS will be
unavailable and data cannot be restored.

e If you scale up a DB instance with disks encrypted, the expanded storage
space will be encrypted using the original encryption key.
Using KMS to Encrypt a DB Instance (on the Console)

When you purchase a DB instance in DDS, you can set Disk Encryption to Enable
and use the key provided by KMS to encrypt the disk of the DB instance. For more
information, see Buying a Cluster Instance.

Figure 1-21 Encrypting data in DDS

Disk Encryption Disabled Enabled ®

KeyName | KMS-1834 Y | C ViewKey Name List

Using KMS to Encrypt a DB Instance (Through an API)

You can also call the required API of DDS to purchase encrypted DB instances. For
details, see Document Database Service AP/ Reference.

1.3 Using the Encryption SDK to Encrypt and Decrypt
Local Files

You can use certain algorithms to encrypt your files, protecting them from being
breached or tampered with.

Encryption SDK is a client password library that can encrypt and decrypt data and
file streams. You can easily encrypt and decrypt massive amounts of data simply
by calling APIs. It allows you to focus on developing the core functions of your
applications without being distracted by the data encryption and decryption
processes.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0044018333.html
https://github.com/HuaweiCloudDeveloper/huaweicloud-encryption-sdk-java

Data Encryption Workshop
Best Practices 1 Key Management Service

Scenario

If large files and images are sent to KMS through HTTPS for encryption, a large
number of network resources will be consumed and the encryption will be slow.
This section describes how to quickly encrypt a large amount of data.

Solution

Encryption SDK performs envelope encryption on file streams segment by
segment.

Data is encrypted within the SDK by using the DEK generated by KMS. Segmented
encryption of files in the memory ensures the security and correctness of file
encryption, because it does not require file transfer over the network.

The SDK loads a file to memory and processes it segment by segment. The next
segment will not be read before the encryption or decryption of the current
segment completes.

Process

Obtain the AK and the SK.

projectid

Obtain region information.

endpoint

Encapsulate obtained
information into the
encryption SDK and use
the file encryption and
decryption APIs.

Procedure

Step 1 Obtain the AK and the SK.

e ACCESS_KEY: Access key of the Huawei account. For details, see How Do |
Obtain an Access Key (AK/SK)?

e SECRET_ACCESS_KEY: Secret access key of the Huawei account. For details,
see How Do | Obtain an Access Key (AK/SK)?

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html

Data Encryption Workshop
Best Practices 1 Key Management Service

e PROIJECT_ID: site project ID. For details, see Obtaining a Project ID.
e KMS_ENDPOINT: endpoint for accessing KMS.

e There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or environment
variables for storage.

e In this example, the AK/SK stored in the environment variables are used for
identity authentication. Configure the environment variables
HUAWEICLOUD SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

Step 2 Obtain region information.

1. Log in to the DEW console.

2. Hover over the username in the upper right corner and choose My
Credentials from the drop-down list.

3. Obtain the Project ID and Project Name.

Figure 1-22 Obtaining the project ID and project name

Proects Q

ProjectiD |5 Project Name |= Region (=

0d32edcid 0208651711511 crnorh7 anorh7

odef33160 5202 foafsdbt crenorihed CN North-Beijng 1
252670974 2020432437 17kc crnorh-4 CN North Beijngd
ed0aritabe 831a0680c°03D crnorh2

CN North Befjng2

605378841 163558184209978 crnorin-9 CN North-Ulangab1

Click — on the left and choose Security > Data Encryption Workshop.
5. Obtain the ID of the CMK (KEYID) to be used in the current region.

Figure 1-23 Obtaining the CMK ID

6. Obtain the endpoint (ENDPOINT) required by the current region.

Step 3 Encrypt and decrypt a file.
public class KmsEncryptFileExample {

private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");

private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
private static final String PROJECT_ID = "<projectld>";

private static final String REGION = "<region>";

private static final String KEYID = "<keyld>";

public static final String ENDPOINT = "<endpoint>";

public static void main(String[] args) throws IOException {
// Source file path
String encryptFilelnPutPath = args[0];
// Path of the encrypted ciphertext file
String encryptFileOutPutPath = args[1];
// Path of the decrypted file
String decryptFileOutPutPath = args[2];
// Encryption context

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html
https://console.eu.huaweicloud.com/dew/?locale=en-us#/dew/

Data Encryption Workshop
Best Practices 1 Key Management Service

Map<String, String> encryptContextMap = new HashMap<>();
encryptContextMap.put("encryption”, "context");
encryptContextMap.put("simple", "test");
encryptContextMap.put(“caching”, "encrypt");
// Construct the encryption configuration
HuaweiConfig config = HuaweiConfig.builder().buildSk(SECRET_ACCESS_KEY)
buildAk(ACCESS_KEY)
.buildKmsConfig(Collections.singletonList(new KMSConfig(REGION, KEYID, PROJECT_ID,
ENDPOINT)))
.buildCryptoAlgorithm(CryptoAlgorithm.AES_256_GCM_NOPADDING)
.build();
HuaweiCrypto huaweiCrypto = new HuaweiCrypto(config);
// Set the key ring.
huaweiCrypto.withKeyring(new
KmsKeyringFactory().getKeyring(KeyringTypeEnum.KMS_MULTI_REGION.getType()));
// Encrypt the file.
encryptFile(encryptContextMap, huaweiCrypto, encryptFilelnPutPath, encryptFileOutPutPath);
// Decrypt the file.
decryptFile(huaweiCrypto, encryptFileOutPutPath, decryptFileOutPutPath);

}

private static void encryptFile(Map<String, String> encryptContextMap, HuaweiCrypto huaweiCrypto,
String encryptFilelnPutPath, String encryptFileOutPutPath) throws IOException {
// filelnputStream: input stream corresponding to the encrypted file
FilelInputStream filelnputStream = new FileInputStream(encryptFilelnPutPath);
// fileOutputStream: output stream corresponding to the source file
FileOutputStream fileOutputStream = new FileOutputStream(encryptFileOutPutPath);
// Encryption
huaweiCrypto.encrypt(filelInputStream, fileOutputStream, encryptContextMap);
filelnputStream.close();
fileOutputStream.close();

}

private static void decryptFile(HuaweiCrypto huaweiCrypto, String decryptFilelnPutPath, String
decryptFileOutPutPath) throws IOException {
// in: input stream corresponding to the source file
FilelInputStream filelnputStream = new FileInputStream(decryptFileInPutPath);
// out: output stream corresponding to the encrypted file
FileOutputStream fileOutputStream = new FileOutputStream(decryptFileOutPutPath);
// Decryption
huaweiCrypto.decrypt(fileInputStream, fileOutputStream);
filelnputStream.close();
fileOutputStream.close();
}
}

--—-End

1.4 Encrypting and Decrypting Data Through Cross-
region DR

Scenario

If a fault occurs during encryption or decryption in a region, you can use KMS to
implement cross-region DR encryption and decryption, ensuring service continuity.

Solution

If KMS is faulty in one or multiple regions, encryption and decryption can be
completed as long as a key in the key ring is available.

A cross-region key can use the CMKs of multiple regions to encrypt a piece of data
and generate unique data ciphertext. To decrypt the data, you simply need to use

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Data Encryption Workshop
Best Practices 1 Key Management Service

a key ring that contains one or more available CMKs that were used for encrypting
the data.

Process

Obtain the AK and the SK.

Obtain region information.

projectld

Encapsulate obtained
information into the
encryption 5DK and use the
file encryption and
decryption APls.

Procedure

Step 1 Obtain the AK and the SK.

e ACCESS_KEY: Access key of the Huawei account. For details, see How Do |
Obtain an Access Key (AK/SK)?

e SECRET_ACCESS_KEY: Secret access key of the Huawei account. For details,
see How Do | Obtain an Access Key (AK/SK)?

e PROIJECT_ID: site project ID. For details, see Obtaining a Project ID.
e KMS_ENDPOINT: endpoint for accessing KMS.

e There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or environment
variables for storage.

e In this example, the AK/SK stored in the environment variables are used for
identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK _SK in the local
environment first.

Step 2 Obtain region information.

1. Log in to the DEW console.

2. Hover over the username in the upper right corner and choose My
Credentials from the drop-down list.

3. Obtain the Project ID and Project Name.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html
https://console.eu.huaweicloud.com/dew/?locale=en-us#/dew/

Data Encryption Workshop
Best Practices 1 Key Management Service

Figure 1-24 Obtaining the project ID and project name

Proects Q

ProjectID |= Project Name [= Region [=

0d82edc 6 1038651711611 ernorh-7 ennort-T

9ef3316d 52002 f6af5db1 cr-norh-1 CN NorthBeijng1
52670974 3662043243717k cr-norh-4 CN NorthBeijngd
ed0afifabe 831a068bc°03D crnorh-2 CN North-Beijng2

605373841 161658184200078 crnorh-9 CN North-Ulangabi

Click = on the left and choose Security > Data Encryption Workshop.
5. Obtain the ID of the CMK (KEYID) to be used in the current region.

Figure 1-25 Obtaining the CMK ID

NamelD Status £ Created & Key Algorithm and Source & Keystore Enterprise Project Operation

17,2025 10:1055 G ENCRYPT DECRYPT Key Management Sevice default defaut Cancel Deletion Add to Project _ View Monitring

ErTEEetib BEI0..]

Step 3 Use the key ring for encryption and decryption.

public class KmsEncryptionExample {
private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");

private static final String PROJECT_ID_1 = "<projectld1>";
private static final String REGION_1 = "<region1>";
private static final String KEYID_1 = "<keyld1>";

public static final String PROJECT_ID_2 = "<projectld2>";
public static final String REGION_2 = "<region2>";
public static final String KEYID_2 = "<keyld2>";

// Data to be encrypted
private static final String PLAIN_TEXT = "Hello World!";

public static void main(String[] args) {
// CMK list
List<KMSConfig> kmsConfigList = new ArrayList<>();
kmsConfigList.add(new KMSConfig(REGION_1, KEYID_1, PROJECT_ID_1));
kmsConfigList.add(new KMSConfig(REGION_2, KEYID_2, PROJECT_ID_2));
// Construct encryption-related information.
HuaweiConfig multiConfig = HuaweiConfig.builder().buildSk(SECRET_ACCESS_KEY)
.buildAk (ACCESS_KEY)
.buildkmsConfig(kmsConfigList)
.buildCryptoAlgorithm(CryptoAlgorithm.AES_256_GCM_NOPADDING)
.build();
// Select a key ring.
KMSKeyring keyring = new
KmsKeyringFactory().getKeyring(KeyringTypeEnum.KMS_MULTI_REGION.getType());
HuaweiCrypto huaweiCrypto = new HuaweiCrypto(multiConfig).withKeyring(keyring);
// Encryption context
Map<String, String> encryptContextMap = new HashMap<>();
encryptContextMap.put("key", "value");
encryptContextMap.put("context", "encrypt");
// Encryption
CryptoResult<byte[]> encryptResult = huaweiCrypto.encrypt(new EncryptRequest(encryptContextMap,
PLAIN_TEXT.getBytes(StandardCharsets.UTF_8)));
// Decryption
CryptoResult<byte[]> decryptResult = huaweiCrypto.decrypt(encryptResult.getResult());
Assert.assertEquals(PLAIN_TEXT, new String(decryptResult.getResult()));

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Data Encryption Workshop
Best Practices 1 Key Management Service

}
}

--—-End

1.5 Using KMS to Protect File Integrity

Scenario
When a large amount of files (such as images, electronic insurance policies, and
important files) need to be transmitted or stored securely, you can use KMS to
sign the file digest. When the files are used again, you can recalculate the digest
for signature verification. Ensure that files are not tampered with during
transmission or storage.

Solution

Create a CMK on KMS.

Calculate the file digest and call the sign APl of KMS to sign the digest. The
signature result of the digest is obtained. Transmit or store the digest signature
result, key ID, and the file together. The following figure shows the signature
process.

Figure 1-26 Signature process

i User I | KMS |
Createa CMK. ——»
‘\)
=7
File, signature ‘%fg, /55@ _
result, and key ID ;p?a?s %,
)
i 410/
"5, !
i
91“
Sy,
“%
v
o —— |
— S
o
. — f
Storage device CMK
. 1 .

Before using a file, you need to check the integrity of the file to ensure that the
file is not tampered with.

Recalculate the file digest and call the verify APl of KMS with the signature value
to verify the signature for the digest. The signature verification result is obtained.
If the signature is verified, the file has not been tampered with. The following
figure shows the signature verification process.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Data Encryption Workshop
Best Practices 1 Key Management Service

Figure 1-27 Signature verification process.

|
Obtain the file, \ Ry

2
signature result, I'G'f,‘;;” e
and key ID. o cﬁ?é'o %,
o, ,;f@ 06{4?-
e Ve, *5'% (=]
%
[[o [[

i
/

Storage device

Procedure

Step 1 Obtain the AK and the SK.

e ACCESS_KEY: Access key of the Huawei account. For details, see How Do |
Obtain an Access Key (AK/SK)?

e SECRET_ACCESS_KEY: Secret access key of the Huawei account. For details,
see How Do | Obtain an Access Key (AK/SK)?

e PROIJECT_ID: site project ID. For details, see Obtaining a Project ID.
e KMS_ENDPOINT: endpoint for accessing KMS.

e There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or environment
variables for storage.

e In this example, the AK/SK stored in the environment variables are used for
identity authentication. Configure the environment variables
HUAWEICLOUD SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

Step 2 Use KMS to sign the file and verify the signature.
public class FileStreamSignVerifyExample {

/**

* Basic authentication information:

* - ACCESS_KEY: access key of the Huawei Cloud account

* - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account, which is sensitive information.
Store this in ciphertext.

* - IAM_ENDPOINT: endpoint for accessing IAM.

* - KMS_REGION_ID: regions supported by KMS.

* - KMS_ENDPOINT: endpoint for accessing KMS.

*/

private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");

private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");

private static final String IAM_ENDPOINT = "https://<lamEndpoint>";

private static final String KMS_REGION_ID = "<Regionld>";

private static final String KMS_ENDPOINT = "https://<KmsEndpoint>";

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html

Data Encryption Workshop
Best Practices 1 Key Management Service

public static void main(String[] args) {
// CMK ID. Select a key whose usage contains SIGN_VERIFY.
final String keyld = args[0];

signAndVerifyFile(keyld);
}

/**
* Use KMS to sign the file and verify the signature.
* @param keyld: CMK ID
*/
static void signAndVerifyFile(String keyld) {
// 1. Prepare the authentication information for accessing Huawei Cloud.
final BasicCredentials auth = new BasicCredentials()
.withlamEndpoint(IAM_ENDPOINT).withAk (ACCESS_KEY).withSk(SECRET_ACCESS_KEY);

// 2. Initialize the SDK and transfer the authentication information and the address for the KMS to
access the client.
final KmsClient kmsClient = KmsClient.newBuilder()
.withRegion(new Region(KMS_REGION_ID, KMS_ENDPOINT)).withCredential(auth).build();

// 3. Prepare the file to be signed.

// inFile File to be signed

final File inFile = new File("FirstSignFile.iso");

final String fileSha256Sum = getFileSha256Sum(inFile);

// 4. Calculate the digest and select a proper signature algorithm based on the key type.
final SignRequest signRequest = new SignRequest().withBody(
new
SignRequestBody().withKeyld(keyld).withSigningAlgorithm(SignRequestBody.SigningAlgorithmEnum.RSASSA
_PSS_SHA_256)
.withMessageType(SignRequestBody.MessageTypeEnum.DIGEST).withMessage(fileSha256Su
m));

final SignResponse signResponse = kmsClient.sign(signRequest);

/! 5. Verify the digest.
final ValidateSignatureRequest validateSignatureRequest = new ValidateSignatureRequest().withBody(
new
VerifyRequestBody().withKeyld(keyld).withMessage(fileSha256Sum).withSignature(signResponse.getSignatur
e())
.withSigningAlgorithm(VerifyRequestBody.SigningAlgorithmEnum.RSASSA_PSS_SHA 256)
.withMessageType (VerifyRequestBody.MessageTypeEnum.DIGEST));
final ValidateSignatureResponse validateSignatureResponse =
kmsClient.validateSignature(validateSignatureRequest);

// 6. Compare the digest result.
assert validateSignatureResponse.getSignatureValid().equalsignoreCase("true");

}

/**
* Calculate the SHA256 digest of the file.
* @param file
* @return SHA256 digest in Base64 format
*/
static String getFileSha256Sum(File file) {
int length;
MessageDigest sha256;
byte[] buffer = new byte[1024];
try {
sha256 = MessageDigest.getinstance("SHA-256");
} catch (NoSuchAlgorithmException e) {
throw new RuntimeException(e.getMessage());
}

try (FileInputStream inputStream = new FilelnputStream(file)) {

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Data Encryption Workshop
Best Practices 1 Key Management Service

while ((length = inputStream.read(buffer)) '=-1) {
sha256.update(buffer, 0, length);
}
return Base64.getEncoder().encodeToString(sha256.digest());
} catch (IOException e) {
throw new RuntimeException(e.getMessage());
}
}

--—-End

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Cloud Secret Management Service

2.1 Using CSMS to Change Hard-coded Database
Account Passwords

Generally, the secrets used for access are embedded in applications. To update a
secret, you need to create a secret and spend time updating your applications. If
you have multiple applications using the same secret, you have to update all of
them, or the applications you forgot to update will be unable to use the secret for
login.

An easy-to-use, effective, and secure secret management tool will be helpful.
Cloud Secret Management Service (CSMS) has the following advantages:

e You can host your secrets instead of using hardcoded secrets, improving the
security of data and assets.
e Secure SDK access allows you to dynamically call your secrets.

e You can store many types of secrets. You can store service accounts,
passwords, and database information, including but not limited to database
names, IP addresses, and port numbers.

Logging In to a Database Using Secrets

You can create a secret and log in to your database by calling the secret via an
API.

Ensure your account has the KMS Administrator or KMS CMKFullAccess
permission. For details, see .

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Figure 2-1 Secret-based login process

L i () 3
\ ‘— =
; » T ———]

Third-party
application

Administrator CSMS Database

The process is as follows:

Step 1 Create a secret on the or via an API to store database information (such as the
database address, port, and password).

Step 2 Use an application to access the database. CSMS will query the secret created in 1.

Step 3 CSMS retrieves and decrypts the secret ciphertext and securely returns the
information stored in the secret to the application through the secret
management API.

Step 4 The application obtains the decrypted plaintext secret and uses it to access the
database.

--—-End

Secret Creation and Query APIs

You can call the following APIs to create secrets, save their content, and query
secret information.

API Description

Creating a Secret This API is used to create a secret and
store the secret value in the initial
secret version.

Querying a Secret This API is used to query a secret.

Creating and Querying Secrets via APIs

1. Prepare basic authentication information.
- ACCESS_KEY: Access key of the Huawei account
- SECRET_ACCESS_KEY: Secret access key of the Huawei account

- PROJECT_ID: project ID of a Huawei Cloud site. For details, see
Obtaining Account, IAM User, Group, Project, Region, and Agency
Information.

- CSMS_ENDPOINT: endpoint for accessing CSMS.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/eu/api-dew/CreateSecret.html
https://support.huaweicloud.com/eu/api-dew/ShowSecret.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html

Data Encryption Workshop

Best Practices

2 Cloud Secret Management Service

There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

Create and query secret information.

Secret name: secretName

Secret value: secretString
Secret version value: LATEST_SECRET
Secret version: versionld

import com.huaweicloud.sdk.core.auth.BasicCredentials;

import com.huaweicloud.sdk.csms.v1.CsmsClient;

import com.huaweicloud.sdk.csms.v1.model.CreateSecretRequest;

import com.huaweicloud.sdk.csms.vl.model.CreateSecretRequestBody;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretResponse;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionRequest;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionResponse;

public class CsmsCreateSecretExample {

*k

* Basic authentication information:

* - ACCESS_KEY: Access key of the Huawei account

* - SECRET_ACCESS_KEY: Secret access key of the Huawei account

* - PROJECT_ID: Huawei Cloud project ID. For details, see https://support.huaweicloud.com/eu/
productdesc-iam/iam_01_0023.html
* - CSMS_ENDPOINT: endpoint address for accessing CSMS.

* - There will be security risks if the AK/SK used for authentication is directly written into code.
Encrypt the AK/SK in the configuration file or environment variables for storage.

* - In this example, the AK/SK stored in the environment variables are used for identity
authentication. Configure the environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK in the local environment first.

*/

private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");

private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
private static final String PROJECT_ID = "<ProjectID>";

private static final String CSMS_ENDPOINT = "<CsmsEndpoint>";

//Version ID used to query the latest secret version details
private static final String LATEST_SECRET = "latest";

pu

}
/**

blic static void main(String[] args) {
String secretName = args[0];
String secretString = args[1];

//Create a secret.
createSecret(secretName, secretString);

//Query the content of the new secret based on the secret version latest or v1.
ShowSecretVersionResponse latestVersion = showSecretVersion(secretName, LATEST_SECRET);
ShowsSecretVersionResponse firstVersion = showSecretVersion(secretName, "v1");

assert latestVersion.equals(firstVersion);
assert latestVersion.getVersion().getSecretString().equalsignoreCase(secretString);

* Create a secret.
* @param secretName
* @param secretString

*/

private static void createSecret(String secretName, String secretString) {

Issue 10 (2025-09-15)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

CreateSecretRequest secret = new CreateSecretRequest().withBody(
new CreateSecretRequestBody().withName(secretName).withSecretString(secretString));

CsmsClient csmsClient = getCsmsClient();
CreateSecretResponse createdSecret = csmsClient.createSecret(secret);

System.out.printf("Created secret success, secret detail:%s", createdSecret);

}

/id(

* Query secret version details based on the secret version ID.

* @param secretName

* @param versionld

* @return

*/

private static ShowSecretVersionResponse showSecretVersion(String secretName, String versionld) {
ShowSecretVersionRequest showSecretVersionRequest = new

ShowsSecretVersionRequest().withSecretName (secretName)
.withVersionld(versionld);

CsmsClient csmsClient = getCsmsClient();

ShowsSecretVersionResponse version = csmsClient.showSecretVersion(showSecretVersionRequest);

System.out.printf("Query secret success. version id:%s",
version.getVersion().getVersionMetadata().getld());

return version;

}

*k

* Obtain the CSMS client.

* @return

*/

private static CsmsClient getCsmsClient() {

BasicCredentials auth = new BasicCredentials()

WithAk(ACCESS_KEY)
.WithSk(SECRET_ACCESS_KEY)
.withProjectld(PROJECT_ID);

return CsmsClient.newBuilder().withCredential(auth).withEndpoint(CSMS_ENDPOINT).build();

}
}

Obtaining the Database Account Through an Application
1. Obtain the dependency statement of the CSMS SDK.

Example:

<dependency>

<groupld>mysql</groupld>
<artifactld>mysql-connector-java</artifactld>
<version>XXX</version>

</dependency>

<dependency>
<groupld>com.google.code.gson</groupld>
<artifactld>gson</artifactld>
<version>2.8.9</version>

</dependency>

<dependency>
<groupld>com.huaweicloud.sdk</groupld>
<artifactld>huaweicloud-sdk-csms</artifactld>
<version>3.0.79</version>

</dependency>

2. Establish a database connection and obtain the account.
Example:

import com.google.gson.Gson;
import com.google.gson.JsonObject;

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionRequest;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionResponse;

import java.sgl.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

// Obtain the specified database account based on the secret information.
public static Connection getMySQLConnectionBySecret(String secretName, String jdbcUrl) throws
ClassNotFoundException, SQLException{
Class.forName(MYSQL_JDBC_DRIVER);
ShowsSecretVersionResponse latestVersionValue = getCsmsClient().showSecretVersion(new
ShowsSecretVersionRequest().withSecretName (secretName).withVersionld("latest"));
String secretString = latestVersionValue.getVersion().getSecretString();
JsonObject jsonObject = new Gson().fromJson(secretString, JsonObject.class);
return DriverManager.getConnection(jdbcUrl, jsonObject.get("username").getAsString(),
jsonObject.get("password").getAsString());
}

2.2 Using CSMS to Prevent AK/SK Leakage

CSMS is a secure, reliable, and easy-to-use credential hosting service. Users or
applications can use CSMS to create, retrieve, update, and delete credentials in a
unified manner throughout the credential lifecycle. CSMS can help you eliminate
risks incurred by hardcoding, plaintext configuration, and permission abuse.

Scenario

Application secrets are stored and can be accessed temporarily to prevent AK/SK
leakage.

How It Works

You can configure an agency for elastic cloud server (ECS) on Identity and Access
Management (IAM) to obtain the temporary access key (AK), thereby protecting
the AK and secret key (SK).

Access secrets can be classified into permanent secrets and temporary secrets
based on their validity periods. Permanent access secrets include usernames and
passwords. Temporary access keys have a shorter validity period, are updated
frequently, thus are more secure. You can assign an IAM agency to an ECS
instance, so that applications in the ECS instance can use the temporary AK, SK,
and security token to access CSMS. The temporary access keys are dynamically
obtained every time they are required. They can also be cached in the memory
and updated periodically.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Process Flow
Figure 2-2 ECS agency configuration process

Start

—* Create an agency for ECS.
h 4

Create an ECS agency. — Select the permission policy for the agency.

—— Configure the resource scope of the agency.

N Create an ECS instance
© and select the agency.

Configure the areated agency for Is there an
an ECS instance. ECS instance?

Ves Selt?ct.the agency for an
existing ECS instance.

Obtain temporary credentials for Call an API to obtain the temporary
an agency. AK, SK, and security token.

Use the temporary aredentials to
access CSMS.

End

Constraint

Only the administrator or an IAM user with the ECS permission can configure an
agency for an ECS instance.

Procedure

Step 1 Create an ECS agency on IAM.
1. Log in to the DEW console.

2. Click — on the left of the page and choose Management & Governance >
Identity and Access Management.

3. In the navigation pane on the left, choose Agencies.
4. Click Create Agency in the upper right corner.

5. Configure the parameters on the displayed page. For details about the
parameters, see Table 2-1.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

https://console.eu.huaweicloud.com/dew/?locale=en-us#/dew/

Data Encryption Workshop

Best Practices 2 Cloud Secret Management Service

Figure 2-3 Creating an agency

* Agency Name ECS_TO_CSMS3
* Agency Type Account
i Delegate another Huawel Cloud account to perform operations on your resources.
(®) Cloud service
Delegate a cloud service to access your resources in other cloud services.
Cloud Service ECS BMS v
Validity Period Unlimited v
Description Enter a brief descripfion
0/255 4
Ty
oK [Cancel |
. vy

Table 2-1 Agency parameters

Parameter | Description

Name

Agency Enter an agency name, for example, ECS_TO_CSMS.
Name

Agency Select Cloud service.

Type

Cloud Select ECS BMS.

Service

Validity Select a duration. The value can be Unlimited, 1 day, or
Period Custom.

Description | (Optional) Enter agency description.

Click OK. In the displayed dialog box, click Authorize.
Click Create Policy in the upper right corner. If you already have a policy, skip

this step.

a. Configure policy parameters. For details about the parameters, see Table

2-2.

Issue 10 (2025-09-15)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

46

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Figure 2-4 Creating a policy

Assign this policy to

[

Table 2-2 Policy parameters

Parameter Description
Name

Policy Name Enter a policy name.

Policy View Select Visual editor.

Policy Content | , Allow: Select Allow.

® Cloud Service: Select CSMS and KMS.
NOTE

O If only the CSMS service permission is added, the KMS
APl may fail to be called.

O You need to add policies for services one by one. After
the policies are configured for a service, click Add
Permissions to add policies for other services.

= Select action: Select read and write permissions as
required.

® (Optional) Select resource: Select the scope of
resources.
o Specific: Access specific secrets.

NOTE
You can select Specify resource path, and then click
Add Resource Path to specify an accessible secret.

o All: Access all secrets.
= (Optional) Add request condition: Click Add

Request Condition, select a condition key and an
operator, and enter values as required.

Description (Optional) Enter policy description.

8. Click Next and select a policy for the agency. Click Next.
9. Select an authorization scope. You are advised to select All resources.

- All resources: IAM users will be able to use all resources, including those
in enterprise projects, region-specific projects, and global services under
your account based on assigned permissions.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

- Enterprise projects: The selected permissions will be applied to resources
in the enterprise projects you select.

- Region-specific projects: The selected permissions will be applied to
resources in the region-specific projects you select.

Figure 2-5 Selecting a scope

~
(v st FoicyRel: —— °Ee\exsme 9 Frich
N

0 mened scopes fo tre pamissions youseectad Seect sing nmum aorzatin. Leam how o el proper cope.

10. Click OK. Confirm the information and click Finish.

Step 2 Assign an agency (for example, ECS_TO_CSMS) to an ECS instance.

e If no ECS has been created, create an agency, for example, ECS_TO_CSMS for
Agency under Advanced Settings. For details, see Purchasing an ECS.

e To use an existing ECS instance, perform the following steps:

Click = on the left and choose Computing > Elastic Cloud Server.
Click the name of an ECS instance to go to the Summary page.

¢. In the Management Information area, click Z and select an agency
(for example, ECS_TO_CSMS).

Figure 2-6 Selecting an agency

Management Infarmation
DEW
- Create ECS Group

- £ () Create Agency

Step 3 In an application running on the ECS instance, call an API to obtain the temporary
agency secrets, including the temporary AK, SK, and security token, to access
CSMS.

1. Obtain the temporary AK and SK (in the Security Key directory). For details,
see Obtaining Metadata.

- URI

http://xx.xx.xx.xx/openstack/latest/securitykey

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

https://support.huaweicloud.com/eu/qs-ecs/en-us_topic_0021831611.html
https://support.huaweicloud.com/eu/usermanual-ecs/ecs_03_0166.html

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

{11 NOTE

Replace the IPv4 address xx.xx.xx.xx used in this example with the actual
available address.

- Method
GET request

- The following data is returned:
{
"credential":{
"access": "LDHZK30XXXXXXXXXXXXV",
"secret":" gyqcdzVXXXXXXXXXXXXXXXXXXXXXXXMI6",
"securitytoken": "EI9FI2CE5GXXXXXXXXXXXXXXXXXXXXXnkcaoV",
"expires_at": "2022-07-14T12:09:24.147000Z"
}
}

(11 NOTE

® Extract the values of access, secret, and securitytoken to access CSMS.

® ECS automatically rotates temporary secrets to ensure that they are secure

and valid.
2. Use the temporary AK/SK and security token to access CSMS.

package com.huaweicloud.sdk.test;

import com.huaweicloud.sdk.core.auth.ICredential;

import com.huaweicloud.sdk.core.auth.BasicCredentials;

import com.huaweicloud.sdk.core.exception.ConnectionException;
import com.huaweicloud.sdk.core.exception.RequestTimeoutException;
import com.huaweicloud.sdk.core.exception.ServiceResponseException;
import com.huaweicloud.sdk.csms.v1.region.CsmsRegion;

import com.huaweicloud.sdk.csms.v1.*;

import com.huaweicloud.sdk.csms.v1.model.*;

public class ListSecretsSolution {
public static void main(String[] args) {

String ak = "<access>";

String sk = "<secret>";

String securitytoken = "<securitytoken>";

ICredential auth = new BasicCredentials()

.withAk(ak)
.withSk(sk)
.withSecurityToken (securitytoken);

CsmsClient client = CsmsClient.newBuilder()
.withCredential(auth)
.withRegion(CsmsRegion.valueOf("cn-north-1"))
.build();

ListSecretsRequest request = new ListSecretsRequest();

try {

ListSecretsResponse response = client.listSecrets(request);
System.out.println(response.toString());

} catch (ConnectionException e) {
e.getMessage();

} catch (RequestTimeoutException e) {
e.getMessage();

} catch (ServiceResponseException e) {
e.getMessage();
System.out.println(e.getHttpStatusCode());
System.out.println(e.getErrorCode());
System.out.println(e.getErrorMsg());

}

}
}

--—-End

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

2.3 Services Using CSMS

2.3.1 CCE Servers Using CSMS

Overview

CCE provides multiple types of plug-ins to extend cluster functions. The dew-
provider plug-in of CCE interconnects with CSMS and mounts secrets to service
pods. In this way, sensitive information is decoupled from the cluster environment,
preventing sensitive information leakage caused by hard coding or plaintext
configuration.

Constraints
e Supported cluster versions: v1.19 and later
e Supported cluster types: CCE Standard and CCE Turbo

Components

Table 2-3 dew-provider components

Component Description Resourc
e Type
dew-provider A component that obtains specified secrets from Daemon
CSMS and mounts them to the pods. Set
secrets-store- A component responsible for maintaining two Daemon
csi-driver CRDs: SecretProviderClass (SPC) and Set

SecretProviderClassPodStatus (spcPodStatus). SPC
is used to describe the secret that users are
interested in (such as the secret version and
name). It is created by users and will be
referenced in pods. spcPodStatus is used to trace
the binding relationships between pods and
secrets. It is automatically created by csi-driver
and requires no manual operation. One pod
corresponds to one spcPodStatus. After a pod is
started, a spcPodStatus is generated for the pod.
When the pod lifecycle ends, the spcPodStatus is
deleted accordingly.

Installing the Plug-in On the Console

Step 1 Log in to the CCE console. Click the cluster name to access its details page. In the
navigation pane on the left, choose Add-ons. Locate dew-provider on the right
and click Install.

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Step 2 On the Install Add-on page, configure parameters as required. Table 2-4
describes the parameters.

Table 2-4 Parameters

Parameter Description
rotation_poll_interval Rotation interval, in unit of minutes (m, not
min).

The rotation interval indicates the interval
for sending a request to CSMS and
obtaining the latest secret. The proper
interval range is [1m, 1440m]. The default
value is 2m.

Step 3 Click Install. After the plug-in is installed, select the cluster and click Add-ons
from the navigation pane. On the displayed page, view the plug-in in the Add-ons
Installed area.

Step 4 The plug-in can be used only if the secret created in DEW is used. Otherwise, the
pod cannot run. For details about how to create a secret, see Creating a Shared
Secret.

Step 5 Use the plug-in after it is installed. For details, see CCE Secrets Manager for
DEW.

--—-End

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_9993.html
https://support.huaweicloud.com/eu/usermanual-dew/dew_01_9993.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0370.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0370.html

Data Encryption Workshop

Best Practices

3 General

General

3.1 Retrying Failed DEW Requests by Using Exponential

Backoff

Scenario

If you receive an error message when calling an API, you can use exponential
backoff to retry the request.

NOTICE

When interconnecting with KMS, retry is required. Error code such as 504, 502,
500, and 429 are included. Retry three to five times. For error codes 502 and 504,
the timeout interval should be 5 to 8 seconds. Do not configure a long timeout
interval. Otherwise, the client cannot respond.

How It Works

Constraints

Example

If consecutive errors (such as traffic limiting errors) are reported by the service
side, continuous access will keep causing conflicts. Exponential backoff can help
you avoid such errors.

The current account has an enabled key.

1. Prepare basic authentication information.

- ACCESS_KEY: Access key of the Huawei account. For details, see How Do
| Obtain an Access Key (AK/SK)?

- SECRET_ACCESS_KEY: Secret access key of the Huawei account. For
details, see How Do | Obtain an Access Key (AK/SK)?

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html

Data Encryption Workshop

Best Practices

3 General

- PROJECT_ID: site project ID. For details, see Obtaining a Project ID.
- KMS_ENDPOINT: endpoint for accessing KMS.

- There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

- In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

Code for exponential backoff:

import com.huaweicloud.sdk.core.auth.BasicCredentials;

import com.huaweicloud.sdk.core.auth.ICredential;

import com.huaweicloud.sdk.core.exception.ClientRequestException;
import com.huaweicloud.sdk.kms.v2.model.EncryptDataRequest;
import com.huaweicloud.sdk.kms.v2.model.EncryptDataRequestBody;
import com.huaweicloud.sdk.kms.v2.KmsClient;

public class KmsEncryptExample {
private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
private static final String KMS_ENDPOINT = "xxxx";
private static final String KEY_ID = "xxxx";

private static final String PROJECT_ID = "xxxx";

private static KmsClient KmsClientlnit() {
ICredential auth = new BasicCredentials()
withAk(ACCESS_KEY)
WithSk(SECRET_ACCESS_KEY)
.withProjectld(PROJECT_ID);
return KmsClient.newBuilder()
.withCredential(auth)
.withEndpoint(KMS_ENDPOINT)
.build();
}

public static long getWaitTime(int retryCount) {

long initialDelay = 200L;

return (long) (Math.pow(2, retryCount) * initialDelay);
}

public static void encryptData(KmsClient client, String plaintext) {
EncryptDataRequest request = new EncryptDataRequest().withBody/(
new EncryptDataRequestBody()
.withKeyld(KEY_ID)
.withPlainText(plaintext));
client.encryptData(request);
}

public static void main(String[] args) {
int maxRetryTimes = 6;
String plaintext = "plaintext";
String errorMsg = "The throttling threshold has been reached";

KmsClient client = KmsClientInit();
for (inti = 0; i < maxRetryTimes; i++) {
try {
encryptData(client, plaintext);
return;
} catch (ClientRequestException e) {

Issue 10 (2025-09-15)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html

Data Encryption Workshop
Best Practices 3 General

if (e.getErrorMsg().contains(errorMsg)) {
try {
Thread.sleep(getWaitTime(i));
} catch (InterruptedException ex) {
throw new RuntimeException(ex);

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

	Contents
	1 Key Management Service
	1.1 Using KMS to Encrypt Offline Data
	1.1.1 Encrypting or Decrypting a Small Amount of Data
	1.1.2 Encrypting or Decrypting a Large Amount of Data

	1.2 Using KMS to Encrypt and Decrypt Data for Cloud Services
	1.2.1 Overview
	1.2.2 Encrypting Data in ECS
	1.2.3 Encrypting Data in EVS
	1.2.4 Encrypting Data in IMS
	1.2.5 Encrypting Data in OBS
	1.2.6 Encrypting an RDS DB Instance
	1.2.7 Encrypting a DDS DB Instance

	1.3 Using the Encryption SDK to Encrypt and Decrypt Local Files
	1.4 Encrypting and Decrypting Data Through Cross-region DR
	1.5 Using KMS to Protect File Integrity

	2 Cloud Secret Management Service
	2.1 Using CSMS to Change Hard-coded Database Account Passwords
	2.2 Using CSMS to Prevent AK/SK Leakage
	2.3 Services Using CSMS
	2.3.1 CCE Servers Using CSMS

	3 General
	3.1 Retrying Failed DEW Requests by Using Exponential Backoff

