
Data Encryption Workshop

Best Practices

Issue 10

Date 2025-09-15

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Key Management Service.. 1
1.1 Using KMS to Encrypt Offline Data.. 1
1.1.1 Encrypting or Decrypting a Small Amount of Data...1
1.1.2 Encrypting or Decrypting a Large Amount of Data...4
1.2 Using KMS to Encrypt and Decrypt Data for Cloud Services...12
1.2.1 Overview...12
1.2.2 Encrypting Data in ECS.. 14
1.2.3 Encrypting Data in EVS..15
1.2.4 Encrypting Data in IMS... 19
1.2.5 Encrypting Data in OBS...22
1.2.6 Encrypting an RDS DB Instance..29
1.2.7 Encrypting a DDS DB Instance..29
1.3 Using the Encryption SDK to Encrypt and Decrypt Local Files... 30
1.4 Encrypting and Decrypting Data Through Cross-region DR.. 33
1.5 Using KMS to Protect File Integrity.. 36

2 Cloud Secret Management Service... 40
2.1 Using CSMS to Change Hard-coded Database Account Passwords..40
2.2 Using CSMS to Prevent AK/SK Leakage.. 44
2.3 Services Using CSMS.. 50
2.3.1 CCE Servers Using CSMS... 50

3 General...52
3.1 Retrying Failed DEW Requests by Using Exponential Backoff.. 52

Data Encryption Workshop
Best Practices Contents

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Key Management Service

1.1 Using KMS to Encrypt Offline Data

1.1.1 Encrypting or Decrypting a Small Amount of Data

Scenario
You can use online tools on the Key Management Service (KMS) console or call
the necessary KMS APIs to directly encrypt or decrypt small-size data with a
customer master key (CMK), such as passwords, certificates, or phone numbers.

Restrictions
Currently, a maximum of 4 KB of data can be encrypted or decrypted in this way.

Encryption and Decryption Using Online Tools
● Encrypting data

Step 1 Log in to the DEW console.

Step 2 Click in the upper left corner and select a region or project.

Step 3 Click the name of the target custom key to access the key details page. Click the
Tool tab.

Step 4 Click Encrypt. In the text box on the left, enter the data to be encrypted, as shown
in Figure 1-1.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://console.eu.huaweicloud.com/dew/?locale=en-us#/dew/

Figure 1-1 Encrypting data

Step 5 Click Execute. The encrypted data is displayed in the Encryption/Decryption
Result area.

NO TE

● Use the current CMK to encrypt the data.
● To clear your input, click Clear.

● In the Encryption result area, click to copy the encrypted data and save it to a local
file.

----End

● Decrypting data

Step 1 Click a non-default key in the Enabled state and go to the Tool tab.

Step 2 Click Decrypt and enter the data to be decrypted in the text box, as shown in
Figure 1-2.

NO TE

● The tool will identify the original encryption CMK and use it to decrypt the data.
● If the key has been deleted, the decryption will fail.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Figure 1-2 Decrypting data

Step 3 Click Execute. The decrypted data is displayed in the Encryption/Decryption
Result area.

NO TE

● In the Decryption result area, click to copy the decrypted data and save it to a local
file.

● The information to be encrypted using commands or APIs cannot contain special
characters. Otherwise, the decryption result may fail to be displayed on the console.

● Enter the plaintext on the console, the text will be encoded to Base64 format before
encryption.
The decryption result returned via API will be in Base64 format. Perform Base64
decoding to obtain the plaintext entered on the console.

----End

Calling APIs for Encryption and Decryption
Figure 1-3 shows an example about how to call KMS APIs to encrypt and decrypt
an HTTPS certificate.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Figure 1-3 Encrypting and decrypting an HTTPS certificate

The procedure is as follows:

1. Create a CMK on KMS.
2. Call the KMS API for encrypting a data key and use the specified CMK to

encrypt the plaintext certificate.
3. Deploy the certificate onto a server.
4. The server calls the KMS API for decrypting a data key and decrypts the

ciphertext certificate.

NO TE

If you enter and encrypt text on the console, the text will be encoded to Base64
format before being transferred to the backend for encryption. The decryption result
returned via API will be in Base64 format. Text encrypted via API cannot be decrypted
on the console, or garbled characters will be returned.

1.1.2 Encrypting or Decrypting a Large Amount of Data

Scenario
If you want to encrypt or decrypt large volumes of data, such as pictures, videos,
and database files, you can use envelope encryption, which allows you to encrypt
and decrypt files without having to transfer a large amount of data over the
network.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/eu/api-dew/EncryptDatakey.html
https://support.huaweicloud.com/eu/api-dew/DecryptDatakey.html

Encryption and Decryption Processes
● Large-size data encryption

Figure 1-4 Encrypting a local file

The process is as follows:

a. Create a CMK on KMS.
b. Call the create-datakey API of KMS to create a DEK. A plaintext DEK and

a ciphertext DEK will be generated. The ciphertext DEK is generated when
you use a CMK to encrypt the plaintext DEK.

c. Use the plaintext DEK to encrypt a plaintext file, generating a ciphertext
file.

d. Store the ciphertext DEK and the ciphertext file together in a permanent
storage device or a storage service.

● Large-size data decryption

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Figure 1-5 Decrypting a local file

The process is as follows:

a. Read the ciphertext DEK and the ciphertext file from the permanent
storage device or storage service.

b. Call the decrypt-datakey API of KMS and use the corresponding CMK
(the one used for encrypting the DEK) to decrypt the ciphertext DEK.
Then you get the plaintext DEK.
If the CMK is deleted, the decryption will fail. Properly keep your CMKs.

c. Use the plaintext DEK to decrypt the ciphertext file.

APIs Related to Envelope Encryption
You can use the following APIs to encrypt and decrypt data.

API Description

Creating a DEK Create a DEK.

Encrypting a DEK Encrypt a DEK with the specified
master key.

Decrypting a DEK Decrypt a DEK with the specified
master key.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/eu/api-dew/CreateDatakey.html
https://support.huaweicloud.com/eu/api-dew/EncryptDatakey.html
https://support.huaweicloud.com/eu/api-dew/DecryptDatakey.html

Encrypting a Local File
1. Create a CMK on the management console. For details, see Creating a Key.
2. Prepare basic authentication information.

– ACCESS_KEY: access key of the Huawei ID
– SECRET_ACCESS_KEY: secret access key of the Huawei ID
– PROJECT_ID: project ID of a Huawei Cloud site. For details, see

Obtaining Account, IAM User, Group, Project, Region, and Agency
Information.

– KMS_ENDPOINT: endpoint for accessing KMS.
– There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

– In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

3. Encrypt a local file.
The example code is shown below.
– CMK is the ID of the key created on the Huawei Cloud management

console.
– The plaintext data file is FirstPlainFile.jpg.
– The data file generated after encryption is SecondEncryptFile.jpg.

import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.kms.v1.KmsClient;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequestBody;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyResponse;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequestBody;

import javax.crypto.Cipher;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.file.Files;
import java.security.SecureRandom;

/**
* Use a DEK to encrypt and decrypt files.
* To enable the assert syntax, add -ea to enable VM_OPTIONS.
 */
public class FileStreamEncryptionExample {

 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String PROJECT_ID = "<ProjectID>";
 private static final String KMS_ENDPOINT = "<KmsEndpoint>";

 /**
 * AES algorithm flags:
 * - AES_KEY_BIT_LENGTH: bit length of the AES256 key

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html

 * - AES_KEY_BYTE_LENGTH: byte length of the AES256 key
 * - AES_ALG: AES256 algorithm. In this example, the Group mode is GCM and the padding
mode is PKCS5Padding.
 * - AES_FLAG: AES algorithm flag
 * - GCM_TAG_LENGTH: GCM tag length
 * - GCM_IV_LENGTH: length of the GCM initial vector
 */
 private static final String AES_KEY_BIT_LENGTH = "256";
 private static final String AES_KEY_BYTE_LENGTH = "32";
 private static final String AES_ALG = "AES/GCM/PKCS5Padding";
 private static final String AES_FLAG = "AES";
 private static final int GCM_TAG_LENGTH = 16;
 private static final int GCM_IV_LENGTH = 12;

 public static void main(final String[] args) {
 // ID of the CMK you created on the Huawei Cloud management console
 final String keyId = args[0];

 encryptFile(keyId);
 }

 /**
 * Using a DEK to encrypt and decrypt a file
 *
 * @param keyId: user CMK ID
 */
 static void encryptFile(String keyId) {
 // 1. Prepare the authentication information for accessing Huawei Cloud.
 final BasicCredentials auth = new
BasicCredentials().withAk(ACCESS_KEY).withSk(SECRET_ACCESS_KEY)
 .withProjectId(PROJECT_ID);

 // 2. Initialize the SDK and transfer the authentication information and the address for the
KMS to access the client.
 final KmsClient kmsClient =
KmsClient.newBuilder().withCredential(auth).withEndpoint(KMS_ENDPOINT).build();

 // 3. Assemble the request message for creating a DEK.
 final CreateDatakeyRequest createDatakeyRequest = new CreateDatakeyRequest()
 .withBody(new
CreateDatakeyRequestBody().withKeyId(keyId).withDatakeyLength(AES_KEY_BIT_LENGTH));

 // 4. Create a DEK.
 final CreateDatakeyResponse createDatakeyResponse =
kmsClient.createDatakey(createDatakeyRequest);

 // 5. Receive the created DEK information.
 // It is recommended that the ciphertext key and key ID be stored locally so that the
plaintext key can be easily obtained for data decryption.
 // The plaintext key should be used immediately after being created. Before using it,
convert the hexadecimal plaintext key to a byte array.
 final String cipherText = createDatakeyResponse.getCipherText();
 final byte[] plainKey = hexToBytes(createDatakeyResponse.getPlainText());

 // 6. Prepare the file to be encrypted.
 // inFile: file to be encrypted
 // outEncryptFile: file generated after encryption

 final File inFile = new File("FirstPlainFile.jpg");
 final File outEncryptFile = new File("SecondEncryptFile.jpg");

 // 7. If the AES algorithm is used for encryption, you can create an initial vector.
 final byte[] iv = new byte[GCM_IV_LENGTH];
 final SecureRandom secureRandom = new SecureRandom();
 secureRandom.nextBytes(iv);

 // 8. Encrypt the file and store the encrypted file.
 doFileFinal(Cipher.ENCRYPT_MODE, inFile, outEncryptFile, plainKey, iv);

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

 }

 /**
 * Encrypting and decrypting a file
 *
 * @param cipherMode: Encryption mode. It can be Cipher.ENCRYPT_MODE or
Cipher.DECRYPT_MODE.
 * @param infile: file to be encrypted or decrypted
 * @param outFile: file generated after encryption and decryption
 * @param keyPlain: plaintext key
 * @param iv: initial vector
 */
 static void doFileFinal(int cipherMode, File infile, File outFile, byte[] keyPlain, byte[] iv) {

 try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream(infile));
 BufferedOutputStream bos = new BufferedOutputStream(new
FileOutputStream(outFile))) {
 final byte[] bytIn = new byte[(int) infile.length()];
 final int fileLength = bis.read(bytIn);

 assert fileLength > 0;

 final SecretKeySpec secretKeySpec = new SecretKeySpec(keyPlain, AES_FLAG);
 final Cipher cipher = Cipher.getInstance(AES_ALG);
 final GCMParameterSpec gcmParameterSpec = new
GCMParameterSpec(GCM_TAG_LENGTH * Byte.SIZE, iv);
 cipher.init(cipherMode, secretKeySpec, gcmParameterSpec);
 final byte[] bytOut = cipher.doFinal(bytIn);
 bos.write(bytOut);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }
 }

}

Decrypting a Local File
1. Prepare basic authentication information.

– ACCESS_KEY: access key of the Huawei ID
– SECRET_ACCESS_KEY: secret access key of the Huawei ID
– PROJECT_ID: project ID of a Huawei Cloud site. For details, see

Obtaining Account, IAM User, Group, Project, Region, and Agency
Information.

– KMS_ENDPOINT: endpoint for accessing KMS.
– There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

– In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

2. Decrypt a local file.
The example code is shown below.
– CMK is the ID of the key created on the Huawei Cloud management

console.
– The data file generated after encryption is SecondEncryptFile.jpg.
– The data file generated after encryption and decryption is

ThirdDecryptFile.jpg.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html

import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.kms.v1.KmsClient;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequestBody;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyResponse;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequestBody;

import javax.crypto.Cipher;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.file.Files;
import java.security.SecureRandom;

/**
* Use a DEK to encrypt and decrypt files.
* To enable the assert syntax, add -ea to enable VM_OPTIONS.
 */
public class FileStreamEncryptionExample {

 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String PROJECT_ID = "<ProjectID>";
 private static final String KMS_ENDPOINT = "<KmsEndpoint>";

 /**
 * AES algorithm flags:
 * - AES_KEY_BIT_LENGTH: bit length of the AES256 key
 * - AES_KEY_BYTE_LENGTH: byte length of the AES256 key
 * - AES_ALG: AES256 algorithm. In this example, the Group mode is GCM and the padding
mode is PKCS5Padding.
 * - AES_FLAG: AES algorithm flag
 * - GCM_TAG_LENGTH: GCM tag length
 * - GCM_IV_LENGTH: length of the GCM initial vector
 */
 private static final String AES_KEY_BIT_LENGTH = "256";
 private static final String AES_KEY_BYTE_LENGTH = "32";
 private static final String AES_ALG = "AES/GCM/PKCS5Padding";
 private static final String AES_FLAG = "AES";
 private static final int GCM_TAG_LENGTH = 16;
 private static final int GCM_IV_LENGTH = 12;

 public static void main(final String[] args) {
 // ID of the CMK you created on the Huawei Cloud management console
 final String keyId = args[0];
 // // Returned ciphertext DEK after DEK creation
 final String cipherText = args[1];

 decryptFile(keyId, cipherText);
 }

 /**
 * Using a DEK to encrypt and decrypt a file
 *
 * @param keyId: user CMK ID
 * @param cipherText: ciphertext data key
 */
 static void decryptFile(String keyId, String cipherText) {
 // 1. Prepare the authentication information for accessing Huawei Cloud.
 final BasicCredentials auth = new
BasicCredentials().withAk(ACCESS_KEY).withSk(SECRET_ACCESS_KEY)
 .withProjectId(PROJECT_ID);

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

 // 2. Initialize the SDK and transfer the authentication information and the address for the
KMS to access the client.
 final KmsClient kmsClient =
KmsClient.newBuilder().withCredential(auth).withEndpoint(KMS_ENDPOINT).build();

 // 3. Prepare the file to be encrypted.
 // inFile: file to be encrypted
 // outEncryptFile: file generated after encryption
 // outDecryptFile: file generated after encryption and decryption
 final File inFile = new File("FirstPlainFile.jpg");
 final File outEncryptFile = new File("SecondEncryptFile.jpg");
 final File outDecryptFile = new File("ThirdDecryptFile.jpg");

 // 4. Use the same initial vector for AES encryption and decryption.
 final byte[] iv = new byte[GCM_IV_LENGTH];

 // 5. Assemble the request message for decrypting the DEK. cipherText is the ciphertext
DEK returned after DEK creation.
 final DecryptDatakeyRequest decryptDatakeyRequest = new DecryptDatakeyRequest()
 .withBody(new DecryptDatakeyRequestBody()
 .withKeyId(keyId).withCipherText(cipherText).withDatakeyCipherLength(AES_KEY
_BYTE_LENGTH));

 // 6. Decrypt the DEK and convert the returned hexadecimal plaintext key into a byte array.
 final byte[] decryptDataKey =
hexToBytes(kmsClient.decryptDatakey(decryptDatakeyRequest).getDataKey());

 // 7. Decrypt the file and store the decrypted file.
// iv at the end of the statement is the initial vector created in the encryption example.
 doFileFinal(Cipher.DECRYPT_MODE, outEncryptFile, outDecryptFile, decryptDataKey, iv);

 // 8. Compare the original file with the decrypted file.
 assert getFileSha256Sum(inFile).equals(getFileSha256Sum(outDecryptFile));

 }

 /**
 * Encrypting and decrypting a file
 *
 * @param cipherMode: Encryption mode. It can be Cipher.ENCRYPT_MODE or
Cipher.DECRYPT_MODE.
 * @param infile: file to be encrypted or decrypted
 * @param outFile: file generated after encryption and decryption
 * @param keyPlain: plaintext key
 * @param iv: initial vector
 */
 static void doFileFinal(int cipherMode, File infile, File outFile, byte[] keyPlain, byte[] iv) {

 try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream(infile));
 BufferedOutputStream bos = new BufferedOutputStream(new
FileOutputStream(outFile))) {
 final byte[] bytIn = new byte[(int) infile.length()];
 final int fileLength = bis.read(bytIn);

 assert fileLength > 0;

 final SecretKeySpec secretKeySpec = new SecretKeySpec(keyPlain, AES_FLAG);
 final Cipher cipher = Cipher.getInstance(AES_ALG);
 final GCMParameterSpec gcmParameterSpec = new
GCMParameterSpec(GCM_TAG_LENGTH * Byte.SIZE, iv);
 cipher.init(cipherMode, secretKeySpec, gcmParameterSpec);
 final byte[] bytOut = cipher.doFinal(bytIn);
 bos.write(bytOut);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }
 }

 /**

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

* Converting a hexadecimal string to a byte array
 *
 * @param hexString: a hexadecimal string
 * @return: byte array
 */
 static byte[] hexToBytes(String hexString) {
 final int stringLength = hexString.length();
 assert stringLength > 0;
 final byte[] result = new byte[stringLength / 2];
 int j = 0;
 for (int i = 0; i < stringLength; i += 2) {
 result[j++] = (byte) Integer.parseInt(hexString.substring(i, i + 2), 16);
 }
 return result;
 }

 /**
 * Calculate the SHA256 digest of the file.
 *
 * @param file
 * @return SHA256 digest
 */
 static String getFileSha256Sum(File file) {
 int length;
 MessageDigest sha256;
 byte[] buffer = new byte[1024];
 try {
 sha256 = MessageDigest.getInstance("SHA-256");
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(e.getMessage());
 }
 try (FileInputStream inputStream = new FileInputStream(file)) {
 while ((length = inputStream.read(buffer)) != -1) {
 sha256.update(buffer, 0, length);
 }
 return new BigInteger(1, sha256.digest()).toString(16);
 } catch (IOException e) {
 throw new RuntimeException(e.getMessage());
 }
 }
}

1.2 Using KMS to Encrypt and Decrypt Data for Cloud
Services

1.2.1 Overview
After your cloud services are integrated with KMS, to encrypt data on cloud, you
simply need to select a CMK managed by KMS for encryption.

You can select a default key automatically created by a cloud service through
KMS, or a key you created or imported to KMS. For details, see What Is a
Customer Master Key?

This section describes how to use KMS for encryption.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://support.huaweicloud.com/eu/dew_faq/dew_01_0044.html
https://support.huaweicloud.com/eu/dew_faq/dew_01_0044.html

Table 1-1 Cloud services integrated with KMS

Category Service Encryption Mode

Computing Elastic Cloud
Server (ECS)

You can encrypt an image or EVS disk in ECS.
● When creating an ECS, if you select an

encrypted image, the system disk of the
created ECS automatically has encryption
enabled, with its encryption mode same
as the image encryption mode.

● When creating an ECS, you can encrypt
added data disks.

Image
Management
Service (IMS)

Encrypting Data in IMS

Storage Object Storage
Service (OBS)

Encrypting Data in OBS

Elastic Volume
Service (EVS)

Encrypting Data in EVS

Volume Backup
Service (VBS)

VBS generally creates online backups for a
single EVS disk (system or data disk) of the
server. If it is encrypted, its backup data will
be stored in encrypted mode.

Cloud Server
Backup Service
(CSBS)

CSBS mainly creates consistency backups
online for all EVS disks of the server. CSBS
backups will also be displayed on the VBS
page. If it is encrypted, its backup data will
be stored in encrypted mode.

Database RDS for MySQL Encrypting an RDS DB Instance

RDS for
PostgreSQL

RDS for SQL Server

Document
Database Service
(DDS)

Encrypting a DDS DB Instance

Encryption Process
Huawei Cloud services use the envelope encryption technology and call KMS APIs
to encrypt service resources. Your CMKs are under your own management. With
your grant, Huawei Cloud services use a specific CMK of yours to encrypt data.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Figure 1-6 How Huawei Cloud uses KMS for encryption

The encryption process is as follows:

1. Create a CMK on KMS.
2. A Huawei Cloud service calls the create-datakey API of the KMS to create a

DEK. A plaintext DEK and a ciphertext DEK are generated.

NO TE

Ciphertext DEKs are generated when you use a CMK to encrypt the plaintext DEKs.

3. The Huawei Cloud service uses the plaintext DEK to encrypt a plaintext file,
generating a ciphertext file.

4. The Huawei Cloud service saves the ciphertext DEK and the ciphertext file
together in a permanent storage device or a storage service.

NO TE

When users download the data from the Huawei Cloud service, the service uses the CMK
specified by KMS to decrypt the ciphertext DEK, uses the decrypted DEK to decrypt data,
and then provides the decrypted data for users to download.

1.2.2 Encrypting Data in ECS

Overview
KMS supports one-click encryption for ECS. The images and data disks of ECS can
be encrypted.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

● When creating an ECS, if you select an encrypted image, the system disk of
the created ECS automatically has encryption enabled, with its encryption
mode same as the image encryption mode.

● When creating an ECS, you can encrypt added data disks.

For details about how to encrypt an image, see Encrypting Data in IMS.

For details about how to encrypt a data disk, see Encrypting Data in EVS.

1.2.3 Encrypting Data in EVS
KMS encrypts created cloud disks to ensure data security.

NO TE

● The encryption attribute of a disk cannot be changed after the disk is created.

● For details about how to create an encrypted disk, see Purchasing an EVS Disk.

● Disk encryption is used for data disks only. System disk encryption relies on the image.
For details, see Encrypting Data in IMS.

Scenario

You can use the key provided by KMS to encrypt data on the disk as required
during EVS disk creation. You do not need to build or maintain the key
management infrastructure, ensuring security and convenience.

KMS keys include default keys, custom keys, and shared keys.

● Default key: The key that is automatically created by EVS through KMS and
named evs/default.

The default key cannot be disabled and does not support scheduled deletion.

● Custom key: Keys created by users. You can select an existing key or create
one. For details, see "Key Management Service" > "Creating a Key" in Data
Encryption Workshop (DEW) User Guide.

NO TE

You will be billed for the custom keys you use. If pay-per-use keys are used, ensure
that you have sufficient account balance. If yearly/monthly keys are used, renew your
order timely. Or, your services may be interrupted and data may never be restored if
encrypted disks become inaccessible.

● Shared key: You can create KMS resources using DEW to share your keys with
other accounts. For details, see "Permission Management" > "Sharing" >
"Shared KMS" in Data Encryption Workshop (DEW) User Guide.

When an encrypted disk is attached, EVS accesses KMS, and KMS sends the data
key (DK) to the host memory for use. The disk uses the DK plaintext to encrypt
and decrypt disk I/Os. The DK plaintext is only stored in the memory of the host
housing the ECS and is not stored persistently on the media. If the custom key is
deleted or disabled in KMS, the disk encrypted using the key can still use the DK
plaintext stored in the host memory. However, if the disk is detached, the DK
plaintext will be deleted from the memory, and the disk cannot be read or written.
Before you re-attach this encrypted disk, ensure that the key is enabled.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/eu/usermanual-evs/en-us_topic_0021738346.html

If disks are encrypted using a custom key, which is then disabled or scheduled for
deletion, the disks can no longer be read or written, and data on these disks may
never be restored. For details, see Table 1-2.

Table 1-2 Impact on encrypted disks after a custom key becomes unavailable

Custom
Key Status

Impact on
Encrypted Disks

Restoration Method

Disabled ● If an encrypted
disk is then
attached to an
ECS, the disk can
still be used, but
normal read/write
operations are not
guaranteed
permanently.

● If an encrypted
disk is then
detached, re-
attaching the disk
will fail.

Enable the CMK. For details, see
Enabling a Key.

Scheduled
deletion

Cancel the scheduled deletion for the
CMK. For details, see Canceling the
Scheduled Deletion of One or More
CMKs.

Deleted Data on the disks can never be restored.

Resource and Cost Planning

Table 1-3 Resources and costs

Resource Description Monthly Fee

EVS ● Billing mode: Pay-per-
use

● Purchase method: A
data disk can be
purchased along with
the server or separately.

For details about billing
rules, see Billing for
Disks.

KMS ● Billing mode: Pay-per-
use

● Key type: Default key. In
this case, ims/default is
used.

For details about billing
rules, see Billing Items.

User Permissions
● Security administrators (users having Security Administrator rights) can grant

the KMS access rights to EVS for using disk encryption.
● When a common user who does not have the Security Administrator rights

needs to use the disk encryption feature, the condition varies depending on

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/productdesc-evs/evs_01_0124.html
https://support.huaweicloud.com/eu/productdesc-evs/evs_01_0124.html
https://support.huaweicloud.com/eu/price-dew/dew_03_0006.html

whether the user is the first one ever in the current region or project to use
this feature.
– If the user is the first, the user must contact a user having the Security

Administrator rights to grant the KMS access rights to EVS. Then, the user
can use the disk encryption feature.

– If the user is not the first, the user can use the disk encryption function
directly.

From the perspective of a tenant, as long as the KMS access rights have been
granted to EVS in a region, all users in the same region can directly use the disk
encryption feature.

If there are multiple projects in the current region, the KMS access permissions
need to be granted to each project in this region.

Using KMS to Encrypt a Disk (on the Console)

Step 1 Log in to the EVS console.

Step 2 Click Buy Disk in the upper right corner of the EVS console.

Step 3 Select the Encryption check box.

1. Click More. The Encryption check box is displayed.

Figure 1-7 More

2. Create an agency.
Select Encryption. If EVS is not authorized to access KMS, the Create Agency
dialog box is displayed. In this case, click Yes to authorize it. After the
authorization, EVS can obtain KMS keys to encrypt and decrypt disks.

NO TE

Before you use the disk encryption function, KMS access rights need to be granted to
EVS. If you have the right for granting, grant the KMS access rights to EVS directly. If
you do not have the permission, contact a user with the Security Administrator
permission for authorization, and then try again.

3. Select Encryption. The Encryption Settings dialog box is displayed.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://console.eu.huaweicloud.com/evs/?locale=en-us#/evs/

Figure 1-8 Encryption Settings dialog box

4. Set KMS Encryption.

a. Select an existing key.

i. Click and select the key used for encryption.
The key name identifies a key. You can select the following keys:

○ Default keys: After the KMS access permission is granted to EVS,
the system automatically creates a default key evs/default.

○ Custom keys: Keys you already have or just created. For details,
see Creating a Key.

ii. Click View KMS Key to view all keys.
iii. Click OK.

b. Enter a key ID.

Figure 1-9 Entering a key ID

i. Enter the ID of the key used for encryption.
ii. Click OK.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html

Step 4 Configure other parameters and click Buy now.

----End

Using KMS to Encrypt a Disk (Through an API)
You can call the required API of EVS to purchase an encrypted EVS disk. For
details, see Elastic Volume Service API Reference.

1.2.4 Encrypting Data in IMS
You can use KMS encryption to create private images in Image Management
Service (IMS) to securely store data.

Scenario
The IMS server (image) is a template used to create servers or disks, including
public images, private images, shared images, and KooGallery images. When you
create a private image in IMS, you can use KMS encryption to ensure data security.

You can create an encrypted image in either of the following ways:

● Method 1: Create an encrypted image using an external image file.
When you register an image file as a private image, select KMS encryption
and select a key.

● Method 2: Create an encrypted image using an encrypted ECS.
When you use an ECS to create a private image, if the system disk of the ECS
is encrypted, the private image created using the ECS is also encrypted. The
key used for encrypting the image must be the same as that used for
encrypting the system disk.

This section describes how to use default KMS keys to encrypt IMS image files.

Solution Architecture
Figure 1-10 describes how to use KMS to encrypt an IMS image file.

Figure 1-10 Encrypting IMS

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Resource and Cost Planning

Table 1-4 Resources and costs

Resource Description Monthly Fee

OBS buckets ● Billing mode: Yearly/
Monthly

● Resource package type:
Standard storage
(multi-AZ)

● Specifications: 100 GB
● Quantity: 1

For details about billing
rules, see Billing Items.

IMS ● Image type: System disk
image

● Billing Mode: Free

Free. For details about
billing rules, see Billing.

KMS ● Billing mode: Pay-per-
use

● Key type: Default key. In
this case, ims/default is
used.

For details about billing
rules, see Billing Items.

Restrictions
● An encrypted image cannot be shared with other users.
● An encrypted image cannot be published in the Marketplace.
● The key used for encrypting an image cannot be changed.
● If the key used for encrypting an image is disabled or deleted, the image is

unavailable.
● The system disk of an ECS created using an encrypted image is also

encrypted, and its key is the same as the image key.

Method 1: Creating an Encrypted Image Using an External Image File

Step 1 Prepare an external image file.
● For Windows, prepare an image by referring to Windows Private Images.
● For Linux, prepare an image by referring to Linux Private Images.

Step 2 Upload the external image file to the OBS bucket. For details, see Creating a
Windows System Disk Image from an External Image File.

Step 3 Create a private image. Log in to the IMS console. Click the Private Images tab
and click Create Image in the upper right corner.
● Type: Select Import Image.
● Image Type: Select System disk image.
● Select Image File: Select the bucket that stores the image file in Step 2.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://support.huaweicloud.com/eu/price-obs/obs_42_0001.html
https://support.huaweicloud.com/eu/productdesc-ims/en-us_topic_0030713145.html
https://support.huaweicloud.com/eu/price-dew/dew_03_0006.html
https://support.huaweicloud.com/eu/usermanual-ims/en-us_topic_0047501112.html
https://support.huaweicloud.com/eu/usermanual-ims/en-us_topic_0047501133.html
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section2
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section2

● Encryption: Select KMS encryption. Select an existing key is selected by
default. The default key name is ims/default.

● For details about other parameters, see Creating a Windows System Disk
Image from an External Image File.

Figure 1-11 Encryption configuration

Step 4 Create an ECS using an image.

For details, see Creating an ECS from an Image.

Note for setting the parameters:

● Region: Select the region where the private image is located.
● Specifications: Select a flavor based on the OS type in the image and the OS

versions described in OSs Supported by Different Types of ECSs.
● Image: Select Private image and then choose the image created in Step 3

from the drop-down list.
● (Optional) Data Disk: Add a data disk, which is created using the image

created with the system disk image. In this way, the system disk and data disk
data of the VM on the original platform can be migrated to the current cloud
platform.

----End

Method 2: Creating an Encrypted Image Using an Encrypted ECS

When you use an ECS to create a private image, if the system disk of the ECS is
encrypted, the private image created using the ECS is also encrypted. The key used
for encrypting the image is the one used for creating the system disk.

Step 1 Encrypt the EVS system disk. For details, see Encrypting Data in EVS.

Step 2 When purchasing an ECS, set Disk Type to the encrypted system disk in Step 1.

Step 3 Create a private image. Log in to the IMS console. Click the Private Images tab
and click Create Image in the upper right corner.
● Type: Select Create Image.
● Image Type: Select System disk image.
● Source: Select the ECS purchased in Step 2 from the ECS list.
● For details about other parameters, see Creating a Windows System Disk

Image from an External Image File.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section4
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section4
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0302.html
https://support.huaweicloud.com/eu/productdesc-ims/ims_01_0007.html
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section4
https://support.huaweicloud.com/eu/usermanual-ims/ims_01_0203.html#section4

Figure 1-12 Creating a private image

Step 4 Click Next.

----End

Related Operations
Using KMS to encrypt a private image (API): You can call IMS APIs to create an
encrypted image. For details, see Image Management Service API Reference.

1.2.5 Encrypting Data in OBS

Scenario
You can use KMS to encrypt all or certain objects in an OBS bucket. When you use
KMS encryption in OBS, KMS envelope encryption ensures data encryption and
decryption without transmitting a large amount of data over the network.
Envelope encryption ensures the confidentiality of data transmission, the efficiency
and convenience of data decryption, and information security during object
upload and download.

● Full encryption: Encrypt all objects uploaded to an OBS bucket.
In this case, you only need to encrypt the OBS bucket, as the objects in the
bucket inherit the bucket encryption configurations by default. For details, see
Enabling Server-Side Encryption When Creating an OBS Bucket or
Enabling Encryption for a Created OBS Bucket.
After an OBS bucket is encrypted, Inherit from bucket is enabled by default
when you upload objects to the bucket. In this case, the OBS bucket and its
objects share the same encryption method. To change the encryption method
for the objects, disable Inherit from bucket when you upload the objects, and
modify the encryption method. For details, see Uploading Objects to an OBS
Bucket.

● Partial encryption: Encrypt only certain objects uploaded to an OBS bucket.
In this case, you do not need to encrypt the OBS bucket. Instead, you can
directly upload objects to the OBS bucket and configure the encryption
method. For details, see Uploading Objects to an OBS Bucket.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Figure 1-13 OBS encryption

Solution Architecture
The following figures show how objects uploaded to OBS are encrypted and
decrypted.

● Encryption principle

Figure 1-14 Encryption principle

a. Obtain the encryption key.
Generate a data encryption key (DEK) on KMS to encrypt objects in an
OBS bucket.

b. Upload encrypted data to the OBS bucket.
The encryption SDKs encrypt the uploaded data plaintext using the
obtained DEK and store the encrypted object ciphertext to OBS.

● Decryption principle

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Figure 1-15 Decryption principle

a. Download the objects.
Download the encrypted object data from OBS.

b. Decrypt the objects.
The encrypted objects obtain the corresponding ciphertext DEK using the
encryption SDKs, and decrypt the ciphertext DEK using KMS to obtain the
decrypted original objects.

Constraints
A key in use cannot be deleted. Otherwise, the object encrypted with this key
cannot be downloaded.

Enabling Server-Side Encryption When Creating an OBS Bucket

Step 1 Log in to the OBS console.

Step 2 In the navigation pane on the left, choose Buckets. On the displayed page, click
Create Bucket in the upper right corner.

Step 3 Under Properties, enable Server-Side Encryption, select SSE-KMS for Encryption
Metod, and select an encryption key type.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://console.eu.huaweicloud.com/obs/?locale=en-us#/obs/

Figure 1-16 Encrypting data in OBS

NO TE

OBS uses the encryption key provided by KMS. You can select any of the following keys:

● Default key obs/default. If you do not have a default key, OBS automatically creates
one when you upload an object for the first time.

● Custom keys created on KMS. For details, see Creating a Key.

● Keys using the SM4 cryptographic algorithm, which is supported only in CN North-
Ulanqab 1.

Step 4 Configure other parameters and click Create Now.

----End

Enabling Encryption for a Created OBS Bucket

Step 1 In the navigation pane on the left, choose Buckets. Click the target bucket and
access the Objects page.

Step 2 In the navigation pane on the left, choose Overview.

Step 3 In the Basic Configurations area, click Server-Side Encryption.

Step 4 In the displayed dialog box, enable server-side encryption, set Encryption Method
to SSE-KMS, and select an encryption key type.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html

Figure 1-17 Enabling server-side encryption

NO TE

OBS uses the encryption key provided by KMS. You can select any of the following keys:

● Default key obs/default. If you do not have a default key, OBS automatically creates
one when you upload an object for the first time.

● Custom keys created on KMS. For details, see Creating a Key.

● Keys using the SM4 cryptographic algorithm, which is supported only in CN North-
Ulanqab 1.

Step 5 Configure other parameters and click OK.

----End

Uploading Objects to an OBS Bucket

Step 1 Click the target bucket in the list on the OBS console.

Step 2 In the navigation pane on the left, choose Objects.

Step 3 Click Upload Object.

Step 4 In the displayed dialog box, add files to be uploaded.

Step 5 For Server-Side Encryption, select an encryption method, and select a default key
or custom key from the drop-down list, as shown in Figure 1-18.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html

Figure 1-18 Uploading an object with server-side encryption enabled (OBS bucket
encryption enabled)

NO TE

● After server-side encryption is enabled for the OBS bucket, the encryption configuration
is inherited by default when an object is uploaded.

● To modify the encryption configuration, you need to disable Inherit from bucket and
select SSE-KMS or SSE-OBS as required.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Figure 1-19 Uploading an object with server-side encryption enabled (OBS bucket
encryption disabled)

NO TE

If OBS bucket encryption is not enabled, you need to enable server-side encryption when
uploading objects.

Step 6 After uploading the object, click it to view its encryption status.

NO TE

● The object encryption status cannot be changed.
● A key in use cannot be deleted. Otherwise, the object encrypted with this key cannot be

downloaded.

----End

Related Operations
Alternatively, you can call OBS APIs to upload a file with server-side encryption
using KMS-managed keys (SSE-KMS). For details, see Configuring Bucket
Encryption.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

https://support.huaweicloud.com/eu/api-obs/obs_04_0062.html
https://support.huaweicloud.com/eu/api-obs/obs_04_0062.html

1.2.6 Encrypting an RDS DB Instance

Overview
Relational Database Service (RDS) supports MySQL and PostgreSQL engines.

After encryption is enabled, disk data will be encrypted and stored on the server
when you create a DB instance or expand disk capacity. When you download
encrypted objects, the encrypted data will be decrypted on the server and
displayed in plaintext.

Restrictions
● The KMS Administrator right must be granted to the user in the region of RDS

by using Identity and Access Management (IAM). For details about how to
assign permissions to user groups, see "How Do I Manage User Groups and
Grant Permissions to Them?" in Identity and Access Management User Guide.

● To use a user-defined key to encrypt objects to be uploaded, create a key
using DEW.

● Once the disk encryption function is enabled, you cannot disable it or change
the key after a DB instance is created. The backup data stored in OBS will not
be encrypted.

● After an RDS DB instance is created, do not disable or delete the key that is
being used. Otherwise, RDS will be unavailable and data cannot be restored.

● If you scale up a DB instance with disks encrypted, the expanded storage
space will be encrypted using the original encryption key.

Using KMS to Encrypt a DB Instance (on the Console)
When purchasing a DB instance on the RDS console, you can enable disk
encryption to use KMS-provided keys to encrypt DB instance disks.

Figure 1-20 Encrypting data in RDS

Using KMS to Encrypt a DB Instance (Through an API)
You can also call the required API of RDS to purchase encrypted DB instances. For
details, see Relational Database Service API Reference.

1.2.7 Encrypting a DDS DB Instance

Overview
After encryption is enabled, disk data will be encrypted and stored on the server
when you create a DB instance or expand disk capacity. When you download

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

encrypted objects, the encrypted data will be decrypted on the server and
displayed in plaintext.

Restrictions
● The KMS Administrator right must be added in the region of RDS using IAM.

For details about how to assign permissions to user groups, see "How Do I
Manage User Groups and Grant Permissions to Them?" in Identity and Access
Management User Guide.

● To use a user-defined key to encrypt objects to be uploaded, create a key
using DEW. For details, see Creating a Key.

● Once the disk encryption function is enabled, you cannot disable it or change
the key after a DB instance is created. The backup data stored in OBS will not
be encrypted.

● After a Document Database Service (DDS) DB instance is created, do not
disable or delete the key that is being used. Otherwise, DDS will be
unavailable and data cannot be restored.

● If you scale up a DB instance with disks encrypted, the expanded storage
space will be encrypted using the original encryption key.

Using KMS to Encrypt a DB Instance (on the Console)

When you purchase a DB instance in DDS, you can set Disk Encryption to Enable
and use the key provided by KMS to encrypt the disk of the DB instance. For more
information, see Buying a Cluster Instance.

Figure 1-21 Encrypting data in DDS

Using KMS to Encrypt a DB Instance (Through an API)

You can also call the required API of DDS to purchase encrypted DB instances. For
details, see Document Database Service API Reference.

1.3 Using the Encryption SDK to Encrypt and Decrypt
Local Files

You can use certain algorithms to encrypt your files, protecting them from being
breached or tampered with.

Encryption SDK is a client password library that can encrypt and decrypt data and
file streams. You can easily encrypt and decrypt massive amounts of data simply
by calling APIs. It allows you to focus on developing the core functions of your
applications without being distracted by the data encryption and decryption
processes.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0044018333.html
https://github.com/HuaweiCloudDeveloper/huaweicloud-encryption-sdk-java

Scenario

If large files and images are sent to KMS through HTTPS for encryption, a large
number of network resources will be consumed and the encryption will be slow.
This section describes how to quickly encrypt a large amount of data.

Solution

Encryption SDK performs envelope encryption on file streams segment by
segment.

Data is encrypted within the SDK by using the DEK generated by KMS. Segmented
encryption of files in the memory ensures the security and correctness of file
encryption, because it does not require file transfer over the network.

The SDK loads a file to memory and processes it segment by segment. The next
segment will not be read before the encryption or decryption of the current
segment completes.

Process

Procedure

Step 1 Obtain the AK and the SK.
● ACCESS_KEY: Access key of the Huawei account. For details, see How Do I

Obtain an Access Key (AK/SK)?
● SECRET_ACCESS_KEY: Secret access key of the Huawei account. For details,

see How Do I Obtain an Access Key (AK/SK)?

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html

● PROJECT_ID: site project ID. For details, see Obtaining a Project ID.
● KMS_ENDPOINT: endpoint for accessing KMS.
● There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or environment
variables for storage.

● In this example, the AK/SK stored in the environment variables are used for
identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

Step 2 Obtain region information.

1. Log in to the DEW console.
2. Hover over the username in the upper right corner and choose My

Credentials from the drop-down list.
3. Obtain the Project ID and Project Name.

Figure 1-22 Obtaining the project ID and project name

4. Click on the left and choose Security > Data Encryption Workshop.
5. Obtain the ID of the CMK (KEYID) to be used in the current region.

Figure 1-23 Obtaining the CMK ID

6. Obtain the endpoint (ENDPOINT) required by the current region.

Step 3 Encrypt and decrypt a file.
public class KmsEncryptFileExample {

 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String PROJECT_ID = "<projectId>";
 private static final String REGION = "<region>";
 private static final String KEYID = "<keyId>";
 public static final String ENDPOINT = "<endpoint>";

 public static void main(String[] args) throws IOException {
 // Source file path
 String encryptFileInPutPath = args[0];
 // Path of the encrypted ciphertext file
 String encryptFileOutPutPath = args[1];
 // Path of the decrypted file
 String decryptFileOutPutPath = args[2];
 // Encryption context

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html
https://console.eu.huaweicloud.com/dew/?locale=en-us#/dew/

 Map<String, String> encryptContextMap = new HashMap<>();
 encryptContextMap.put("encryption", "context");
 encryptContextMap.put("simple", "test");
 encryptContextMap.put("caching", "encrypt");
 // Construct the encryption configuration
 HuaweiConfig config = HuaweiConfig.builder().buildSk(SECRET_ACCESS_KEY)
 .buildAk(ACCESS_KEY)
 .buildKmsConfig(Collections.singletonList(new KMSConfig(REGION, KEYID, PROJECT_ID,
ENDPOINT)))
 .buildCryptoAlgorithm(CryptoAlgorithm.AES_256_GCM_NOPADDING)
 .build();
 HuaweiCrypto huaweiCrypto = new HuaweiCrypto(config);
 // Set the key ring.
 huaweiCrypto.withKeyring(new
KmsKeyringFactory().getKeyring(KeyringTypeEnum.KMS_MULTI_REGION.getType()));
 // Encrypt the file.
 encryptFile(encryptContextMap, huaweiCrypto, encryptFileInPutPath, encryptFileOutPutPath);
 // Decrypt the file.
 decryptFile(huaweiCrypto, encryptFileOutPutPath, decryptFileOutPutPath);
 }

 private static void encryptFile(Map<String, String> encryptContextMap, HuaweiCrypto huaweiCrypto,
 String encryptFileInPutPath, String encryptFileOutPutPath) throws IOException {
 // fileInputStream: input stream corresponding to the encrypted file
 FileInputStream fileInputStream = new FileInputStream(encryptFileInPutPath);
 // fileOutputStream: output stream corresponding to the source file
 FileOutputStream fileOutputStream = new FileOutputStream(encryptFileOutPutPath);
 // Encryption
 huaweiCrypto.encrypt(fileInputStream, fileOutputStream, encryptContextMap);
 fileInputStream.close();
 fileOutputStream.close();
 }

 private static void decryptFile(HuaweiCrypto huaweiCrypto, String decryptFileInPutPath, String
decryptFileOutPutPath) throws IOException {
 // in: input stream corresponding to the source file
 FileInputStream fileInputStream = new FileInputStream(decryptFileInPutPath);
 // out: output stream corresponding to the encrypted file
 FileOutputStream fileOutputStream = new FileOutputStream(decryptFileOutPutPath);
 // Decryption
 huaweiCrypto.decrypt(fileInputStream, fileOutputStream);
 fileInputStream.close();
 fileOutputStream.close();
 }
}

----End

1.4 Encrypting and Decrypting Data Through Cross-
region DR

Scenario
If a fault occurs during encryption or decryption in a region, you can use KMS to
implement cross-region DR encryption and decryption, ensuring service continuity.

Solution
If KMS is faulty in one or multiple regions, encryption and decryption can be
completed as long as a key in the key ring is available.

A cross-region key can use the CMKs of multiple regions to encrypt a piece of data
and generate unique data ciphertext. To decrypt the data, you simply need to use

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

a key ring that contains one or more available CMKs that were used for encrypting
the data.

Process

Procedure

Step 1 Obtain the AK and the SK.

● ACCESS_KEY: Access key of the Huawei account. For details, see How Do I
Obtain an Access Key (AK/SK)?

● SECRET_ACCESS_KEY: Secret access key of the Huawei account. For details,
see How Do I Obtain an Access Key (AK/SK)?

● PROJECT_ID: site project ID. For details, see Obtaining a Project ID.

● KMS_ENDPOINT: endpoint for accessing KMS.

● There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or environment
variables for storage.

● In this example, the AK/SK stored in the environment variables are used for
identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

Step 2 Obtain region information.

1. Log in to the DEW console.

2. Hover over the username in the upper right corner and choose My
Credentials from the drop-down list.

3. Obtain the Project ID and Project Name.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html
https://console.eu.huaweicloud.com/dew/?locale=en-us#/dew/

Figure 1-24 Obtaining the project ID and project name

4. Click on the left and choose Security > Data Encryption Workshop.

5. Obtain the ID of the CMK (KEYID) to be used in the current region.

Figure 1-25 Obtaining the CMK ID

Step 3 Use the key ring for encryption and decryption.
public class KmsEncryptionExample {
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");

 private static final String PROJECT_ID_1 = "<projectId1>";
 private static final String REGION_1 = "<region1>";
 private static final String KEYID_1 = "<keyId1>";

 public static final String PROJECT_ID_2 = "<projectId2>";
 public static final String REGION_2 = "<region2>";
 public static final String KEYID_2 = "<keyId2>";

 // Data to be encrypted
 private static final String PLAIN_TEXT = "Hello World!";

 public static void main(String[] args) {
 // CMK list
 List<KMSConfig> kmsConfigList = new ArrayList<>();
 kmsConfigList.add(new KMSConfig(REGION_1, KEYID_1, PROJECT_ID_1));
 kmsConfigList.add(new KMSConfig(REGION_2, KEYID_2, PROJECT_ID_2));
 // Construct encryption-related information.
 HuaweiConfig multiConfig = HuaweiConfig.builder().buildSk(SECRET_ACCESS_KEY)
 .buildAk(ACCESS_KEY)
 .buildKmsConfig(kmsConfigList)
 .buildCryptoAlgorithm(CryptoAlgorithm.AES_256_GCM_NOPADDING)
 .build();
 // Select a key ring.
 KMSKeyring keyring = new
KmsKeyringFactory().getKeyring(KeyringTypeEnum.KMS_MULTI_REGION.getType());
 HuaweiCrypto huaweiCrypto = new HuaweiCrypto(multiConfig).withKeyring(keyring);
 // Encryption context
 Map<String, String> encryptContextMap = new HashMap<>();
 encryptContextMap.put("key", "value");
 encryptContextMap.put("context", "encrypt");
 // Encryption
 CryptoResult<byte[]> encryptResult = huaweiCrypto.encrypt(new EncryptRequest(encryptContextMap,
PLAIN_TEXT.getBytes(StandardCharsets.UTF_8)));
 // Decryption
 CryptoResult<byte[]> decryptResult = huaweiCrypto.decrypt(encryptResult.getResult());
 Assert.assertEquals(PLAIN_TEXT, new String(decryptResult.getResult()));

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

 }
}

----End

1.5 Using KMS to Protect File Integrity

Scenario

When a large amount of files (such as images, electronic insurance policies, and
important files) need to be transmitted or stored securely, you can use KMS to
sign the file digest. When the files are used again, you can recalculate the digest
for signature verification. Ensure that files are not tampered with during
transmission or storage.

Solution

Create a CMK on KMS.

Calculate the file digest and call the sign API of KMS to sign the digest. The
signature result of the digest is obtained. Transmit or store the digest signature
result, key ID, and the file together. The following figure shows the signature
process.

Figure 1-26 Signature process

Before using a file, you need to check the integrity of the file to ensure that the
file is not tampered with.

Recalculate the file digest and call the verify API of KMS with the signature value
to verify the signature for the digest. The signature verification result is obtained.
If the signature is verified, the file has not been tampered with. The following
figure shows the signature verification process.

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Figure 1-27 Signature verification process.

Procedure

Step 1 Obtain the AK and the SK.
● ACCESS_KEY: Access key of the Huawei account. For details, see How Do I

Obtain an Access Key (AK/SK)?
● SECRET_ACCESS_KEY: Secret access key of the Huawei account. For details,

see How Do I Obtain an Access Key (AK/SK)?
● PROJECT_ID: site project ID. For details, see Obtaining a Project ID.
● KMS_ENDPOINT: endpoint for accessing KMS.
● There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or environment
variables for storage.

● In this example, the AK/SK stored in the environment variables are used for
identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

Step 2 Use KMS to sign the file and verify the signature.
public class FileStreamSignVerifyExample {

 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account, which is sensitive information.
Store this in ciphertext.
 * - IAM_ENDPOINT: endpoint for accessing IAM.
 * - KMS_REGION_ID: regions supported by KMS.
 * - KMS_ENDPOINT: endpoint for accessing KMS.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String IAM_ENDPOINT = "https://<IamEndpoint>";
 private static final String KMS_REGION_ID = "<RegionId>";
 private static final String KMS_ENDPOINT = "https://<KmsEndpoint>";

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html

 public static void main(String[] args) {
 // CMK ID. Select a key whose usage contains SIGN_VERIFY.
 final String keyId = args[0];

 signAndVerifyFile(keyId);
 }

 /**
 * Use KMS to sign the file and verify the signature.
 *
 * @param keyId: CMK ID
 */
 static void signAndVerifyFile(String keyId) {
 // 1. Prepare the authentication information for accessing Huawei Cloud.
 final BasicCredentials auth = new BasicCredentials()
 .withIamEndpoint(IAM_ENDPOINT).withAk(ACCESS_KEY).withSk(SECRET_ACCESS_KEY);

 // 2. Initialize the SDK and transfer the authentication information and the address for the KMS to
access the client.
 final KmsClient kmsClient = KmsClient.newBuilder()
 .withRegion(new Region(KMS_REGION_ID, KMS_ENDPOINT)).withCredential(auth).build();

 // 3. Prepare the file to be signed.
 // inFile File to be signed
 final File inFile = new File("FirstSignFile.iso");
 final String fileSha256Sum = getFileSha256Sum(inFile);

 // 4. Calculate the digest and select a proper signature algorithm based on the key type.
 final SignRequest signRequest = new SignRequest().withBody(
 new
SignRequestBody().withKeyId(keyId).withSigningAlgorithm(SignRequestBody.SigningAlgorithmEnum.RSASSA
_PSS_SHA_256)
 .withMessageType(SignRequestBody.MessageTypeEnum.DIGEST).withMessage(fileSha256Su
m));

 final SignResponse signResponse = kmsClient.sign(signRequest);

 // 5. Verify the digest.
 final ValidateSignatureRequest validateSignatureRequest = new ValidateSignatureRequest().withBody(
 new
VerifyRequestBody().withKeyId(keyId).withMessage(fileSha256Sum).withSignature(signResponse.getSignatur
e())
 .withSigningAlgorithm(VerifyRequestBody.SigningAlgorithmEnum.RSASSA_PSS_SHA_256)
 .withMessageType(VerifyRequestBody.MessageTypeEnum.DIGEST));
 final ValidateSignatureResponse validateSignatureResponse =
kmsClient.validateSignature(validateSignatureRequest);

 // 6. Compare the digest result.
 assert validateSignatureResponse.getSignatureValid().equalsIgnoreCase("true");

 }

 /**
 * Calculate the SHA256 digest of the file.
 *
 * @param file
 * @return SHA256 digest in Base64 format
 */
 static String getFileSha256Sum(File file) {
 int length;
 MessageDigest sha256;
 byte[] buffer = new byte[1024];
 try {
 sha256 = MessageDigest.getInstance("SHA-256");
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(e.getMessage());
 }
 try (FileInputStream inputStream = new FileInputStream(file)) {

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

 while ((length = inputStream.read(buffer)) != -1) {
 sha256.update(buffer, 0, length);
 }
 return Base64.getEncoder().encodeToString(sha256.digest());
 } catch (IOException e) {
 throw new RuntimeException(e.getMessage());
 }
 }

}

----End

Data Encryption Workshop
Best Practices 1 Key Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

2 Cloud Secret Management Service

2.1 Using CSMS to Change Hard-coded Database
Account Passwords

Generally, the secrets used for access are embedded in applications. To update a
secret, you need to create a secret and spend time updating your applications. If
you have multiple applications using the same secret, you have to update all of
them, or the applications you forgot to update will be unable to use the secret for
login.

An easy-to-use, effective, and secure secret management tool will be helpful.

Cloud Secret Management Service (CSMS) has the following advantages:

● You can host your secrets instead of using hardcoded secrets, improving the
security of data and assets.

● Secure SDK access allows you to dynamically call your secrets.
● You can store many types of secrets. You can store service accounts,

passwords, and database information, including but not limited to database
names, IP addresses, and port numbers.

Logging In to a Database Using Secrets
You can create a secret and log in to your database by calling the secret via an
API.

Ensure your account has the KMS Administrator or KMS CMKFullAccess
permission. For details, see .

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Figure 2-1 Secret-based login process

The process is as follows:

Step 1 Create a secret on the or via an API to store database information (such as the
database address, port, and password).

Step 2 Use an application to access the database. CSMS will query the secret created in 1.

Step 3 CSMS retrieves and decrypts the secret ciphertext and securely returns the
information stored in the secret to the application through the secret
management API.

Step 4 The application obtains the decrypted plaintext secret and uses it to access the
database.

----End

Secret Creation and Query APIs

You can call the following APIs to create secrets, save their content, and query
secret information.

API Description

Creating a Secret This API is used to create a secret and
store the secret value in the initial
secret version.

Querying a Secret This API is used to query a secret.

Creating and Querying Secrets via APIs
1. Prepare basic authentication information.

– ACCESS_KEY: Access key of the Huawei account
– SECRET_ACCESS_KEY: Secret access key of the Huawei account
– PROJECT_ID: project ID of a Huawei Cloud site. For details, see

Obtaining Account, IAM User, Group, Project, Region, and Agency
Information.

– CSMS_ENDPOINT: endpoint for accessing CSMS.

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/eu/api-dew/CreateSecret.html
https://support.huaweicloud.com/eu/api-dew/ShowSecret.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html
https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html

– There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

– In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

2. Create and query secret information.
Secret name: secretName
Secret value: secretString
Secret version value: LATEST_SECRET
Secret version: versionId
import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.csms.v1.CsmsClient;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretRequest;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretRequestBody;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretResponse;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionRequest;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionResponse;

public class CsmsCreateSecretExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: Access key of the Huawei account
 * - SECRET_ACCESS_KEY: Secret access key of the Huawei account
 * - PROJECT_ID: Huawei Cloud project ID. For details, see https://support.huaweicloud.com/eu/
productdesc-iam/iam_01_0023.html
* - CSMS_ENDPOINT: endpoint address for accessing CSMS.
 * - There will be security risks if the AK/SK used for authentication is directly written into code.
Encrypt the AK/SK in the configuration file or environment variables for storage.
 * - In this example, the AK/SK stored in the environment variables are used for identity
authentication. Configure the environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK in the local environment first.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String PROJECT_ID = "<ProjectID>";
 private static final String CSMS_ENDPOINT = "<CsmsEndpoint>";

 //Version ID used to query the latest secret version details
 private static final String LATEST_SECRET = "latest";

 public static void main(String[] args) {
 String secretName = args[0];
 String secretString = args[1];

 //Create a secret.
 createSecret(secretName, secretString);

 //Query the content of the new secret based on the secret version latest or v1.
 ShowSecretVersionResponse latestVersion = showSecretVersion(secretName, LATEST_SECRET);
 ShowSecretVersionResponse firstVersion = showSecretVersion(secretName, "v1");

 assert latestVersion.equals(firstVersion);
 assert latestVersion.getVersion().getSecretString().equalsIgnoreCase(secretString);
 }

 /**
 * Create a secret.
 * @param secretName
 * @param secretString
 */
 private static void createSecret(String secretName, String secretString) {

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

 CreateSecretRequest secret = new CreateSecretRequest().withBody(
 new CreateSecretRequestBody().withName(secretName).withSecretString(secretString));

 CsmsClient csmsClient = getCsmsClient();

 CreateSecretResponse createdSecret = csmsClient.createSecret(secret);

 System.out.printf("Created secret success, secret detail:%s", createdSecret);
 }
 /**
 * Query secret version details based on the secret version ID.
 * @param secretName
 * @param versionId
 * @return
 */
 private static ShowSecretVersionResponse showSecretVersion(String secretName, String versionId) {
 ShowSecretVersionRequest showSecretVersionRequest = new
ShowSecretVersionRequest().withSecretName(secretName)
 .withVersionId(versionId);

 CsmsClient csmsClient = getCsmsClient();

 ShowSecretVersionResponse version = csmsClient.showSecretVersion(showSecretVersionRequest);

 System.out.printf("Query secret success. version id:%s",
version.getVersion().getVersionMetadata().getId());

 return version;
 }

 /**
 * Obtain the CSMS client.
 * @return
 */
 private static CsmsClient getCsmsClient() {
 BasicCredentials auth = new BasicCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withProjectId(PROJECT_ID);

 return CsmsClient.newBuilder().withCredential(auth).withEndpoint(CSMS_ENDPOINT).build();
 }
}

Obtaining the Database Account Through an Application
1. Obtain the dependency statement of the CSMS SDK.

Example:
<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>XXX</version>
 </dependency>
 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.8.9</version>
 </dependency>
 <dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-csms</artifactId>
 <version>3.0.79</version>
 </dependency>

2. Establish a database connection and obtain the account.
Example:
import com.google.gson.Gson;
import com.google.gson.JsonObject;

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionRequest;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionResponse;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

 // Obtain the specified database account based on the secret information.
 public static Connection getMySQLConnectionBySecret(String secretName, String jdbcUrl) throws
ClassNotFoundException, SQLException{
 Class.forName(MYSQL_JDBC_DRIVER);
 ShowSecretVersionResponse latestVersionValue = getCsmsClient().showSecretVersion(new
ShowSecretVersionRequest().withSecretName(secretName).withVersionId("latest"));
 String secretString = latestVersionValue.getVersion().getSecretString();
 JsonObject jsonObject = new Gson().fromJson(secretString, JsonObject.class);
 return DriverManager.getConnection(jdbcUrl, jsonObject.get("username").getAsString(),
jsonObject.get("password").getAsString());
 }

2.2 Using CSMS to Prevent AK/SK Leakage
CSMS is a secure, reliable, and easy-to-use credential hosting service. Users or
applications can use CSMS to create, retrieve, update, and delete credentials in a
unified manner throughout the credential lifecycle. CSMS can help you eliminate
risks incurred by hardcoding, plaintext configuration, and permission abuse.

Scenario
Application secrets are stored and can be accessed temporarily to prevent AK/SK
leakage.

How It Works
You can configure an agency for elastic cloud server (ECS) on Identity and Access
Management (IAM) to obtain the temporary access key (AK), thereby protecting
the AK and secret key (SK).

Access secrets can be classified into permanent secrets and temporary secrets
based on their validity periods. Permanent access secrets include usernames and
passwords. Temporary access keys have a shorter validity period, are updated
frequently, thus are more secure. You can assign an IAM agency to an ECS
instance, so that applications in the ECS instance can use the temporary AK, SK,
and security token to access CSMS. The temporary access keys are dynamically
obtained every time they are required. They can also be cached in the memory
and updated periodically.

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Process Flow

Figure 2-2 ECS agency configuration process

Constraint
Only the administrator or an IAM user with the ECS permission can configure an
agency for an ECS instance.

Procedure

Step 1 Create an ECS agency on IAM.

1. Log in to the DEW console.

2. Click on the left of the page and choose Management & Governance >
Identity and Access Management.

3. In the navigation pane on the left, choose Agencies.
4. Click Create Agency in the upper right corner.
5. Configure the parameters on the displayed page. For details about the

parameters, see Table 2-1.

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

https://console.eu.huaweicloud.com/dew/?locale=en-us#/dew/

Figure 2-3 Creating an agency

Table 2-1 Agency parameters

Parameter
Name

Description

Agency
Name

Enter an agency name, for example, ECS_TO_CSMS.

Agency
Type

Select Cloud service.

Cloud
Service

Select ECS BMS.

Validity
Period

Select a duration. The value can be Unlimited, 1 day, or
Custom.

Description (Optional) Enter agency description.

6. Click OK. In the displayed dialog box, click Authorize.

7. Click Create Policy in the upper right corner. If you already have a policy, skip
this step.

a. Configure policy parameters. For details about the parameters, see Table
2-2.

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Figure 2-4 Creating a policy

Table 2-2 Policy parameters

Parameter
Name

Description

Policy Name Enter a policy name.

Policy View Select Visual editor.

Policy Content ▪ Allow: Select Allow.

▪ Cloud Service: Select CSMS and KMS.
NOTE

○ If only the CSMS service permission is added, the KMS
API may fail to be called.

○ You need to add policies for services one by one. After
the policies are configured for a service, click Add
Permissions to add policies for other services.

▪ Select action: Select read and write permissions as
required.

▪ (Optional) Select resource: Select the scope of
resources.
○ Specific: Access specific secrets.

NOTE
You can select Specify resource path, and then click
Add Resource Path to specify an accessible secret.

○ All: Access all secrets.

▪ (Optional) Add request condition: Click Add
Request Condition, select a condition key and an
operator, and enter values as required.

Description (Optional) Enter policy description.

8. Click Next and select a policy for the agency. Click Next.

9. Select an authorization scope. You are advised to select All resources.

– All resources: IAM users will be able to use all resources, including those
in enterprise projects, region-specific projects, and global services under
your account based on assigned permissions.

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

– Enterprise projects: The selected permissions will be applied to resources
in the enterprise projects you select.

– Region-specific projects: The selected permissions will be applied to
resources in the region-specific projects you select.

Figure 2-5 Selecting a scope

10. Click OK. Confirm the information and click Finish.

Step 2 Assign an agency (for example, ECS_TO_CSMS) to an ECS instance.

● If no ECS has been created, create an agency, for example, ECS_TO_CSMS for
Agency under Advanced Settings. For details, see Purchasing an ECS.

● To use an existing ECS instance, perform the following steps:

a. Click on the left and choose Computing > Elastic Cloud Server.

b. Click the name of an ECS instance to go to the Summary page.

c. In the Management Information area, click and select an agency
(for example, ECS_TO_CSMS).

Figure 2-6 Selecting an agency

Step 3 In an application running on the ECS instance, call an API to obtain the temporary
agency secrets, including the temporary AK, SK, and security token, to access
CSMS.

1. Obtain the temporary AK and SK (in the Security Key directory). For details,
see Obtaining Metadata.

– URI

http://xx.xx.xx.xx/openstack/latest/securitykey

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

https://support.huaweicloud.com/eu/qs-ecs/en-us_topic_0021831611.html
https://support.huaweicloud.com/eu/usermanual-ecs/ecs_03_0166.html

NO TE

Replace the IPv4 address xx.xx.xx.xx used in this example with the actual
available address.

– Method
GET request

– The following data is returned:
{
 "credential":{
 "access": "LDHZK30XXXXXXXXXXXXV",
 "secret":"gyqcdzVXXXXXXXXXXXXXXXXXXXXXXXMl6",
 "securitytoken": "El9FI2C65qXXXXXXXXXXXXXXXXXXXXXnkcaoV",
 "expires_at": "2022-07-14T12:09:24.147000Z"
 }
}

NO TE

▪ Extract the values of access, secret, and securitytoken to access CSMS.

▪ ECS automatically rotates temporary secrets to ensure that they are secure
and valid.

2. Use the temporary AK/SK and security token to access CSMS.
package com.huaweicloud.sdk.test;

import com.huaweicloud.sdk.core.auth.ICredential;
import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.core.exception.ConnectionException;
import com.huaweicloud.sdk.core.exception.RequestTimeoutException;
import com.huaweicloud.sdk.core.exception.ServiceResponseException;
import com.huaweicloud.sdk.csms.v1.region.CsmsRegion;
import com.huaweicloud.sdk.csms.v1.*;
import com.huaweicloud.sdk.csms.v1.model.*;

public class ListSecretsSolution {
 public static void main(String[] args) {
 String ak = "<access>";
 String sk = "<secret>";
 String securitytoken = "<securitytoken>";
 ICredential auth = new BasicCredentials()
 .withAk(ak)
 .withSk(sk)
 .withSecurityToken(securitytoken);
 CsmsClient client = CsmsClient.newBuilder()
 .withCredential(auth)
 .withRegion(CsmsRegion.valueOf("cn-north-1"))
 .build();
 ListSecretsRequest request = new ListSecretsRequest();
 try {
 ListSecretsResponse response = client.listSecrets(request);
 System.out.println(response.toString());
 } catch (ConnectionException e) {
 e.getMessage();
 } catch (RequestTimeoutException e) {
 e.getMessage();
 } catch (ServiceResponseException e) {
 e.getMessage();
 System.out.println(e.getHttpStatusCode());
 System.out.println(e.getErrorCode());
 System.out.println(e.getErrorMsg());
 }
 }
}

----End

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

2.3 Services Using CSMS

2.3.1 CCE Servers Using CSMS

Overview

CCE provides multiple types of plug-ins to extend cluster functions. The dew-
provider plug-in of CCE interconnects with CSMS and mounts secrets to service
pods. In this way, sensitive information is decoupled from the cluster environment,
preventing sensitive information leakage caused by hard coding or plaintext
configuration.

Constraints
● Supported cluster versions: v1.19 and later
● Supported cluster types: CCE Standard and CCE Turbo

Components

Table 2-3 dew-provider components

Component Description Resourc
e Type

dew-provider A component that obtains specified secrets from
CSMS and mounts them to the pods.

Daemon
Set

secrets-store-
csi-driver

A component responsible for maintaining two
CRDs: SecretProviderClass (SPC) and
SecretProviderClassPodStatus (spcPodStatus). SPC
is used to describe the secret that users are
interested in (such as the secret version and
name). It is created by users and will be
referenced in pods. spcPodStatus is used to trace
the binding relationships between pods and
secrets. It is automatically created by csi-driver
and requires no manual operation. One pod
corresponds to one spcPodStatus. After a pod is
started, a spcPodStatus is generated for the pod.
When the pod lifecycle ends, the spcPodStatus is
deleted accordingly.

Daemon
Set

Installing the Plug-in On the Console

Step 1 Log in to the CCE console. Click the cluster name to access its details page. In the
navigation pane on the left, choose Add-ons. Locate dew-provider on the right
and click Install.

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Step 2 On the Install Add-on page, configure parameters as required. Table 2-4
describes the parameters.

Table 2-4 Parameters

Parameter Description

rotation_poll_interval Rotation interval, in unit of minutes (m, not
min).
The rotation interval indicates the interval
for sending a request to CSMS and
obtaining the latest secret. The proper
interval range is [1m, 1440m]. The default
value is 2m.

Step 3 Click Install. After the plug-in is installed, select the cluster and click Add-ons
from the navigation pane. On the displayed page, view the plug-in in the Add-ons
Installed area.

Step 4 The plug-in can be used only if the secret created in DEW is used. Otherwise, the
pod cannot run. For details about how to create a secret, see Creating a Shared
Secret.

Step 5 Use the plug-in after it is installed. For details, see CCE Secrets Manager for
DEW.

----End

Data Encryption Workshop
Best Practices 2 Cloud Secret Management Service

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://support.huaweicloud.com/eu/usermanual-dew/dew_01_9993.html
https://support.huaweicloud.com/eu/usermanual-dew/dew_01_9993.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0370.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0370.html

3 General

3.1 Retrying Failed DEW Requests by Using Exponential
Backoff

Scenario
If you receive an error message when calling an API, you can use exponential
backoff to retry the request.

NO TICE

When interconnecting with KMS, retry is required. Error code such as 504, 502,
500, and 429 are included. Retry three to five times. For error codes 502 and 504,
the timeout interval should be 5 to 8 seconds. Do not configure a long timeout
interval. Otherwise, the client cannot respond.

How It Works
If consecutive errors (such as traffic limiting errors) are reported by the service
side, continuous access will keep causing conflicts. Exponential backoff can help
you avoid such errors.

Constraints
The current account has an enabled key.

Example
1. Prepare basic authentication information.

– ACCESS_KEY: Access key of the Huawei account. For details, see How Do
I Obtain an Access Key (AK/SK)?

– SECRET_ACCESS_KEY: Secret access key of the Huawei account. For
details, see How Do I Obtain an Access Key (AK/SK)?

Data Encryption Workshop
Best Practices 3 General

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html

– PROJECT_ID: site project ID. For details, see Obtaining a Project ID.
– KMS_ENDPOINT: endpoint for accessing KMS.
– There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

– In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

2. Code for exponential backoff:
import com.huaweicloud.sdk.core.auth.BasicCredentials;
 import com.huaweicloud.sdk.core.auth.ICredential;
 import com.huaweicloud.sdk.core.exception.ClientRequestException;
 import com.huaweicloud.sdk.kms.v2.model.EncryptDataRequest;
 import com.huaweicloud.sdk.kms.v2.model.EncryptDataRequestBody;
 import com.huaweicloud.sdk.kms.v2.KmsClient;

 public class KmsEncryptExample {

 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");

 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");

 private static final String KMS_ENDPOINT = "xxxx";

 private static final String KEY_ID = "xxxx";

 private static final String PROJECT_ID = "xxxx";

 private static KmsClient KmsClientInit() {
 ICredential auth = new BasicCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withProjectId(PROJECT_ID);
 return KmsClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(KMS_ENDPOINT)
 .build();
 }

 public static long getWaitTime(int retryCount) {
 long initialDelay = 200L;
 return (long) (Math.pow(2, retryCount) * initialDelay);
 }

 public static void encryptData(KmsClient client, String plaintext) {
 EncryptDataRequest request = new EncryptDataRequest().withBody(
 new EncryptDataRequestBody()
 .withKeyId(KEY_ID)
 .withPlainText(plaintext));
 client.encryptData(request);
 }

 public static void main(String[] args) {
 int maxRetryTimes = 6;
 String plaintext = "plaintext";
 String errorMsg = "The throttling threshold has been reached";

 KmsClient client = KmsClientInit();
 for (int i = 0; i < maxRetryTimes; i++) {
 try {
 encryptData(client, plaintext);
 return;
 } catch (ClientRequestException e) {

Data Encryption Workshop
Best Practices 3 General

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://support.huaweicloud.com/eu/api-iam/iam_17_0002.html

 if (e.getErrorMsg().contains(errorMsg)) {
 try {
 Thread.sleep(getWaitTime(i));
 } catch (InterruptedException ex) {
 throw new RuntimeException(ex);
 }
 }
 }
 }
 }
 }

Data Encryption Workshop
Best Practices 3 General

Issue 10 (2025-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

	Contents
	1 Key Management Service
	1.1 Using KMS to Encrypt Offline Data
	1.1.1 Encrypting or Decrypting a Small Amount of Data
	1.1.2 Encrypting or Decrypting a Large Amount of Data

	1.2 Using KMS to Encrypt and Decrypt Data for Cloud Services
	1.2.1 Overview
	1.2.2 Encrypting Data in ECS
	1.2.3 Encrypting Data in EVS
	1.2.4 Encrypting Data in IMS
	1.2.5 Encrypting Data in OBS
	1.2.6 Encrypting an RDS DB Instance
	1.2.7 Encrypting a DDS DB Instance

	1.3 Using the Encryption SDK to Encrypt and Decrypt Local Files
	1.4 Encrypting and Decrypting Data Through Cross-region DR
	1.5 Using KMS to Protect File Integrity

	2 Cloud Secret Management Service
	2.1 Using CSMS to Change Hard-coded Database Account Passwords
	2.2 Using CSMS to Prevent AK/SK Leakage
	2.3 Services Using CSMS
	2.3.1 CCE Servers Using CSMS

	3 General
	3.1 Retrying Failed DEW Requests by Using Exponential Backoff

