Document Database Service

Best Practices

Issue 01
Date 2025-11-14

Ve

HUAWEI TECHNOLOGIES CO., LTD. HUAWEI

Copyright © Huawei Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. i

Document Database Service

Best Practices Contents

Contents
T OVEIVIBW....uuuiinininirnininintninesestssstsssensosssssessessssssssssass 1
2 Common Methods for Connecting to a DDS Instance............ccceveeeereeceereeceeseeceeseeenens 3
3 How Do Replica Sets Achieve High Availability and Read/Write Splitting?........... 11
4 SHATAING....cueieieeiieeeieeenteeeeeesteceeseesstessessssssessssssssssessessssssssssessssssessssssesaassssssssssssassssasaaes 15
5 How Do | Improve DDS Performance by Optimizing SQL Statements?................... 21
6 How Do | Prevent the dds mongos Cache Problem?............cccoevivvivcinrrnvencrcnensncsnnnns 24
7 How Do | Solve the High CPU Usage ISSUET............ccceriererreerenseesnncnesnscsessasessssassssosns 29
8 Creating a User and Granting the Read-Only Permission to the User..................... 33
9 How Is a DDS Node Going to Be Disconnected and What Can | Do?.............ccccc.u. 36
10 Avoiding Cursor Invalidity Caused by hidelndexX..........cccoveeveevereinceerecrerceeseecncesennnes 39
11 Using DDS to Store and Analyze Log Data..........cceceeeeceecercenreenenseesnessessnesseessesseenns 44
12 DDS Query Plans and Query Replanning..........cccceceeceeeerccenceresensenessnsensssssnsessssasessssasens 48
13 DDS Transactions and Read/Write CONCEINS...........ueecceeeeeerreeecirneeccsnneeesssseeesssssecessnns 52
14 DDS Metric Alarm Configuration SUgQgestions...........c.cceeveeerceceereecseeseecsenseeseesaeenes 60
15 WOrking With INA@XES......cceiviruiiiriuiiiieiiiniiiinnninsnsnnesssanessssassssssasessssasssssssssssssasossssases 67

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. i

Document Database Service
Best Practices

1 Overview

Overview

This document provides best practices for Document Database Service (DDS) and
guides you through using DDS to best suit your business needs.

Servic
e

Reference

Overview

Docu
ment
Datab

Common Methods for
Connecting to a DDS
Instance

This section describes common DDS
connection methods.

ase
Servic
e

How Do Replica Sets
Achieve High Availability
and Read/Write
Splitting?

This section describes how to connect to a
replica set instance to achieve high
availability.

Sharding

This section describes how to set cluster
shards to improve database performance.

How Do | Improve DDS
Performance by
Optimizing SQL
Statements?

This section describes DDS usage
suggestions.

How Do | Prevent the
dds mongos Cache
Problem?

This section describes how to avoid the
mongos route cache defect of the cluster.

How Do | Solve the High
CPU Usage Issue?

This section describes how to
troubleshoot high CPU usage.

Creating a User and
Granting the Read-Only
Permission to the User

This section describes how to use IAM to
grant read-only permissions to DDS.

How Is a DDS Node
Going to Be
Disconnected and What
Can | Do?

This section describes the principles and
workarounds of node disconnection.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 1

Document Database Service

Best Practices

1 Overview

Servic

Reference

Overview

Avoiding Cursor
Invalidity Caused by
hidelndex

This section describes how to prevent a
cursor from becoming invalid due to
hidelndex.

Using DDS to Store and
Analyze Log Data

This section describes how to use DDS to
store and analyze application log data.

DDS Query Plans and
Query Replanning

This section describes the principles and
scenarios of query plans and query
replanning.

DDS Transactions and
Read/Write Concerns

This section describes transactions and
read/write concerns.

DDS Metric Alarm
Configuration
Suggestions

This section describes suggestions on
configuring alarm rules of DDS metrics.

Working with Indexes

This section describes suggestions on
working with indexes.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 2

Document Database Service 2 Common Methods for Connecting to a DDS

Best Practices

Instance

Common Methods for Connecting to a

DDS Instance

This section describes how to connect to a DDS instance using the following four
methods:

Mongo Shell

Mongo Shell
Python Mongo

Java Mongo

Using Spring MongoTemplate to Perform MongoDB Operations

Prerequisites

a.

C.

To connect an ECS to a DDS instance, run the following command to
connect to the IP address and port of the instance server to test the
network connectivity.

curl jp;port

If the message It looks like you are trying to access MongoDB over
HTTP on the native driver port is displayed, the ECS and DDS instance
can communicate with each other.

Download the mongo shell package from the MongoDB official website.
Decompress the package, obtain the mongosh file, and upload it to the
ECS.

If SSL is enabled, download the root certificate and upload it to the ECS.

Connection commands

SSL is enabled.

Method 1: ./mongosh /p.port --authenticationDatabase admin -u
username -p password --ssl --ssICAFile Spath to certificate authority file
--sslAllowInvalidHostnames

Method 2: ./mongosh "mongodb://<username >:<password>@ jp:port/
test?authSource=admin" --ssl --sslCAFile Spath to certificate authority
file --sslAllowInvalidHostnames

SSL is disabled.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 3

https://www.mongodb.com/download-center#community

Document Database Service 2 Common Methods for Connecting to a DDS
Best Practices Instance

Method 1: ./mongosh /p.port --authenticationDatabase admin -u
username -p password

Method 2: ./mongosh "mongodb://<username >:<password>@ p.port/
test?authSource=admin"

Table 2-1 Parameter description

Parameter Description

ip If you access an instance from an ECS, /jpis the
private IP address of the instance.

If you access an instance from a device over a public
network, /p is the EIP bound to the instance.

port Database port displayed on the Basic Information
page. Default value: 8635

username Current username

password Password for the current username. In the connection

method 2, when connecting to a DDS instance,
escape the at sign (@), percent sign (%), and
exclamation mark (!) and replace them with
hexadecimal URL codes (ASCII codes) %40, %25, and
%21, respectively.

path to Path of the SSL certificate
certificate
authority file

e Precautions

a. If SSL is enabled, the connection command must contain --ssl and --
sslCAFile.

b. --authenticationDatabase must be set to admin. If you log in to the
database as user rwuser, switch to admin for authentication.

For details, see Connecting to an Instance in Getting Started with Document
Database Service.

Python Mongo

e Prerequisites

a. To connect an ECS to a DDS instance, run the following command to
connect to the IP address and port of the instance server to test the
network connectivity.

curl /p.port

If the message It looks like you are trying to access MongoDB over
HTTP on the native driver port is displayed, the network connectivity is
normal.

b. Install Python and third-party installation package pymongo on the ECS.
Pymongo 2.8 is recommended.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 4

https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0044018334.html
https://pypi.python.org/pypi/pymongo/2.7#downloads

Document Database Service 2 Common Methods for Connecting to a DDS

Best Practices

Instance

Java Mongo

c. If SSL is enabled, download the root certificate and upload it to the ECS.
Input the connection code.

- SSLis enabled.
import ssl
import os
from pymongo import MongoClient
There will be security risks if the username and password used for authentication
are directly written into code. Store the username and password in ciphertext in the
configuration file or environment variables.
In this example, the username and password are stored in the environment
variables. Before running this example, set environment variables
EXAMPLE_USERNAME_ENV and EXAMPLE_PASSWORD_ENV as needed.
rwuser = os.getenv('EXAMPLE_USERNAME_ENV")
password = os.getenv('EXAMPLE_PASSWORD_ENV')
conn_urls="mongodb://%s:%s@ip:port/{mydb}?authSource=admin"
connection = MongoClient(conn_urls % (rwuser,
password),connectTimeoutMS=5000,ssl=True,
ssl_cert_reqs=ssl.CERT_REQUIRED,ssl_match_hostname=False,ss|_ca_certs=${path to
certificate authority file})
dbs = connection.database_names()
print "connect database success! database names is %s" % dbs

- SSLis disabled.
import ssl
import os
from pymongo import MongoClient
There will be security risks if the username and password used for authentication
are directly written into code. Store the username and password in ciphertext in the
configuration file or environment variables.
In this example, the username and password are stored in the environment
variables. Before running this example, set environment variables
EXAMPLE_USERNAME_ENV and EXAMPLE_PASSWORD_ENV as needed.
rwuser = os.getenv('EXAMPLE_USERNAME_ENV')
password = os.getenv('EXAMPLE_PASSWORD_ENV')
conn_urls="mongodb://%s:%s@ip:port/{mydb}?authSource=admin"
connection = MongoClient(conn_urls % (rwuser, password),connectTimeoutMS=5000)
dbs = connection.database_names()
print "connect database success! database names is %s" % dbs

Precautions

a. {mydb}is the name of the database to be connected.

b. The authentication database in the URL must be admin. Set authSource
to admin.

How to Use

If you are connecting to an instance using Java, an SSL certificate is optional,
but downloading an SSL certificate and encrypting the connection will
improve the security of your instance. SSL is disabled by default for newly
created instances, but you can enable SSL by referring to Enabling or
Disabling SSL. SSL encrypts connections to databases but it increases the
connection response time and CPU usage. For this reason, enabling SSL is not
recommended.

Prerequisites
You should be familiar with:

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0074.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0074.html

Document Database Service 2 Common Methods for Connecting to a DDS

Best Practices

Instance

- Computer basics

- Java

Obtaining and Using Java

- Download the Jar driver from: https://repo1.maven.org/maven2/org/
mongodb/mongo-java-driver/3.0.4/

- To view the usage guide, visit https://mongodb.github.io/mongo-java-
driver/4.2/driver/getting-started/installation/.

Connecting to the Instance with an SSL Certificate

(11 NOTE

e Download the SSL certificate and verify the certificate before connecting to
databases.

e On the Instances page, click the target DB instance name. In the DB Information

area on the Basic Information page, click %1 in the SSL field to download the root
certificate or certificate bundle.

e For details about the SSL connection guide, see the MongoDB Java Driver official
document at https://www.mongodb.com/docs/drivers/java/sync/v5.0/
fundamentals/connection/tls/.

e Java Runtime Environment (JRE) earlier than Java 8 enables TLS 1.2 only in
updated versions. If TLS 1.2 is not enabled for your JRE, upgrade it to a later
version to use TLS 1.2 for connection.

If you connect to a cluster instance using Java, the format of code is as

follows:
mongodb://<username>:<password>@<instance_ip>:<instance_port>/<database_name>?
authSource=admin&ssl=true

Table 2-2 Parameter description

Parameter Description

<username> Current username.

<password> Password for the current username.

<instance_ip> If you access an instance from an ECS, instance_ip is the

private IP address shown on the Basic Information page
of the DB instance.

If you access an instance through an EIP, jnstance ip is
the EIP that has been bound to the instance.

If there are multiple IP addresses, list the addresses in
the format of
<instance_ip1>:<instance_port1>,<instance_ip2>:<instanc
e_port2>....... Example: mongodb://

username:*****@127 *** *** 1:8635,127.*** *** 2:8635/?
authSource=admin

<instance_port> | Database port displayed on the Basic Information page.
Default value: 8635

<database_name | Name of the database to be connected.
>

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 6

https://repo1.maven.org/maven2/org/mongodb/mongo-java-driver/3.0.4/
https://repo1.maven.org/maven2/org/mongodb/mongo-java-driver/3.0.4/
https://mongodb.github.io/mongo-java-driver/4.2/driver/getting-started/installation/
https://mongodb.github.io/mongo-java-driver/4.2/driver/getting-started/installation/
https://www.mongodb.com/zh-cn/docs/drivers/java/sync/v5.0/fundamentals/connection/tls/
https://www.mongodb.com/zh-cn/docs/drivers/java/sync/v5.0/fundamentals/connection/tls/

Document Database Service 2 Common Methods for Connecting to a DDS

Best Practices Instance
Parameter Description
authSource Authentication database. The value is admin.
ssl Connection mode. true indicates that SSL will be used.

Use the keytool to configure the CA certificate. For details about the

parameters, see Table 2-3.
keytool -importcert -trustcacerts -file <path to certificate authority file> -keystore <path to trust
store> -storepass <password>

Table 2-3 Parameter description

Parameter Description

<path to certificate authority file> Path for storing the SSL certificate.

<path to trust store> Path for storing the truststore. Set
this parameter as required, for
example, ./trust/certs.keystore.

<password> Custom password.

Set the JVM system properties in the program to point to the correct
truststore and keystore:

- System.setProperty("javax.net.ssl.trustStore","<path to trust store>");
- System.setProperty("javax.net.ssl.trustStorePassword","<password>");

The following shows an example:
public class Connector {
public static void main(String[] args) {
try {
System.setProperty("javax.net.ssl.trustStore", "./trust/certs.keystore");
System.setProperty("javax.net.ssl.trustStorePassword", "123456");
ConnectionString connString = new ConnectionString("mongodb://
<username>:<password>@<instance_ip>:<instance_port>/<database_name>?
authSource=admin&ssl=true");
MongoClientSettings settings = MongoClientSettings.builder()
.applyConnectionString(connString)
.applyToSsl|Settings(builder -> builder.enabled(true))
.applyToSsl|Settings(builder -> builder.invalidHostNameAllowed(true))
.build();
MongoClient mongoClient = MongoClients.create(settings);
MongoDatabase database = mongoClient.getDatabase("admin");
//Ping the database. If the operation fails, an exception occurs.
BsonDocument command = new BsonDocument("ping", new BsonInt64(1));
Document commandResult = database.runCommand(command);
System.out.println("Connect to database successfully");
} catch (Exception e) {
e.printStackTrace();
System.out.println("Test failed");

}

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 7

Document Database Service 2 Common Methods for Connecting to a DDS

Best Practices

Instance

Connecting to the Instance Without an SSL Certificate
(0 NOTE

You do not need to download the SSL certificate because certificate verification on the
server is not required.
If you connect to a cluster instance using Java, the format of code is as

follows:
mongodb://<username>:<password>@<instance_ip>:<instance_port>/<database_name>?
authSource=admin

Table 2-4 Parameter description

Parameter Description

<username> Current username.

<password> Password for the current username.

<instance_ip> If you access an instance from an ECS, instance_ip is the

private IP address shown on the Basic Information page
of the DB instance.

If you access an instance through an EIP, jnstance ip is
the EIP that has been bound to the instance.

If there are multiple IP addresses, list the addresses in
the format of
<instance_ip1>:<instance_port1>,<instance_ip2>:<instanc
e_port2>....... Example: mongodb://

username:*****@127 *** *** 1:8635,127.*** *** 2:8635/?
authSource=admin

<instance_port> | Database port displayed on the Basic Information page.
Default value: 8635

<database_name | Name of the database to be connected.
>

authSource Authentication database. The value is admin.

The following shows an example:
public class Connector {
public static void main(String[] args) {
try {

ConnectionString connString = new ConnectionString("mongodb://
<username>:<password>@<instance_ip>:<instance_port>/<database_name>?
authSource=admin");

MongoClientSettings settings = MongoClientSettings.builder()

.applyConnectionString(connString)
.retryWrites(true)
.build();

MongoClient mongoClient = MongoClients.create(settings);

MongoDatabase database = mongoClient.getDatabase("admin");

//Ping the database. If the operation fails, an exception occurs.

BsonDocument command = new BsonDocument("ping", new BsonInt64(1));

Document commandResult = database.runCommand(command);

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 8

Document Database Service 2 Common Methods for Connecting to a DDS
Best Practices Instance

System.out.println("Connect to database successfully");
} catch (Exception e) {
e.printStackTrace();
System.out.println("Test failed");
}
}
}

Using Spring MongoTemplate to Perform MongoDB Operations
e How to Use

The following describes how to use Spring MongoTemplate to perform
operations on MongoDB. For details, visit the MongoDB official website.

e Prerequisites
<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-data-mongodb</artifactld>
<exclusions>
<exclusion>
<artifactld>spring-boot-starter-logging</artifactld>
<groupld>org.springframework.boot</groupld>
</exclusion>
</exclusions>

</dependency>
e Configuration Guide
spring:
data:
mongodb: #MongoDB configuration, which is for reference only

// There will be security risks if the username and password used for authentication
are directly written into code. Store the username and password in ciphertext in the
configuration file or environment variables.

// In this example, the username and password are stored in the environment
variables. Before running this example, set environment variables
EXAMPLE_USERNAME_ENV and EXAMPLE_PASSWORD_ENV as needed.

String userName = System.getenv("EXAMPLE_USERNAME_ENV");

String rwuserPassword = System.getenv("EXAMPLE_PASSWORD_ENV");

uri: mongodb://" + userName + ":" + rwuserPassword +
"@7192 ¥4 Fhx ¥4k 8635,192 4+ **x #++:8635/${mongodb.database}

database: ${mongodb.database}

e Development Guide
/**
* MongoDB execution
*/
@Autowired
private MongoTemplate template;

/**

* Log configuration

*/

@Autowired

private LoggingProperties properties;

@Override
public void write(BaseLog businessLog, LoggingOption option) {
if (template != null) {
LoggingConfig config = properties.getBusinessConfig(businessLog.getCategory());
String collection = config.getMeta().get("collection");
if (StringUtils.isNotEmpty(collection)) {
Object data = mapping(businessLog, config);
template.save(data, collection);

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 9

https://www.mongodb.com/compatibility/spring-boot

Document Database Service 2 Common Methods for Connecting to a DDS
Best Practices Instance

if (log.isDebugEnabled()) {
log.debug("save audit log to mongodb successfully!, message: {}",

StringEscapeUtils.escapelava(TransformUtil.toJsonByJackson(businessLog)));

}
}else {
log.warn("mongo log write log failed, mongoconfig is null");

}
}else {

log.warn("mongo log write log failed, mongoTemplate is null");
}
}

e Precautions

a. In SSL mode, you need to manually generate the trustStore file.

b. Change the authentication database to admin, and then switch to the
service database after authentication.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 10

Document Database Service 3 How Do Replica Sets Achieve High Availability and
Best Practices Read/Write Splitting?

How Do Replica Sets Achieve High
Availability and Read/Write Splitting?

DDS replica set instances can store multiple duplicates to ensure data high
availability and support the automatic switch of private IP addresses to ensure
service high availability. To enhance the read and write performance of your client
for connecting to the instance, you can use your client to read different data
copies. You need to connect to replica set instances using HA connection
addresses. You can also configure read/write splitting. Otherwise, the high
availability and high read performance of replica set instances cannot be
guaranteed.

The primary node of a replica set instance is not fixed. If the instance settings are
changed, or the primary node fails, or primary and secondary nodes are switched,
a new primary node will be elected and the previous one becomes a secondary
node. The following figure shows the process of a switchover.

Figure 3-1 Primary/Secondary switchover

Primary Primary
(192.168.0.148) (192.168.0.96)

switchover

replication / replication ‘ replication , replication
Secondary : Secondary .
(192.168.0.96) (192.168.0.148) b

Connecting to a Replica Set Instance (HA)

A DDS replica set consists of the primary, secondary, and hidden nodes. The
hidden node is invisible to users. Read/Write splitting and HA can be realized only
when you connect to the IP addresses and ports of the primary and secondary
nodes of the replica set at the same time (in HA mode).

The following describes how to use URL and Java to connect to an instance in HA
mode.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 11

Document Database Service 3 How Do Replica Sets Achieve High Availability and
Best Practices Read/Write Splitting?

Method 1: Using a URL

On the Instances page, click the instance name. The Basic Information page is
displayed. Choose Connections. Click the Private Connection tab and obtain the
connection address of the current instance from the Private HA Connection
Address field.

Figure 3-2 Obtaining the private HA connection address

Private Connection Public Connection

Basic Information

Database Port 8635 & vPC default_vpc

ssL & Subnet default_subnst (
Address

Cross-CIDR Access Disabled Enable

mongodb:/irwuser:<password-@ fest?authSource=admingreplicaSet=replica 2 '
Private HA Connection Address Compatible with MongoDB

G The parameters in orange are variables and need to be modified based on service requirements. For defails, click Le

mmmmmm

Example: mongodb://rwuser:****@ 792.768.0.748:8635,192.168.0.96:8635[test?
authSource=admin&replicaSet=replica

In the preceding URL, 192.168.0.148:8635 and 192.168.0.96:8635 are the IP
addresses and ports of the primary and secondary nodes, respectively. If you use
this address, the connection between your client and the instance can be ensured
even when a primary/standby switchover occurs. In addition, using multiple IP
addresses and port numbers can enhance the read and write performance of the
entire database.

Figure 3-3 Data read and write process

Client APP Client APP

read[write

switchover

Primary Primary

(192.168.0.148) read (192.168.0.96)

feplication e . replication
/ \
\

)/ \
Secondary _ Secondary :
(192.168.0.96) (192.168.0.148) Hidden

Method 2: Using a Java Driver

Sample code:

MongoClientURI connectionString = new MongoClientURI("mongodb://
rwuser:***@192.168.0.148:8635,192.168.0.96:8635/test?authSource=admin&replicaSet=replica");
MongoClient client = new MongoClient(connectionString);

MongoDatabase database = client.getDatabase("test");

MongoCollection<Document> collection = database.getCollection("mycoll");

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 12

Document Database Service 3 How Do Replica Sets Achieve High Availability and
Best Practices Read/Write Splitting?

Table 3-1 Parameter description

Parameter Description

rwuser:**** Username and password for starting authentication

192.168.0.148:8635, | IP addresses and ports of the primary and secondary
192.168.0.96:8635 nodes in a replica set instance

test Name of the database to be connected

authSource=admin Database username for authentication

replicaSet=replica Name of the replica set instance type

(Not Recommended) Connecting to a Replica Set Instance
Using the Connection Address

mongodb://rwuser****@ 792.768.0. 148:8635[test?
authSource=admin&replicaSet=replica

In the preceding URL, 192.168.0.148:8635 is the IP address and port number of
the current primary node. If a switchover occurs or the primary node is changed,
the client fails to connect to the replica set instance because the IP address and
port of the newly elected primary node is unknown. As a result, the database
service becomes unavailable. In addition, read and write operations can only be
performed on a fixed primary node, so the read and write performance cannot be
improved by adding nodes.

Figure 3-4 Data read and write process

Client APP Client APP

switchover
Primary
(192.168.0.148)

replication

Secondary
(192.168.0.148)

Lo AN .
repllcatlon/ N replication

™
- N
==

Read/Write Splitting

Hidden

Primary

replication

The following HA connection address is used as an example to describe how to
connect to a DDS replica set instance:

mongodb://rwuser:<password>@192.168.xx.xx:8635,192.168.xx.xx:8635/test?
authSource=admin&replicaSet=replica&readPreference=secondaryPreferred

The database account is rwuser, and the database is admin.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 13

Document Database Service 3 How Do Replica Sets Achieve High Availability and
Best Practices Read/Write Splitting?

(11 NOTE

After the DB instance is connected, read requests are preferentially sent to the secondary
node to implement read/write splitting. If the relationship between the primary and
secondary nodes changes, write operations are automatically switched to the new primary
node to ensure high availability of DDS.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 14

Document Database Service
Best Practices 4 Sharding

Sharding

You can shard a large-size collection for a sharded cluster instance. Sharding
distributes data across different machines to make full use of the storage space
and compute capability of each shard.

Number of Shards

The following is an example using database mytable, collection mycoll, and the
field name as the shard key.

Step 1 Log in to a sharded cluster instance using Mongo Shell.

Step 2 Check whether a collection has been sharded.

use <database>
db.<collection>.getShardDistribution()

Example:

use mytable
db.mycoll.getShardDistribution()

mongos> db.mycoll.getShardDistribution()

Collection test.mycoll is not sharded.

Step 3 Enable sharding for the databases that belong to the cluster instance.

e Method 1
sh.enableSharding("<database>")

Example:
sh.enableSharding("mytable")
e Method 2

use admin
db.runCommand({enablesharding:"<database>"})
Step 4 Shard a collection.

e Method 1
sh.shardCollection("<database>.<collection>" {"<keyname>":<value> })

Example:

sh.shardCollection("mytable.mycoll",{"name":"hashed"},false {numinitialChunks:5})

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 15

Document Database Service
Best Practices

4 Sharding

e Method 2

use admin

db.runCommand({shardcollection:"<database>.<collection>" key:{"keyname":<value> }})

Table 4-1 Parameter description

Parameter

Description

<database>

Database name

<collection>

Collection name.

<keyname>

Shard key.

Cluster instances are sharded based on the value of this
parameter. Select a proper shard key for the collection based on
your service requirements. For details, see Selecting a Shard
Key.

<value>

The sort order based on the range of the shard key.
e 1: Ascending indexes
e -1: Descending indexes

e hashed: indicates that hash sharding is used. Hashed
sharding provides more even data distribution across the
sharded cluster.

For details, see sh.shardCollection().

numlinitialCh
unks

Optional. The minimum number of shards initially created is
specified when an empty collection is sharded using a hashed
shard key.

Step 5 Check the data storage status of the database on each shard.

sh.status()

Example:

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd.

16

https://docs.mongodb.com/manual/reference/method/sh.shardCollection/index.html#sh-shardcollection

Document Database Service

Best Practices

4 Sharding

--—-End

Selecting a Shard Key

Background

Each sharded cluster contains collections as its basic unit. Data in the
collection is partitioned by the shard key. Shard key is a field in the collection.
It distributes data evenly across shards. If you do not select a proper shard
key, the cluster performance may deteriorate, and the sharding statement
execution process may be blocked.

Once the shard key is determined it cannot be changed. If no shard key is
suitable for sharding, you need to use a sharding policy and migrate data to a
new collection for sharding.

Characteristics of proper shard keys

- All inserts, updates, and deletes are evenly distributed to all shards in a
cluster.

- The distribution of keys is sufficient.
- Rare scatter-gather queries.

If the selected shard key does not have all the preceding features, the read
and write scalability of the cluster is affected. For example, if the workload of
the find() operation is unevenly distributed in the shards, hot shards will be
generated. Similarly, if your write load (inserts, updates, and deletes) is not
uniformly distributed across your shards, then you could end up with a hot
shard. Therefore, you need to adjust the shard keys based on service
requirements, such as read/write status, frequently queried data, and written
data.

After existing data is sharded, if the filter field of the update request does not
contain shard keys and upsert:true or multi:false, the update request will
report an error and return message "An upsert on a sharded collection must
contain the shard key and have the simple collation.".

Judgment criteria

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 17

Document Database Service
Best Practices 4 Sharding

You can use the dimensions provided in Table 4-2 to determine whether the
selected shard keys meet your service requirements:

Table 4-2 Reasonable shard keys

Identification | Description

Criteria

Cardinality Cardinality refers to the capability of dividing chunks. For
example, if you need to record the student information of
a school and use the age as a shard key, data of students
of the same age will be stored in only one data segment,
which may affect the performance and manageability of
your clusters. A much better shard key would be the
student number because it is unique. If the student
number is used as a shard key, the relatively large
cardinality can ensure the even distribution of data.

Write If a large number of write operations are performed in the

distribution same period of time, you want your write load to be
evenly distributed over the shards in the cluster. If the
data distribution policy is ranged sharding, a
monotonically increasing shard key will guarantee that all
inserts go into a single shard.

Read Similarly, if a large number of read operations are

distribution performed in the same period, you want your read load to

be evenly distributed over the shards in a cluster to fully
utilize the computing performance of each shard.

Targeted read | The dds mongos query router can perform either a
targeted query (query only one shard) or a scatter/gather
query (query all of the shards). The only way for the dds
mongos to be able to target a single shard is to have the
shard key present in the query. Therefore, you need to
pick a shard key that will be available for use in the
common queries while the application is running. If you
pick a synthetic shard key, and your application cannot
use it during typical queries, all of your queries will
become scatter/gather, thus limiting your ability to scale
read load.

Choosing a Distribution Policy

A sharded cluster can store a collection's data on multiple shards. You can
distribute data based on the shard keys of documents in the collection.

There are two data distribution policies: ranged sharding and hashed sharding. For
details, see Step 4.

The following describes the advantages and disadvantages of the two methods.

e Ranged sharding

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 18

Document Database Service
Best Practices 4 Sharding

Ranged-based sharding involves dividing data into contiguous ranges
determined by the shard key values. If you assume that a shard key is a line
stretched out from positive infinity and negative infinity, each value of the
shard key is the mark on the line. You can also assume small and separate
segments of a line and that each chunk contains data of a shard key within a
certain range.

Figure 4-1 Distribution of data
Chunk1 Chunk?2 Chunk3 Chunk4

. A A A
r N N 'S 3

Digit Shard Key
|

- — - - L I -

minKey -75 25 175 maxKey

As shown in the preceding figure, field x indicates the shard key of ranged
sharding. The value range is [minKey,maxKey] and the value is an integer. The
value range can be divided into multiple chunks, and each chunk (usually 64
MB) contains a small segment of data. For example, chunk 1 contains all
documents in range [minKey, -75] and all data of each chunk is stored on the
same shard. That means each shard containing multiple chunks. In addition,
the data of each shard is stored on the config server and is evenly distributed
by dds mongos based on the workload of each shard.

Ranged sharding can easily meet the requirements of query in a certain
range. For example, if you need to query documents whose shard key is in
range [-60,20], dds mongos only needs to forward the request to chunk 2.

However, if shard keys are in ascending or descending order, newly inserted
documents are likely to be distributed to the same chunk, affecting the
expansion of write capability. For example, if _id is used as a shard key, the
high bits of _id automatically generated in the cluster are ascending.

e Hashed sharding

Hashed sharding computes the hash value (64-bit integer) of a single field as
the index value; this value is used as your shard key to partition data across
your shared cluster. Hashed sharding provides more even data distribution
across the sharded cluster because documents with similar shard keys may
not be stored in the same chunk.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 19

Document Database Service
Best Practices 4 Sharding

Figure 4-2 Distribution of data

25 | 26 | 27
Hashed Sharding
Chuﬁk1 Chunk2 Chuﬁks Chunkd
| I
e ple - > —

Hashed sharding randomly distributes documents to each chunk, which fully
expands the write capability and makes up for the deficiency of ranged
sharding. However, queries in a certain range need to be distributed to all
backend shards to obtain documents that meet conditions, resulting in low
query efficiency.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 20

Document Database Service 5 How Do | Improve DDS Performance by

Best Practices

Optimizing SQL Statements?

How Do | Improve DDS Performance by

Optimizing SQL Statements?

DDS is inherently a NoSQL database with high performance and strong
extensibility. Similar to relational databases, such as RDS for MySQL, RDS for SQL
Server, and Oracle, DDS instance performance may also be affected by database
design, statement optimization, and index creation.

The following provides suggestions for improving DDS performance in different
dimensions:

Creating Databases and Collections

1.

Use short field names to save storage space. Different from an RDS database,
each DDS document has its field names stored in the collection. Short name is
recommended.

Limit the number of documents in a collection to avoid the impact on the
query performance. Archive documents periodically if necessary.

Each document has a default _id. Do not change the value of this parameter.

Capped collections have a faster insertion speed than other collections and
can automatically delete old data. You can create capped collections to
improve performance based on your service requirements.

For details, see Usage Suggestions in the Document Database Service Developer
Guide.

Query

Indexes

1.

Create proper number of indexes for frequently queried fields based on
service requirements. Indexes occupy some storage space, and the insert and
indexing operations consume resources. It is recommended that the number
of indexes in each collection should not exceed 5.

If data query is slow due to lack of indexes, create proper indexes for
frequently queried fields.

For a query that contains multiple shard keys, create a compound index that
contains these keys. The order of shard keys in a compound index is

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 21

https://support.huaweicloud.com/eu/usermanual-dds/dds_taps_0002.html

Document Database Service 5 How Do | Improve DDS Performance by

Best Practices

Optimizing SQL Statements?

important. A compound index support queries that use the leftmost prefix of
the index, and the query is only relevant to the creation sequence of indexes.

TTL indexes can be used to automatically filter out and delete expired
documents. The index for creating TTL must be of type date. TTL indexes are
single-field indexes.

You can create field indexes in a collection. However, if a large number of
documents in the collection do not contain key values, you are advised to
create sparse indexes.

When you create text indexes, the field is specified as text instead of 1 or -1.
Each collection has only one text index, but it can index multiple fields.

Command usage

1.

The findOne method returns the first document that satisfies the specified
query criteria from the collection according to the natural order. To return
multiple documents, use this method.

If the query does not require the return of the entire document or is only used
to determine whether the key value exists, you can use Sproject to limit the
returned field, reducing the network traffic and the memory usage of the
client.

In addition to prefix queries, regular expression queries take longer to execute
than using selectors, and indexes are not recommended.

Some operators that contain $ in the query may deteriorate the system
performance. The following types of operators are not recommended in
services. $or, $nin, $not, $ne, and $exists.

(10 NOTE

e $or: The times of queries depend on the number of conditions. It is used to query
all the documents that meet the query conditions in the collection. You are advised
to use $in instead.

e $nin: Matches most of indexes, and the full table scan is performed.

e $not: The query optimizer may fail to match a specific index, and the full table
scan is performed.

e $ne: Selects the documents where the value of the field is not equal to the
specified value. The entire document is scanned.

e $exists: matches each document that contains the field.
For more information, see official MongoDB documents.

Precautions

Indexes cannot be used in operators $where and $exists.
If the query results need to be sorted, control the number of result sets.

If multiple field indexes are involved, place the field used for exact match
before the index.

If the key value sequence in the search criteria is different from that in the
compound index, DDS automatically changes the query sequence to the same
as index sequence.

- Modification operation

Modifying a document by using operators can improve performance. This
method does not need to obtain and modify document data back and
forth on the server, and takes less time to serialize and transfer data.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 22

https://docs.mongodb.com/manual/reference/operator/query/

Document Database Service 5 How Do | Improve DDS Performance by
Best Practices Optimizing SQL Statements?

- Batch insert

Batch insert can reduce the number of times data is submitted to the
server and improve the performance. The BSON size of the data
submitted in batches cannot exceed 48 MB.

- Aggregated operation

During aggregation, $match must be placed before $group to reduce the
number of documents to be processed by the $group operator.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 23

Document Database Service
Best Practices

6 How Do | Prevent the dds mongos Cache

Problem?

How Do | Prevent the dds mongos Cache

Problem?

Background

DDS is a document-oriented database service based on distributed file storage,
famed for its scalability, high performance, open source, and free mode.

Figure 6-1 DDS cluster architecture

shard 1 shard 2 shard N
A A
/’\\ /./f‘\ _—
// \ \ /'/ .-'/ \ /'//- // -'/
/ VN _\</ /_f_fs(rf' / /
config // \ ~ - -f"/,f \ / g /
/ A _/-f>‘< / \ yd
AN N
) A X
L | / \ - /
\ /
. \‘5 #/ />< \ /
"\ NN
AN
. \ |
\\\ \H J/ 4 ANERY /
o\ /S AN \
ANV A\,
N4 N
mongos \x mongos
client

23

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 24

Document Database Service 6 How Do | Prevent the dds mongos Cache

Best Practices

Problem?

Sharding

A cluster instance consists of the following three parts:

e dds mongos is deployed on a single node. It provides APIs to allow access
from external users and shields the internal complexity of the distributed
database. A DDS cluster can contain 2 to 12 dds mongos nodes. You can add
them as required.

e Config server is deployed as a replica set. It stores metadata for a sharded
cluster. The metadata include information about routes and shards. A cluster
contains only one config server.

e Shard server is deployed as a replica set. It stores user data on shards. You can
add shard servers in a cluster as required.

Sharding is a method for distributing data evenly across multiple shard servers
based on a specified shard key. The collection that has a shard key is called
sharded collection. If the collection is not sharded, data is stored on only one
shard server. DDS cluster mode allows the coexistence of sharded collection and
non-sharded collection.

You can run the sh.shardCollection command to convert a non-sharded collection
into a sharded collection. Before sharding, ensure that the sharding function is
enabled on the database where the collections to be sharded are located. You can
run the sh.enableSharding command to enable the sharding function.

Caching Metadata with dds mongos

User data is stored in the shard server and metadata is stored in the config server.
The route information belongs to metadata and is also stored in the config server.
When a user needs to access data through dds mongos, dds mongos sends the
user's requests to the corresponding shard server according to the route
information stored on the config server.

This means that every time the user accesses the data, dds mongos needs to
connect to the config server for the route information, which may affect the
system performance. Therefore, a cache mechanism is developed for the dds
mongos to cache the route information of the config server. In this scenario, not
only the config server stores the route information, but also the dds mongos
caches the route information.

If no operation is performed on dds mongos, mongos does not cache any route
information. In addition, the route information cached on dds mongos may not be
the latest because the information is only updated in the following scenarios:

e If the dds mongos is started, it will obtain the latest route information from
the config server and caches them locally.

e If the dds mongos processes the data request for the first time, it will obtain
the route information from the config server. After that, the information is
cached and can be used directly at the time when it is required.

e Updating route information by running commands on dds mongos.
(110 NOTE

Only the metadata related to the requested data is updated.
The data to be updated is in the unit of DB.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 25

Document Database Service 6 How Do | Prevent the dds mongos Cache

Best Practices

Problem?

Scenarios

In the scenario where data is not sharded and multiple dds mongos nodes exist in
a sharded cluster, if data is accessed through different dds mongos nodes, the
cached route information on each dds mongos may become different. The
following shows an example scenario:

1.

Create database A with sharding disabled through mongos1. After datal is
written, datal is allocated to shard server1 for storage. Then, mongos2 is used
to query data. Both mongos1 and mongos2 have cached the route
information of database A.

If database A is deleted through mongos2, the information about database A
in the config server and shard server1 is deleted. As a result, mongos1 cannot
identify datal because database A has been deleted.

When data2 is written to database A through mongos1, data2 will be stored
on shard server1 based on the cached route information but actually
database A has been deleted. Then, when data3 is written into database A
through mongos2, new information about database A will be generated again
on the config server and shard server2 because mongos2 has identified that
database A has been deleted.

In this case, the route information cached in the mongos1 and mongos2 is
inconsistent. mongos1 and mongos2 are associated with different shard
servers, and data is not shared between them. As a result, data inconsistency
occurs.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 26

Document Database Service 6 How Do | Prevent the dds mongos Cache
Best Practices Problem?

Figure 6-2 mongos cache defect scenario

shard server1 shard server2 shard server3

mongod mongod mongod

mongod

mongod

mongod

mongod mongod mongod

config server
shard server1 stores:
Data1 written in the shard server2 stores:
database A Data3 written in the
Data2 written in the database A
database A
config server stores: mongos2 caches:
Database A = shard mongos1 caches: Database A > shard
serveri Database A = shard serveri
Database A > shard serveri Database A > shard
server2 server2
i e
N /
mongos1 . // mongos2
\\ y,
\ /
/
N
client

22

The client queries data through different mongos:

e mongos1: Data2 can be queried, but data3 cannot be queried.
e mongos2: Data3 can be queried, but data2 cannot be queried.

Workaround Suggestion

MongoDB official suggestions: After deleting databases or collections, run
db.adminCommand("flushRouterConfig") on all mongos nodes to update the
route information.

Reference link:

e https://docs.mongodb.com/manual/reference/method/db.dropDatabase/
index.html#replica-set-and-sharded-clusters

e https://jira.mongodb.org/browse/SERVER-17397
Workaround Suggestion

e For the cluster mode, you are advised to enable the sharding function and
then shard the collections in the cluster.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 27

https://docs.mongodb.com/manual/reference/method/db.dropDatabase/index.html#replica-set-and-sharded-clusters
https://docs.mongodb.com/manual/reference/method/db.dropDatabase/index.html#replica-set-and-sharded-clusters
https://jira.mongodb.org/browse/SERVER-17397

Document Database Service 6 How Do | Prevent the dds mongos Cache
Best Practices Problem?

e If the database with sharding disabled is deleted, do not create a database or
collection with the same name as the deleted database or collection.

If you need to create a database or collection with the same name as the
deleted database or collection, log in to all the mongos nodes to update the
route information before creating the database and collection.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 28

Document Database Service

Best Practices

7 How Do | Solve the High CPU Usage Issue?

How Do | Solve the High CPU Usage
Issue?

If the CPU usage is high or close to 100% when you use DDS, data read and write
will slow down, affecting your services.

The following describes how to analyze current slow queries. After the analysis
and optimization, queries will be processed better and indexes will be used more

effi

ciently.

Analyzing Current Queries

1.

Connect to an instance using Mongo Shell.

To access an instance from the Internet

For details, see

- Connecting to a Cluster Instance over a Public Network

- Connecting to a Replica Set Instance over a Public Network
- Connecting to a Single Node Instance over a Public Network
To access an instance that is not publicly accessible

For details, see

- Connecting to a Cluster Instance over a Private Network

- Connecting to a Replica Set Instance over a Private Network
- Connecting to a Single Node Instance over a Private Network

Run the following command to view the operations being performed on the
database:

db.currentOp()

Command output:

{ "raw" : { "shard0001" : { "inprog" :

[{ "desc" :

"StatisticsCollector", "threadld" :

"140323686905600", "active" : true, "opid" :
9037713, "op" : "none", "ns" :
"query” : { b

"numYields" : 0, "locks" :

{ } "waitingForLock" :

false, "lockStats" :

{ } h?

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 29

https://support.huaweicloud.com/eu/qs-dds/dds_02_0006.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0047.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0048.html
https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0044018334.html
https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0105284966.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0028.html

Document Database Service

Best Practices

7 How Do | Solve the High CPU Usage Issue?

{ "desc" : "conn2607", "threadld" :
"140323415066368", "connectionld" : 2607,
"client" : "172.16.36.87:37804", "appName" : "MongoDB
Shell", "active" : true, "opid" :
9039588, "secs_running" : 0,
"microsecs_running" : NumberLong(63), "op" :
"command", "ns" : "admin.", "query" :
{ "currentOp" : 1 },
"numYields" : 0, "locks" :
{ } "waitingForLock" :
false, "lockStats" :
{ } } 1, "ok :
1 A

L1 NOTE

e client: IP address of the client that sends the request
e opid: unique operation ID

e secs_running: elapsed time for execution, in seconds. If the returned value of this
field is too large, check whether the request is reasonable.

e microsecs_running: elapsed time for execution, in microseconds. If the returned
value of this field is too large, check whether there is something wrong with the
request.

e op: operation type. The operations can be query, insert, update, delete, or
command.

e ns: target collection

e For details, see the db.currentOp() command in official document.
Based on the command output, check whether there are requests that take a
long time to process.

If the CPU usage is low while services are being processed but then becomes
high during just certain operations, analyze the requests that take a long time
to execute.

If an abnormal query is found, find the opid corresponding to the operation
and run db.killOp(op/id) to kill it.

Analyzing Slow Queries

Slow query profiling is enabled for DDS by default. The system automatically
records any queries whose execution takes longer than 100 ms to the
system.profile collection in the corresponding database. You can:

1.

Connect to an instance using Mongo Shell.

To access an instance from the Internet

For details, see

- Connecting to a Cluster Instance over a Public Network

- Connecting to a Replica Set Instance over a Public Network
- Connecting to a Single Node Instance over a Public Network
To access an instance that is not publicly accessible

For details, see

- Connecting to a Cluster Instance over a Private Network

- Connecting to a Replica Set Instance over a Private Network
- Connecting to a Single Node Instance over a Private Network

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 30

https://docs.mongodb.com/manual/reference/method/db.currentOp/?spm=a2c4g.11186623.2.13.79cc3474Y5mI48
https://support.huaweicloud.com/eu/qs-dds/dds_02_0006.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0047.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0048.html
https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0044018334.html
https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0105284966.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0028.html

Document Database Service
Best Practices 7 How Do | Solve the High CPU Usage Issue?

2. Select a specific database (using the test database as an example):
use test

3. Check whether slow SQL queries have been collected in system.profile.
show collections;

- If the command output includes system.profile, slow SQL queries have

been generated. Go to the next step.
mongos> show collectionssystem.profiletest

- If the command output does not contain system.profile, no slow SQL

queries have been generated, and slow query analysis is not required.
mongos> show collectionstest

4. Check the slow query logs in the database.
db.system.profile.find().pretty()
5. Analyze slow query logs to find the cause of the high CPU usage.

The following is an example of a slow query log. The log shows a request that
scanned the entire table, including 1,561,632 documents and without using a
search index.

{ "op" : "query", "ns" : "taiyiDatabase.taiyiTables$10002e", "query" : { "find" :
"taiyiTables", "filter" : { "filed19" :
NumberLong("852605039766") 1 "shardVersion" :
[Timestamp(1, 1048673),
Objectld("5da43185267ad9c374a72fd5") 1, "chunkld" : "10002e" }
"keysExamined" : 0, "docsExamined" : 1561632, "cursorExhausted" : true, "numYield" :
12335, "locks" : { "Global" : { "acquireCount" :
{ "r'" : NumberLong(24672) } } "Database" :
{ "acquireCount" : { "r'
NumberLong(12336) } 1 "Collection" :
{ "acquireCount" : { "r'
NumberLong(12336) } } } "nreturned" : 0, "responseLength" :
157, "protocol" : "op_command", "millis" : 44480, "planSummary" : "COLLSCAN",
"execStats" : { "stage" :
"SHARDING_FILTER",

[3/1955] "nReturned" : 0, "executionTimeMillisEstimate" :
43701, "works" : 1561634, "advanced" : 0, "needTime" :
1561633, "needYield" : 0, "saveState" : 12335, "restoreState" :
12335, "isEOF" : 1, "invalidates" : 0, "chunkSkips" : 0,
"inputStage" : { "stage" : "COLLSCAN", "filter" :
{ "filed19" : { "$eq" :
NumberLong("852605039766") } } "nReturned" :
0, "executionTimeMillisEstimate" : 43590, "works" :
1561634, "advanced" : 0, "needTime" : 1561633,
"needYield" : 0, "saveState" : 12335, "restoreState" :
12335, "iSEOF" : 1, "invalidates" : O, "direction" :
"forward", "docsExamined" : 1561632 } } "ts" :
ISODate("2019-10-14T10:49:52.780Z"), "client" : "172.16.36.87", "appName" : "MongoDB
Shell", "allUsers" : [{ "user" : "__system", "db" :
"local" } 1, "user" : "__system@local"}

The following stages can be causes for a slow query:
- COLLSCAN involves a full collection (full table) scan.

When a request (such as query, update, and delete) requires a full table
scan, a large amount of CPU resources are occupied. If you find
COLLSCAN in the slow query log, CPU resources may be occupied.

If such requests are frequent, create indexes for the fields to be queried.
- docsExamined involves a full collection (full table) scan.

You can view the value of docsExamined to check the number of
documents scanned. A larger value indicates a higher CPU usage.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 31

Document Database Service

Best Practices

7 How Do | Solve the High CPU Usage Issue?

Analysis Capability

IXSCAN and keysExamined scan indexes.

(11 NOTE

An excessive number of indexes can affect the write and update performance.

If your application has more write operations, creating indexes may increase
write latency.

You can view the value of keysExamined to see how many indexes are
scanned in a query. A larger value indicates a higher CPU usage.

If the index is not appropriate or there are many matching results, the
CPU usage may spike and the execution can slow down.

Example: For the data of a collection, the number of values of the a field
is small (only 1 and 2), but the b field has more values.

{a:1,b:1TH{a1,b:2Ka:1,b:3%}..{a:1 b:100000{ a:2,b:1Ha:2, b:2Ha: 2
b:3}...{a:1,y: 100000}

The following shows how to implement the {a: 1, b: 2} query.

db.createlndex({a: 13}): The query is not effective because the a field has too many
same values.

db.createlndex({a: 1, b: 1}): The query is not effective because the a field has too
many same values.

db.createlndex({b: 1}): The query is effective because the b field has a few same
values.

db.createlndex({b: 1, a: 1}): The query is effective because the b field has a few same
values.

For the differences between {a: 1} and {b: 1, a: 1}, see the official
documents.

SORT and hasSortStage may involve sorting a large amount of data.

If the value of hasSortStage in the system.profile collection is true, the
query request involves sorting. If the sorting cannot be implemented
through indexes, the query results are sorted, and sorting is a CPU
intensive operation. In this scenario, you need to create indexes for fields
that are frequently sorted.

If the system.profile collection contains SORT, you can use indexing to
improve sorting speed.

Other operations, such as index creation and aggregation (combinations of
traversal, query, update, and sorting), also apply to the preceding scenarios
because they are also CPU intensive operations. For more information about
profiling, see official documents.

After the analysis and optimization of the requests that are being executed and
slow requests, all requests use proper indexes, and the CPU usage becomes stable.
If the CPU usage remains high after the analysis and troubleshooting, the current
instance may have reached the performance bottleneck and cannot meet service
requirements. In this case, you can perform the following operations to solve the

problem:

1.

2.

View monitoring information to analyze instance resource usage. For details,
see Viewing Monitoring Metrics.

Change the DDS instance class or add shard nodes.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 32

https://docs.mongodb.com/manual/core/index-compound/
https://docs.mongodb.com/manual/core/index-compound/
https://docs.mongodb.com/manual/tutorial/manage-the-database-profiler/
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0076.html

Document Database Service 8 Creating a User and Granting the Read-Only
Best Practices Permission to the User

Creating a User and Granting the Read-
Only Permission to the User

Step 1: Create a User Group and Grant Permissions
Users in the same user group have the same permissions. Users created in IAM
inherit permissions from the groups to which they belong. Users created in IAM
inherit permissions from the groups they belong to. To create a user group,
perform the following steps:

Step 1 Log in to using your account.

Figure 8-1 HUAWEI ID Login

HUAWEI ID login

2nce. Learn more

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 33

Document Database Service 8 Creating a User and Granting the Read-Only
Best Practices

Permission to the User

Step 2:

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

On the management console, click the username in the upper right corner and
then choose Identity and Access Management.

On the IAM console, choose User Groups in the navigation pane. Then click
Create User Group.

Enter a user group name (for example, test_01), set the password, and click OK.
The user group is then displayed in the user group list.

In the user group list, choose Authorize in the row that contains the test_01 user
group.

Select Document Database Service from the drop-down list, select DDS

ReadOnlyAccess, and click Next.

Specify the scope and click OK.

e All resources

e Region-specific projects: The selected permissions will be applied to resources
in the region-specific projects you select.

--—-End

Create an IAM User

Step 1
Step 2

Step 3

IAM users can be created for employees or applications of an enterprise. Each IAM
user has their own security credentials, and inherits permissions from the groups it
is a member of. To create an IAM user, perform the following steps:

On the IAM console, choose Users in the navigation pane. Then click Create User.

Specify the user information on the Create User page. To create more users, click
Add User. You can add a maximum of 10 users at a time.
e Username: Used for logging in to . For this example, enter James.

e Email Address: Email address bound to the IAM user. This parameter is
mandatory if the access type is specified as Set by user.

e (Optional) Mobile Number: Mobile number bound to the IAM user.
e (Optional) Description: Description of the user.

Configure required parameters and click Next.

Table 8-1 Configuration items

Parame | Description
ter

Access e Programmatic access: Select this option to allow the user to
Type access cloud services using development tools, such as APIs, CLI,
and SDKs. You can generate an access key or set a password for
the user.

¢ Management console access: Select this option to allow the user
to access cloud services using the management console. You can
set or generate a password for the user or request the user to set
a password at first login.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 34

Document Database Service 8 Creating a User and Granting the Read-Only

Best Practices Permission to the User

Parame | Description

ter

Credenti | @ Access key: Download the access key after the user is created.

alType | o password: If you create multiple users, set a password for the
users and determine whether to require the users to reset the
password at first login. If you create one user, you can select
Automatically generated and the system automatically
generates a login password for the user.

Login To ensure account security, you are advised to select Enable.

Protecti

on

Step 4 Add the users to user group created in Step 4 and click Create User.

Step 5 Check the created users in the user list. If you select Access key for Credential
Type, you can download the access key after you create the user. You can also
manage the access keys on the My Credentials page.

--—-End

Step 3: Log In and Verify Permissions

After the user is created, use the username and identity credential to log in to,
and verify that the user has the permissions defined by the DDS ReadOnlyAccess

policy.
Step 1 On the login page, click IAM User in the lower left corner.

Step 2 Enter the account name, username, and password, and click Log In.
e The account name is the name of the account that created the IAM user.

e The username and password are those set by the account when creating the
IAM user.

If the login fails, contact the entity owning the account to verify the username and
password. Alternatively, you can reset the password by following the procedure in
"Resetting Password for an IAM User".

Step 3 After successful login, switch to a region where the user has been granted
permissions on the management console.

Step 4 Choose Service List > Document Database Service. Then click Buy DB Instance
on the DDS console. If a message appears indicating insufficient permissions to
perform the operation, the DDS ReadOnlyAccess policy has already taken effect.

Step 5 Choose any other service in the Service List. If a message appears indicating
insufficient permissions to access the service, the DDS ReadOnlyAccess policy has
already taken effect.

----End

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 35

Document Database Service 9 How Is a DDS Node Going to Be Disconnected and
Best Practices What Can | Do?

How Is a DDS Node Going to Be
Disconnected and What Can | Do?

A replica set consists of three nodes: primary, secondary, and hidden. The three-

node architecture is set up automatically, and the three nodes automatically

synchronize data with each other to ensure data reliability. Replica sets are

recommended for small- and medium-sized service systems that require high

availability.

e Primary node: Primary nodes are used to process both read and write
requests.

e Secondary node: Secondary nodes are used to process read requests only.

e Hidden node: Hidden nodes are used to back up service data.

You can perform operations on the primary and secondary nodes. If the primary

node is faulty, the system automatically selects a new primary node. The following
figure shows the replica set architecture.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 36

Document Database Service 9 How Is a DDS Node Going to Be Disconnected and

Best Practices

What Can | Do?

Figure 9-1 Three-node replica set architecture

Replica set
architecture

DDS can write data only on the primary node. When data is written to the primary
node, oplogs are generated. The secondary and hidden nodes read oplogs from
the primary node for replay to ensure data consistency.

The storage capacity of oplogs is determined by the value of oplogSize (10% of
the default disk capacity).

How is the primary/secondary latency generated?

If the write speed of the primary node is too fast and exceeds the replay
speed of the oplog read on the secondary node, the primary/secondary
latency occurs.

When is a node going to be disconnected?

The storage capacity of oplogs is limited. If the capacity reaches the upper
limit, the earliest oplog will be deleted. The secondary node reads oplogs and
records the last oplog each time. If the primary/secondary latency reaches a
certain value, the secondary node finds that the last oplog point has been
deleted. In this case, the secondary node cannot continue to read oplogs, and
the secondary node is disconnected.

How to effectively prevent the secondary node from being disconnected?

- Set writeConcern to majority. In this way, data is written to a majority
of nodes, ensuring data consistency.

- Increase the oplog storage capacity by changing the value of
oplogSizePercent on the console. For details, see .

- Perform time-consuming DDL operations (such as index creation) and
data backup operations during off-peak hours to avoid burst addition,
deletion, and modification operations.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 37

Document Database Service 9 How Is a DDS Node Going to Be Disconnected and
Best Practices What Can | Do?

{11 NOTE

If writeConcern is not set to majority, the data that is not synchronized to the
secondary node may be lost when a primary/secondary switchover occurs.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 38

Document Database Service
Best Practices 10 Avoiding Cursor Invalidity Caused by hidelndex

Avoiding Cursor Invalidity Caused by
hidelndex

Scenarios

In DDS, some operations may cause cursors to be invalid. The behaviors of DDS
are the same as those of MongoDB Community Edition. The following are some
common examples:

Invalid cursors caused by hidelndex
Cause:

The hidelndex operation changes the metadata of an index, invalidating the
existing cursor.

Sample code:

(function() {
"use strict";

let collName = "test_coll";
let coll = db.getCollection(collName);
coll.drop();

// Create an index and insert data.
coll.createlndex({x: 1}, {background: false});
for (vari=0; i< 1000; ++i) {

coll.insert({x: i});

}

// Obtain a cursor.
let cursor = coll.find({x: {$gte: 13}});

// Use the cursor, but the cursor is not exhausted.
for (vari=0;i<101; ++i) {

let doc = cursor.next();

print(tojson(doc));
}

// Hide an index before the cursor is exhausted.
coll.hidelndex("x_1");

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 39

Document Database Service

Best Practices

10 Avoiding Cursor Invalidity Caused by hidelndex

// Traverse the cursor.
cursor.forEach((doc) => {
// An error is reported for the cursor.
// "errmsg" : "definition of index 'x_1' changed"
// "codeName" : "QueryPlanKilled"

print(tojson(doc));
b
No;

Result:

The cursor is invalid. Errors may be reported.

2024-12-24T16:26:42.445+0800 E QUERY

uoku : O,

"errmsg" : "definition of index 'x_1' changed",

"code" : 175,
"codeName" : "QueryPlanKilled"

Invalid cursors caused by dropindex

Cause:

After an index is deleted, DDS needs to recalculate query plans, invalidating the

existing cursor.
Sample code:

(function() {

[js] Error: getMore command failed: {

"use strict";

let collName = "test_coll";
let coll = db.getCollection(collName);
coll.drop();

// Create an index and insert data.
coll.createlndex({x: 13}, {background: false});
for (vari=0; i< 1000; ++i) {

coll.insert({x: i});

}

// Obtain a cursor.
let cursor = coll.find({x: {$gte: 13}});

// Use the cursor, but the cursor is not exhausted.
for (vari=0;i<101; ++i) {

let doc = cursor.next();

print(tojson(doc));
}

// Delete an index before the cursor is exhausted.
coll.dropindex("x_1");

// Traverse the cursor.
cursor.forEach((doc) => {
// An error is reported for the cursor.
// "errmsg" : "index 'x_1' dropped",
// "codeName" : "QueryPlanKilled"
print(tojson(doc));
D

Ho;

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd.

40

Document Database Service

Best Practices

10 Avoiding Cursor Invalidity Caused by hidelndex

Result:

The cursor is invalid because query plans need to be recalculated after an index is
deleted.

2024-12-25T10:34:29.948+0800 E QUERY [js] Error: getMore command failed: {
uoku : 0,
"errmsg" : "index 'x_1' dropped",
"code" : 175,
"codeName" : "QueryPlanKilled"

Invalid cursors caused by renameCollection

Cause:
The renameCollection operation also causes cursors to become invalid.

Sample code:

(function() {
"use strict";

let collName = "test_coll";
let coll = db.getCollection(collName);
coll.drop();

// Create an index and insert data.
coll.createlndex({x: 1}, {background: false});
for (var i =0; i< 1000; ++i) {

coll.insert({x: i});

}

// Obtain a cursor.
let cursor = coll.find({x: {$gte: 13});

// Use the cursor, but the cursor is not exhausted.
for (vari=0;i<101; ++i) {

let doc = cursor.next();

print(tojson(doc));

// Rename a collection before the cursor is exhausted.
coll.renameCollection("test_coll_reaname");

// Traverse the cursor.

cursor.forEach((doc) => {

// An error is reported for the cursor.

// "errmsg" : "collection dropped between getMore calls",
// "codeName" : "OperationFailed"
print(tojson(doc));

b

Ho;

Result:

The cursor is invalid because the name of the collection is changed and the cursor
loses the context.

2024-12-25T10:39:28.624+0800 E QUERY [js] Error: getMore command failed: {
uoku : O,
"errmsg" : "collection dropped between getMore calls",

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 41

Document Database Service
Best Practices 10 Avoiding Cursor Invalidity Caused by hidelndex

"code" : 96,
"codeName" : "OperationFailed"

}:

Invalid cursors caused by dropCollection
Cause:

Deleting a collection causes cursors to lose the context. As a result, cursors
become invalid.

Sample code:

(function() {
"use strict";

let collName = "test_coll";
let coll = db.getCollection(collName);
coll.drop();

// Create an index and insert data.
coll.createlndex({x: 13}, {background: false});
for (vari=0; i< 1000; ++i) {

collinsert({x: i});

}

// Obtain a cursor.
let cursor = coll.find({x: {$gte: 13}});

// Use the cursor, but the cursor is not exhausted.
for (vari=0;i<101; ++i) {

let doc = cursor.next();

print(tojson(doc));
}

// Delete a collection before the cursor is exhausted.
coll.drop();

// Traverse the cursor.

cursor.forEach((doc) => {

// An error is reported for the cursor.

// "errmsg" : "collection dropped between getMore calls",
// "codeName" : "OperationFailed"
print(tojson(doc));

bk

HO;

Result:

The cursor is invalid because the collection is deleted and the cursor loses the
context.

2024-12-25T10:40:33.737+0800 E QUERY [js] Error: getMore command failed: {
uoku : O,
"errmsg" : "collection dropped between getMore calls",
"code" : 96,
"codeName" : "OperationFailed"

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 42

Document Database Service

Best Practices

10 Avoiding Cursor Invalidity Caused by hidelndex

Solution

Process cursors before an index operation: Ensure that a cursor is exhausted

before the hidelndex or droplndex operation.

Re-obtain cursors: If an index changes, perform the query operation again to

obtain the new cursor.

Plan in advance: Do not perform index operations during long-time queries.

Sample code:

(function() {

"use strict";

let collName = "test_coll";
let coll = db.getCollection(collName);
coll.drop();

// Create an index and insert data.
coll.createlndex({x: 13}, {background: false});
for (vari=0; i< 1000; ++i) {

collinsert({x: i});

}

// Obtain a cursor.
let cursor = coll.find({x: {$gte: 13}});

// Use the cursor, but the cursor is not exhausted.
for (vari=0;i<101; ++i) {

let doc = cursor.next();

print(tojson(doc));

// Hide an index before the cursor is exhausted.
coll.hidelndex("x_1");

// Traverse the cursor.
// cursor.forEach((doc) => {
// An error is reported for the cursor.
// "errmsg" : "definition of index 'x_1' changed"
// "codeName" : "QueryPlanKilled"
// print(tojson(doc));
/13

// Obtain the cursor again.
cursor = coll.find({x: {$gte: 13}});
cursor.forEach((doc) => {

print(tojson(doc));
bk

HO;

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd.

43

Document Database Service

Best Practices

11 Using DDS to Store and Analyze Log Data

Using DDS to Store and Analyze Log
Data

Log data plays an important role in the O&M and analysis of modern applications.
It not only helps monitor the health status of applications, but also provides
valuable data for service insight, user experience optimization and business
decision-making. However, as the data volume increases sharply, traditional log
storage and analysis become insufficient. This document describes how to use
Document Database Service (DDS) to efficiently store and analyze log data. DDS
4.2 and later versions use RocksDB as the underlying storage engine. RocksDB has
good performance in scenarios where write operations are more than read
operations, such as log storage and analysis.

By properly designing a log storage structure, optimizing write and query policies,
and using data sharding, DDS can efficiently store and analyze massive amounts
of log data, providing strong support for application O&M and service analysis. In
addition to powerful data storage, DDS provides flexible configuration and
optimization policies to help users easily cope with challenges and mine infinite
data value in the era of data explosion.

Log Data Storage

In the Internet of Things (loT) field, device log data plays an important role. It not
only helps monitor the status of devices, but also provides detailed information
about device usage modes and fault prediction. For example, a log record of a
smart home security system may include information such as a device ID, a
timestamp, an event type (such as lock opening status or motion detection), a
device status, and a possible error code.

e Log data example

The following is a typical loT device log record:
DevicelD: 001, Timestamp: 2023-04-05T14:30:00Z, Event: DoorLockOpened, DeviceStatus: Active,
Error: None

e Storage mode optimization

When data is stored in DDS, logs are converted into structured documents to

extract key fields. For example:

{ _id: Objectld('5f442120eb03305789000000"),
device_id: "001",
timestamp: 1ISODate("2023-04-05T14:30:00Z"),

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 44

Document Database Service
Best Practices 11 Using DDS to Store and Analyze Log Data

event: "DoorLockOpened",
device_status: "Active",
error: "None"

}

Irrelevant fields are filtered out based on analysis requirements to save
storage space. For example, if you want to analyze the error status of a device
that is not concerned, you can omit the error field.

Log Writing and Performance Optimization

DDS replica set instances provide data redundancy and highly reliable storage. To
support high-concurrency log writing, you can customize the writeConcern
parameter. For example, using {w: 0} can achieve the highest write throughput,
but at the cost of data durability. For key device logs, a more secure level, such as
{w: 1} or {w: "majority"}, is recommended. This setting allows writing multiple

logs in batches and can significantly improve efficiency.
replica:PRIMARY> log = {
.. "device_id": "001",
"timestamp": ISODate("2023-04-05T14:30:00Z"),
"event": "DoorLockOpened",
"device_status": "Active",
A "error": "None" ... };
// Write using {w: O}.
replica:PRIMARY> db.getSiblingDB("iot_logs").events.insert(log, {w: 0})
WriteResult({ "nInserted" : 1 })
// Write using {w: 1}.
replica:PRIMARY> db.getSiblingDB("iot_logs").events.insert(log, {w: 1})
WriteResult({ "nInserted" : 1 })
// Write using {w: "majority"}.
replica:PRIMARY> db.getSiblingDB("iot_logs").events.insert(log, {w: "majority"})
WriteResult({ "nInserted" : 1 })
// Batch write at a time:
replica:PRIMARY> logs = [
... { "device_id": "002", "timestamp": ISODate("2023-04-06T09:45:00Z"), "event": "MotionDetected",
"device_status": "Active", "error": "None"},
... { "device_id": "003", "timestamp": ISODate("2023-04-07T16:15:00Z"), "event": "TemperatureAlarm",
"device_status": "Active", "error": "None"},
... {"device_id": "004", "timestamp": ISODate("2023-04-08T720:30:00Z"), "event": "WindowOpened",

"device_status": "Active", "error": "None"}

]
replica:PRIMARY> db.getSiblingDB("iot_logs").events.insertMany(logs, {w: 0})

Log Query and Analysis
e Log query example

Query all events of a specified device in a specified time range.
db.getSiblingDB("iot_logs").events.find({"device_id": "001", "timestamp": {"$gte":
ISODate("2023-04-05T00:00:00Z"), "$lt": ISODate("2023-04-06T00:00:00Z")}})

e Create indexes to improve query efficiency.

Creating indexes for the device_id and timestamp fields can accelerate the

query in the preceding scenario.
replica:PRIMARY> db.getSiblingDB("iot_logs").events.createlndex({"device_id": 1, "timestamp": 1})

e Complex analysis.
The DDS aggregation framework can be used for more complex query and

analysis. For details, see Aggregation Operations.
Data Sharding and Scaling

As logs spike, the log data volume increases exponentially. A single database node
cannot meet the storage and query requirements of massive data. DDS uses the

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 45

https://www.mongodb.com/docs/manual/aggregation/

Document Database Service

Best Practices

11 Using DDS to Store and Analyze Log Data

sharding technology to provide the horizontal scalability, effectively share data
storage and query stress, and ensure high availability and high performance of the
system.

Data sharding

Data sharding means dividing a dataset into multiple parts and store them on
different database nodes (shards). Each shard stores a part of a dataset, and
data is distributed based on the shard key. A shard key policy determines the
data distribution mode and affects the write and query performance.

Shard key policies
When selecting a shard key, consider the following points:

- Even distribution: Shard keys must ensure that data is evenly distributed
among shards to avoid hotspots.

- Query mode: Shard keys must match common query modes to improve
query efficiency.

- Data access mode: If the data access mode is time-based, you can use
timestamps or time-based fields as shard keys.

Device ID-based sharding

Assume that there are a large number of loT devices and each device
generates a large number of logs. You can use device_id as the shard key to
ensure that the log data of each device is stored on different shards, achieving

even data distribution. Example code:
db.getSiblingDB("iot_logs").events.createlndex({"device_id": 1})
sh.enableSharding("iot_logs")
sh.shardCollection("iot_logs.events", {"device_id": 1 })

(10 NOTE

e When creating a sharded collection, ensure that the shard key is unique in the data
to achieve even data distribution.

e When selecting a shard key, consider the data access mode to optimize the query
performance.

e Sharded cluster management, such as adding or deleting shards, should be
adjusted based on data growth and query requirements.

Automatically Deleting Expired Data

TTL indexes: Expired documents are deleted automatically, for example, you
can set the period to 30 days.

db.eventlog.createlndex({ "timestamp": 1 }, { expireAfterSeconds: 30 * 24 * 60 * 60 })

Capped collections: The collection size is limited, and the earliest document
is automatically deleted. In capped collections, documents are inserted and
retrieved according to the insertion order. Capped collections work similarly to
circular buffers: Once a collection is full, it makes space for new documents by

overwriting the earliest document in the collection.

// Create a capped collection when creating a collection.
db.getSiblingDB("iot_logs").dropDatabase()
db.getSiblingDB("iot_logs").createCollection("events", { capped: true, size: 5242880 })

Periodic archiving: Log data is archived by month to facilitate historical data

management and query.
db.getSiblingDB("iot_logs").events.renameCollection("events202301")

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 46

Document Database Service

Best Practices

11 Using DDS to Store and Analyze Log Data

NOTICE

In a DB instance, the total number of databases cannot exceed 200, and the
total number of collections cannot exceed 500. If there are too many
collections, the memory may be overloaded. In addition, the performance for
restarting a DB instance and performing a primary/standby switchover may
deteriorate due to too many collections, which affects the high availability
performance in emergencies. You are advised to periodically delete
unnecessary collections.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 47

Document Database Service
Best Practices 12 DDS Query Plans and Query Replanning

DDS Query Plans and Query
Replanning

A DDS query plan is a detailed process that determines how a query is executed.
The DDS query planner chooses an execution plan based on the query criteria,
data distribution, and index information. However, in some cases, DDS re-
evaluates and generates a new query plan, that is, query replanning. Learning
query replanning helps improve database performance and effectively reduce
resource waste.

The following describes how DDS query plans work, query replanning scenarios,
and best practices for handling and optimizing query replanning.

Query Plan Overview

A query plan is an execution path selected by the DDS query planner when a
query is executed. This execution path defines how to scan data, whether to use
indexes, and how to process each query phase. DDS generates a query plan in the
following steps:

Parsing a query: DDS parses query criteria and identifies fields and operators.

2. Selecting indexes: Based on the query criteria, DDS checks available indexes
and chooses the most appropriate index to accelerate the query.

3. Evaluating execution paths: DDS evaluates possible execution paths based on
the data volume, field selectivity, and index type, and chooses the optimal
execution path to generate a new query plan.

4. Executing the query: DDS executes the query based on the selected query
plan and returns the result.

Query Replanning Overview

Query replanning refers to the process in which DDS re-evaluates and generates a
new query plan based on data or query structure changes during query execution.
When query replanning occurs, DDS discards the previously selected query plan
and uses the new execution path.

The main purpose of query replanning is to ensure that the query can adapt to
new data distribution, index changes, and load changes when the data
environment changes, thereby maintaining stable query performance.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 48

Document Database Service

Best Practices

12 DDS Query Plans and Query Replanning

Query Replanning Scenarios

The following lists some common query replanning scenarios:

Index changes

Adding or deleting indexes: When indexes of a field change (for example, an
index is added or deleted), DDS may replan the query execution plan. The
query may re-evaluate the validity of existing indexes and then chooses a new
index, or decide to use a full table scan.

Data distribution changes

If data distribution changes (for example, the selectivity of a field changes
significantly), DDS may re-evaluate the query plan to ensure that the optimal
execution path can be chosen. For example, a field becomes sparser or denser,
resulting in a change in index efficiency.

Query criteria changes

When query criteria change, DDS may need to re-generate a query plan. For
example, new filter criteria are added to some queries, or different operators
are used in the query criteria (for example, from $Seq to Sin).

Aggregation pipeline changes

During an aggregation operation, if the data volume, field, or pipeline
sequence changes, DDS may re-evaluate the execution plan of the
aggregation pipeline. Especially when the data filter criteria in the pipeline
phase change, DDS may reselect an execution path.

Environment resource load changes

If an instance load changes (for example, node resources are used up, the
storage space is insufficient, or the network latency increases), DDS may
adjust the query plan to optimize the query performance under the current
resource conditions.

Invalid query cache

DDS caches the optimal query plan that is executed previously. In some cases,
DDS may use the query cache. If the query cache becomes invalid, a new
query plan may be regenerated.

Impacts of Query Replanning

When query replanning occurs, the keyword replanned:1 is displayed in the slow
query log, indicating that the database cannot provide an always valid plan for the
query conditions of the current query.

Frequent query replanning has the following impacts:

Increased CPU overhead: Frequent replanning consumes more CPU resources
and affects the overall performance.

Increased memory usage: Frequent replanning increases the memory usage
and may affect other operations.

Increased query delay: Each replanning increases the query execution time.
As a result, the response becomes slow.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 49

Document Database Service

Best Practices

12 DDS Query Plans and Query Replanning

Handling Suggestions for Query Replanning

Periodically monitor query plans.

You are advised to periodically monitor query execution plans, especially after
a system changes, for example, adding indexes, adding data, or modifying the
query structure. Using either of the following methods:

- Use the explain() method to analyze the execution plan of a query.

- Periodically check slow query logs to learn about possible query plan
changes.

Check the cause of a query plan change.

When query replanning occurs, you need to determine which factors cause
the change of a query plan. Check the following causes:

- Index changes: Run db.collection.getindexes() to check whether indexes
are added or deleted.

- Data distribution: Check whether data changes significantly based on
statistics. For example, you can run db.collection.stats() to view
collection statistics, such as the number of documents, data size, and
index size.

- Query criteria: Check whether the query criteria are changed, whether a
new field is added, or whether the query operators are changed.

Optimize query replanning.
The following are some suggestions for optimizing query replanning:

- [Recommended] Ensure that the database environment has sufficient
resources (such as CPUs, memory, and storage) to handle the load,
reduce query replanning caused by resource limitations, and upgrade the
instance specifications to relieve the database load.

- [Recommended] Predict data distribution. During index design, you can
use data distribution prediction to choose proper fields for indexing to
prevent frequent query replanning caused by data distribution changes.

- [Recommended] Use stable indexes. Ensure that stable and proper
indexes are provided for common queries. Especially when there is a large
volume of data, indexes can effectively reduce the occurrence of query
replanning.

- [Recommended] Avoid frequently changing query structures. Frequent
changes of query criteria may cause DDS to frequently re-generate query
plans. You are advised to ensure the consistency of query criteria based
on service requirements.

- [Recommended] Optimize aggregation pipelines. If your query involves a
complex aggregation pipeline, you are advised to periodically analyze the
execution plan of the pipeline and optimize it. You can use Smatch to
filter data in the early stage of the aggregation pipeline to reduce the
amount of data processed in subsequent stages.

- Use hint() to specify an index for query criteria that are replanned.
Calling this method for a query can overwrite the default index selection
and query optimization process of DDS. Example:
db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1})

- Use index filtering to restrict indexes that you want to use for query
criteria that are replanned. Index filters override the expected behavior of
the query planner in selecting query plans. If you specify a hint and an

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 50

Document Database Service
Best Practices

12 DDS Query Plans and Query Replanning

index filter for a query, the index filter overwrites the specified hint.
Therefore, use the index filter with caution. The following example
creates an index filter for the orders collection. This filter is suitable for
queries whose predicate is an equivalent match of the item field, where
only the quantity field is projected, and sorting is specified by

order_date in ascending order.
db.runCommand(
{
planCacheSetFilter: "orders",
query: { item: "ABC" },
projection: { quantity: 1, _id: 0 },
sort: { order_date: 1},
indexes: [
{item: 1, order_date: 1, quantity: 1 }
]
}
)

For plan cache query structures, the query planner will only consider
index plans that use index { item: 1, order_date: 1, quantity: 1 }.

Evaluating Query Replanning and Taking Measures

Query re

planning may change an execution plan, which affects the query

performance. When query replanning occurs, you need to evaluate the change of
the query performance, check whether the query performance is improved or
decreased, and take measures accordingly.

e Performance deterioration: If the query performance deteriorates due to query
replanning, you can add or adjust indexes to improve the performance.

e Performance improvement: If a query execution after replanning is more

effic

ient, you can keep the current execution plan and monitor whether there

are other potential performance bottlenecks.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 51

Document Database Service

Best Practices

13 DDS Transactions and Read/Write Concerns

DDS Transactions and Read/Write
Concerns

Transactions

Overview

In DDS, an operation on a single document is atomic. Because you can use
embedded documents and arrays to capture relationships between data in a
single document structure instead of normalizing across multiple documents
and collections, this single-document atomicity obviates the need for multi-
document transactions for many practical use cases.

For situations that require atomicity of multiple document updates or
consistency between multiple document reads: Starting from version 4.0, DDS
is able to execute multi-document transactions for replica sets.

Multi-document transactions can be used across multiple operations,
collections, databases, and documents, providing an "All-Or-Nothing"
proposition. Transactions either apply all data changes or roll back the
changes. If a transaction commits, all data changes made in the transaction
are saved. If any operation in the transaction fails, the transaction aborts and
all data changes made in the transaction are discarded without ever
becoming visible. Until a transaction commits, write operations in the
transaction are not visible outside the transaction.

NOTICE

In most cases, a multiple-document transaction incurs a greater performance
cost over single document writes, and the availability of multiple-document
transactions should not be a replacement for effective schema design. For
many scenarios, the denormalized data model (embedded documents and
arrays) will continue to be optimal for your data and use cases. That is, for
many scenarios, modeling your data appropriately will minimize the need for
multi-document transactions.

Transaction APIs

The following mongo shell code shows the key APIs for using DDS
transactions:

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 52

Document Database Service
Best Practices 13 DDS Transactions and Read/Write Concerns

// Runs the txnFunc and retries if TransientTransactionError encountered
function runTransactionWithRetry(txnFunc, session) {
while (true) {
try {
txnFunc(session); // performs transaction
break;
} catch (error) {
// If transient error, retry the whole transaction
if (errorhasOwnProperty("errorLabels") &&
error.errorLabels.includes("TransientTransactionError")) {
print("TransientTransactionError, retrying transaction ...");
continue;
} else {
throw error;
}
}
}
}

// Retries commit if UnknownTransactionCommitResult encountered
function commitWithRetry(session) {
while (true) {
try {
session.commitTransaction(); // Uses write concern set at transaction start.
print("Transaction committed.");
break;
} catch (error) {
// Can retry commit
if (errorhasOwnProperty("errorLabels") &&
error.errorLabels.includes("UnknownTransactionCommitResult")) {
print("UnknownTransactionCommitResult, retrying commit operation ...");
continue;
} else {
print("Error during commit ...");
throw error;
}
}
}
}

// Updates two collections in a transactions

function updateEmployeelnfo(session) {
employeesCollection = session.getDatabase("hr").employees;
eventsCollection = session.getDatabase("reporting").events;

session.startTransaction({ readConcern: { level: "snapshot" }, writeConcern: { w: "majority" } });

try{
employeesCollection.updateOne({ employee: 3 }, { $set: { status: "Inactive" } });
eventsCollection.insertOne({ employee: 3, status: { new: "Inactive", old: "Active" } });
print(tojson(employeesCollection.find({ employee: 3 }).toArray()));
print(tojson(eventsCollection.find ({ employee: 3 }).toArray()));
print("countDocuments = " + eventsCollection.countDocuments({}));

} catch (error) {
print("Caught exception during transaction, aborting.", error);
session.abortTransaction();
throw error;

}

commitWithRetry(session);

}

// insert data
employeesCollection = db.getSiblingDB("hr").employees; eventsCollection =
db.getSiblingDB("reporting").events;
employeesCollection.drop();
eventsCollection.drop();
for (vari=0;i<10; ++i) {
employeesCollection.insertOne({employee: i});

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 53

Document Database Service

Best Practices

13 DDS Transactions and Read/Write Concerns

eventsCollection.insertOne({employee: i});

}

// Start a session.
session = db.getMongo().startSession({ readPreference: { mode: "primary" } });
try{
runTransactionWithRetry(updateEmployeelnfo, session);
} catch (error) {
// Do something with error
} finally {
session.endSession();
}
Transactions are associated with a session. You must start a session before
starting a transaction. You can have at most one open transaction at a time
for a session. If a session ends and it has an open transaction, the transaction

aborts.

NOTICE

When using the drivers, each operation in the transaction must be associated
with the session.

Transactions and Atomicity
Multi-document transactions are atomic.

- If a transaction commits, all data changes made in the transaction are
saved and are visible outside the transaction. Until a transaction commits,
the data changes made in the transaction are not visible outside the
transaction.

- When a transaction aborts, all data changes made in the transaction are
discarded without ever becoming visible. For example, if any operation in
the transaction fails, the transaction aborts and all data changes made in
the transaction are discarded without ever becoming visible.

Restrictions on Transaction Operations
For transactions:

- You can specify Create/Retrieve/Update/Delete (CRUD) operations on
existing collections. The collections used in a transaction can be in
different databases.

- You cannot read from or write to collections in the config, admin, or
local databases.

- You cannot write to system.* collections.
- You cannot return the supported operation's query plan using explain.

- For cursors created outside of a transaction, you cannot call getMore
inside the transaction.

- For cursors created in a transaction, you cannot call getMore outside the
transaction.

- You cannot execute non-CURD commands, including listCollections,
listindexes, createUser, getParameter, and count.

- To perform a count operation within a transaction, use the Scount
aggregation stage or the Sgroup (with a Ssum expression) aggregation
stage. Starting from DDS 4.0, mongo shell provides the

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 54

Document Database Service
Best Practices

13 DDS Transactions and Read/Write Concerns

db.collection.countDocuments() method that uses the Sgroup with a
$sum expression to perform a count.

A transaction cannot contain an insert operation that would result in the
creation of a new collection, for example, an operation for implicitly
creating a collection. A transaction cannot contain operations that affect
the database catalog, for example, creating or dropping collections or
indexes.

e Precautions for Using Transactions

Runtime Limit

By default, a transaction must have a runtime of less than 1 minute. You
can modify this limit using transactionLifetimeLimitSeconds for the
DDS instances. Transactions that exceed this limit are considered expired
and will be aborted by a periodic cleanup process.

Oplog Size Limit

If a committed transaction contains any write operations, a single oplog
entry is created. That is, each operation in the transaction does not have
a corresponding oplog entry. Instead, a single oplog entry encapsulates

all write operations in a transaction. Each oplog entry must be within the
BSON document size limit of 16 MB.

Cache

To prevent storage cache pressure from negatively impacting the
performance:

® When you abandon a transaction, abort the transaction.

® When you encounter an error during individual operation in the
transaction, abort and retry the transaction.

The transactionLifetimeLimitSeconds parameter also ensures that
expired transactions are aborted periodically to relieve storage cache
pressure.

Transactions and Locks

By default, transactions wait up to 5 milliseconds to acquire locks
required by the operations in the transaction. If the transaction cannot
acquire its required locks within the 5 milliseconds, the transaction aborts.
Transactions release all locks upon abort or commit.

You can use the maxTransactionLockRequestTimeoutMillis parameter
to adjust how long transactions wait to acquire locks. Increasing
maxTransactionLockRequestTimeoutMillis allows operations in the
transactions to wait the specified time to acquire the required locks. This
can help obviate transaction aborts on momentary concurrent lock
acquisitions, like fast-running metadata operations. However, this could
possibly delay the abort of deadlocked transaction operations.

Pending DDL Operations and Transactions

If a multi-document transaction is in progress, new DDL operations that
affect the same database wait behind the transaction. While these
pending DDL operations exist, new transactions that access the same
database as the pending DDL operations cannot obtain the required locks
and will abort after waiting maxTransactionLockRequestTimeoutMillis.
In addition, new non-transaction operations that access the same
database will block until they reach their maxTimeMS limit.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 55

Document Database Service
Best Practices

13 DDS Transactions and Read/Write Concerns

Consider the following scenarios:

While an in-progress transaction is performing various CRUD operations
on the employees collection in the hr database, you can start and
complete a separate transaction to access the foobar collection in the hr
database.

While an in-progress transaction is performing various CRUD operations
on the employees collection in the hr database and a separate DDL
operation is issued to create an index on the employees collection in the
hr database, the DDL operation must wait for the transaction to
complete.

When the DDL operation is pending, a new transaction attempts to
access the foobar collection in the hr database. If the DDL operation
remains pending for more than
maxTransactionLockRequestTimeoutMillis, the new transaction will
abort.

" In-progress Transactions and Write Conflicts

If a multiple-document transaction is in progress and a write outside
the transaction modifies a document that an operation in the
transaction later tries to modify, the transaction aborts because of a
write conflict. If a multi-document transaction is in progress and has
taken a lock to modify a document, when a write outside the
transaction tries to modify the same document, the write waits until
the transaction ends.

®" |n-progress Transactions and Stale Reads

Read operations inside a transaction can return old data, which is
known as a stale read. Read operations inside a transaction are not
guaranteed to see writes performed by other committed transactions
or non-transactional writes.

For example, consider the following sequence:
o A transaction is in-progress.
o A write outside the transaction deletes a document.

o A read operation inside the transaction can read the now-
deleted document since the operation uses a snapshot from
before the write operation.

To avoid stale reads inside transactions for a single document, you

can use the db.collection.findOneAndUpdate() method. Example:
J// insert data

employeesCollection = db.getSiblingDB("hr").employees;

employeesCollection.drop();

employeesCollection.insertOne({ _id: 1, employee: 1, status: "Active" });

// Start a session.
session = db.getMongo().startSession({ readPreference: { mode: "primary" } });

session.startTransaction({ readConcern: { level: "snapshot" }, writeConcern: { w:
"majority” } });

employeesCollection = session.getDatabase("hr").employees;

employeeDoc = employeesCollection.findOneAndUpdate(
{ _id: 1, employee: 1, status: "Active" },
{ $set: { employee: 1} },
{ returnNewDocument: true }

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 56

Document Database Service
Best Practices 13 DDS Transactions and Read/Write Concerns

)i

print(tojson(employeeDoc));

NOTICE

e |f the employee document is changed outside the transaction, the
transaction aborts.

e |f the employee document is not changed, the transaction returns
and locks the document.

e Best Practices for Using Multi-Document Transactions

- By default, DDS automatically aborts multiple-document transactions
that run for more than 60 seconds. Note that if a server write volume is
low, you can flexibly adjust a transaction to obtain a longer execution
time. To resolve timeout issues, split a transaction into smaller parts to
ensure that it can be executed within a specified period of time. Make
sure that query statements are optimized and provide appropriate index
coverage to quickly access data in transactions.

- There is no limit on the number of documents that can be read in a
transaction. In this best practice, no more than 1,000 documents should
be modified in a transaction. If you want to modify more than 1,000
documents in a transaction, we recommend that you split the transaction
into multiple parts and they can be executed in batches.

- In DDS 4.0, a transaction is represented by a single oplog entry. The entry
must fall within 16 MB in size. In DDS, oplogs record the incremental
content in the case of an update operation, and record the entire
document in the case of an insert operation. Therefore, all oplog entries
for all statements in a transaction must fall within 16 MB in size. If this
limit is exceeded, the transaction is aborted and completely rolled back.
We recommend that you split a large transaction into smaller operation
sets that each are 16 MB or less in size.

- When a transaction is abnormally aborted, an exception is returned to
the driver and the transaction is fully rolled back. You can add application
logic to catch and retry transactions that are aborted due to temporary
exceptions, such as primary/secondary switchovers or network faults.
Drivers provided by DDS use retryable writes to automatically retry to
commit transactions.

- DDL operations, such as createlndex or dropDatabase, block transactions
running on a namespace. All transactions that attempt to access the
namespace during DDL suspension cannot obtain a lock within a
specified time, which causes new transactions to be aborted.

Transactions and Read Concern

Operations in a transaction use the transaction-level read concern. This means a
read concern set at the collection or database level is ignored inside the
transaction. You can set the transaction-level read concern at the transaction start.

If the transaction-level read concern is unset, the transaction-level read concern
defaults to the session-level read concern.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 57

Document Database Service
Best Practices 13 DDS Transactions and Read/Write Concerns

If the transaction-level and session-level read concerns are unset, the transaction-
level read concern defaults to the client-level read concern. By default, the client-
level read concern is "local" for reads on the primary node.

e Multi-document transactions support the following read concern levels:
- "local"
In most cases, the "majority" read concern is recommended.
- "majority"
If the transaction commits with write concern "majority", read concern

"majority" returns data that has been acknowledged by a majority of the
replica set members and cannot be rolled back.

If the transaction does not commit with write concern "majority", read
concern "majority" provides no guarantees that read operations read
majority-committed data.

- "snapshot"

Read concern "snapshot" returns data from a snapshot of majority
committed data if the transaction commits with write concern
"majority".

If the transaction does not use write concern "majority" for the commit,
the "snapshot" read concern provides no guarantee that read operations
used a snapshot of majority-committed data.

e Suggestions on Using Transactions and Read Concern
- In most cases, the "majority" read concern is recommended.

This setting ensures data isolation and consistency. Applications can read
data only when the data is replicated to most nodes in a replica set. In
this way, data will not be rolled back even if a new primary node is
elected.

- In scenarios where the "read your own write" function is required, you
need to read data directly from the primary node and use the "local"
read concern.

In this way, the latest update can be read as soon as possible after the
write operation is complete. If the transaction commits with write
concern "majority", read concern "majority" can also be used.

Transactions and Write Concern

Transactions use the transaction-level write concern to commit the write
operations. Any write concerns set inside a transaction are ignored. Do not
explicitly set the write concern for the individual write operations inside a
transaction. You can set the transaction-level write concern at the transaction
start.

If the transaction-level write concern is unset, the transaction-level write concern
defaults to the session-level write concern for the commit.

If the transaction-level and session-level write concerns are unset, the transaction-
level write concern defaults to the client-level write concern. By default, the client-
level write concern is w: 1.

e Multi-document transactions support all write concern w values, including:

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 58

Document Database Service

Best Practices

13 DDS Transactions and Read/Write Concerns

w: 1
Write concern w: 1 returns acknowledgment after the commit is applied

to the primary node. When you commit with w: 1, your transaction can
be rolled back if there is a failover.

When you commit with w: 1 write concern, transaction-level "majority"
read concern provides no guarantees that read operations in the
transaction read majority-committed data.

When you commit with w: 1 write concern, transaction-level "snapshot"
read concern provides no guarantee that read operations in the
transaction used a snapshot of majority-committed data.

w: "majority"
Write concern w: "majority" returns acknowledgment after the commit
has been applied to a majority of (M) voting members. That is, the

commit has been applied to the primary node and (M-1) voting
secondary nodes.

When you commit with w: "majority" write concern, transaction-level
"majority" read concern guarantees that operations have read majority-
committed data.

When you commit with w: "majority" write concern, transaction-level
"snapshot" read concern guarantees that operations have read from a
synchronized snapshot of majority-committed data.

Suggestions on Using Transactions and Write Concern

In most cases, the "majority" write concern is recommended.

This setting ensures that write operations are acknowledged by a
majority of nodes in a replica set, thereby avoiding data loss or rollback
risks even in the event of node failures or abnormal switchovers.

In scenarios where high write performance is required, you can use write
concern w: 1 and pay close attention to the replication delay of
secondary nodes.

Write concern w: 1 can provide better write performance and is
applicable to write-intensive scenarios. In addition, you must monitor the
replication delay of secondary nodes. If the delay is too long, the primary
node may be rolled back unexpectedly. If the replication delay of a
secondary node exceeds the oplog retention period, the secondary node
may enter the RECOVERING state and cannot be automatically restored,
reducing the instance availability. Therefore, you should pay attention to
and handle this problem first.

Set an appropriate write concern based on different operation
requirements.

You can flexibly adjust the write concern to meet diversified service
requirements. For example, financial transaction data can be written
using transactions with write concern to ensure atomicity. Core player
data of gaming services can be written using w: "majority"” write concern
to ensure that the data will not be rolled back. Log data can be written
using the default or w: 1 write concern to acquire better write
performance.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 59

Document Database Service
Best Practices 14 DDS Metric Alarm Configuration Suggestions

DDS Metric Alarm Configuration
Suggestions

Scenarios

You can set alarm rules on Cloud Eye to customize the monitored objects and
notification policies and keep track of the instance status. DDS allows you to set
threshold rules for instance metrics. If the value of a metric exceeds the threshold,
an alarm is triggered. The system automatically sends an alarm notification to the
cloud account contact through SMN, helping you learn about the running status
of your DDS instance in a timely manner.

This section describes how to configure DDS metric alarm rules.

Creating an Alarm Rule

Step 1 Log in to the management console.

Step 2 Under Management & Governance, click Cloud Eye.

Step 3 In the navigation pane, choose Alarm Management > Alarm Rules.
Step 4 On the displayed Alarm Rules page, click Create Alarm Rule.

Step 5 On the displayed page, set parameters as prompted.

Pay attention to the following parameters:
e Event Source: Select Document Database Service.

e Dimension: DDS supports instance- and node-level monitoring. Different
monitoring metrics support different monitoring dimensions. For details, see
DDS Metrics.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 60

https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0026.html

Document Database Service
Best Practices 14 DDS Metric Alarm Configuration Suggestions

Figure 14-1 Configuring a monitoring dimension

#* Event Source Document Database Service £
Monitoring Scope All resources Resource groups Specific resources
Dimension [Document Database Instances ~]

Document Database Instances
Instance

Document Database Instances - Document Database Node

e For details about other parameters, see Creating an Alarm Rule in the Cloud
Eye User Guide.

--—-End

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 61

https://support.huaweicloud.com/eu/usermanual-ces/en-us_topic_0084572213.html

Document Database Service
Best Practices

14 DDS Metric Alarm Configuration Suggestions

Table 14-1 Suggestions on configuring alarm rules of DDS metrics

Metric ID Metrics Dim | Threshold | Alarm Handling
Name ensi | in Best Severity | Suggestion
on Practices | in Best
Practice
s
mongo007_ | Percentage | Nod | Raw data | Major e Check whether
connection | of Active e > 80% for the connection
s_usage Node three pool is properly
Connection consecutiv used.
S e periods e Check whether

the timeout and
other parameters
are properly
configured. For
details, see
Common
Parameter
Configuration on
the Driver Side.

e Increase the
maximum number
of connections.

- For a replica
set instance
whose
maximum
number of
connections is
less than
16,000, you can
increase the
maximum
number of
connections by
changing the
instance class.

- For a cluster
instance, you
can increase
the maximum
number of
connections by
adding mongos
nodes.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd.

62

https://support.huaweicloud.com/eu/devg-dds/dds_devg_0032.html
https://support.huaweicloud.com/eu/devg-dds/dds_devg_0032.html
https://support.huaweicloud.com/eu/devg-dds/dds_devg_0032.html
https://support.huaweicloud.com/eu/devg-dds/dds_devg_0032.html

Document Database Service

Best Practices

14 DDS Metric Alarm Configuration Suggestions

Metric ID Metrics Dim | Threshold | Alarm Handling
Name ensi | in Best Severity | Suggestion
on Practices | in Best
Practice
s
mongo031_ | CPU Usage | Nod | Raw data | Major e Identify why the
cpu_usage e > 80% for CPU usage is high.
three For details, see
consecutiv How Do | Solve
e periods the High CPU

Usage Issue?

e |f the CPU usage
remains high,
upgrade the CPU
specifications. For
details, see
Changing an
Instance Class.

e |f the CPU usage
remains high and
workloads cannot
be completely
stopped, the
specification
change may fail.
In this case,
choose Service
Tickets > Create
Service Ticket to
submit a service
ticket and ask
engineers to limit
the number of
connections in the
background. After
the specification
change is
complete, change
back the number
of connections to
the original value.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd.

63

https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0120.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0120.html

Document Database Service
Best Practices

14 DDS Metric Alarm Configuration Suggestions

Metric ID Metrics Dim | Threshold | Alarm Handling
Name ensi | in Best Severity | Suggestion
on Practices | in Best
Practice
s
mongo035_ | Storage Nod | Raw data | Major e Identify why the
disk_usage | Space e > 80% for storage usage is
Usage three high. For details,
consecutiv see High Storage
e periods Usage.

e |f the storage
usage remains
high, scale up
storage space. For
details, see
Scaling Up
Storage Space.

mongo032_ | Memory Nod | Raw data | Major e |dentify why the

mem_usag | Usage e > 90% for memory usage is

e three high. For details,
consecutiv see High Memory
e periods Usage.

e |f the memory
usage remains
high for a long
time, upgrade the
instance class. For
details, see
Changing an
Instance Class.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd.

64

https://support.huaweicloud.com/eu/usermanual-dds/dds_01_0055.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_01_0055.html
https://support.huaweicloud.com/eu/usermanual-dds/en-us_topic_increase_storage.html
https://support.huaweicloud.com/eu/usermanual-dds/en-us_topic_increase_storage.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_01_0056.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_01_0056.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0120.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0120.html

Document Database Service

Best Practices 14 DDS Metric Alarm Configuration Suggestions
Metric ID Metrics Dim | Threshold | Alarm Handling
Name ensi | in Best Severity | Suggestion
on Practices | in Best
Practice
S
mongo039_ | Average Nod | Raw data | Major e Check whether
avg_disk_se | Time per e > 0.1s for the instance has
c_per_read | Disk Read three performance
consecutiv bottlenecks in
e periods CPU, memory, or

connections. If
yes, solve the
bottlenecks based
on the related
suggestions.

o |f workloads
cannot be
optimized,
upgrade the
instance class or
choose
specifications with
better disk
performance. For
details, see
Changing an
Instance Class
and Instance
Specifications.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 65

https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0120.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0120.html
https://support.huaweicloud.com/eu/productdesc-dds/dds_01_0013.html
https://support.huaweicloud.com/eu/productdesc-dds/dds_01_0013.html

Document Database Service

Best Practices

14 DDS Metric Alarm Configuration Suggestions

Metric ID Metrics Dim | Threshold | Alarm Handling
Name ensi | in Best Severity | Suggestion
on Practices | in Best
Practice
s
mongo040_ | Average Nod | Raw data | Major e Check whether
avg_disk_se | Time per e > 0.1s for the instance has
c_per_write | Disk Write three performance
consecutiv bottlenecks in
e periods CPU, memory, or

connections. If
yes, solve the
bottlenecks based
on the related
suggestions.

o |f workloads
cannot be
optimized,
upgrade the
instance class or
choose
specifications with
better disk
performance. For
details, see
Changing an
Instance Class
and Instance
Specifications.

e Perform a
primary/secondary
switchover on the
console.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd.

66

https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0120.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0120.html
https://support.huaweicloud.com/eu/productdesc-dds/dds_01_0013.html
https://support.huaweicloud.com/eu/productdesc-dds/dds_01_0013.html

Document Database Service

Best Practices

15 Working with Indexes

1 5 Working with Indexes

Scenarios

In database management, indexes play a crucial role in enhancing query
performance. You can create both single-field indexes and composite indexes to
optimize queries involving multiple fields.

Periodic analysis and optimization of index performance are essential. The
database management system usually provides tools and commands to evaluate
index usage and identify performance issues. It's important to note that
maintaining indexes comes with a significant cost. Operations such as insertion,
update, and deletion can trigger index updates, which may affect performance. It
is essential to choose an index strategy that fits the specific application scenario,
balancing query performance and maintenance costs.

Key to Creating Indexes

Do not use aggregation or query statements without filter criteria. Ensure
that there are indexes on the fields used in the filter criteria (for example, the
fields specified in the Smatch, find, update, and remove statements in
aggregations). This prevents full table scans and ensures more efficient query
performance.

Use high-selectivity filter criteria to narrow down the query scope and ensure
that indexes exist on high-selectivity fields. It is recommended to create
indexes only on fields where the number of duplicate values is less than 1% of
the total number of documents in the collection. For example, if your
collection contains 100,000 documents, create indexes only on fields where
the number of duplicate values is no more than 1,000.

In composite indexes, it is recommended to place high-selectivity fields that
can narrow down the query scope at the beginning.

In scenarios where a large amount of data needs to be sorted, you should
create indexes on the sort field based on the exact match filter criteria. For
example, if the filter condition is {a:xx, b:xx, c:xx, f:xx } and the sort condition
is {e:1}, you should create composite index {a:1,b:1,c:1,f:1,e:1} to avoid in-
memory sorts.

For statements that include equality, range, and sort, the optimal composite

index follows the ESR principle: equality fields are placed at the beginning,
sort fields are placed in the middle, and range fields are placed at the end.

Issue 01 (2025-11-14)

Copyright © Huawei Technologies Co., Ltd. 67

Document Database Service
Best Practices 15 Working with Indexes

e If a query includes a collation, the collation option must be specified when
creating an index for the query field.

e Before deleting an index, ensure that no index is being created on the
secondary node (you can use the currentOp command to check the ongoing
operations). If an index is being created on the secondary node, do not delete
the index immediately. Otherwise, the secondary node may enter a lock wait
state, leading to unexpected issues.

Impact of Index Creation

After an index creation request is submitted, the existing documents in the current
data are scanned to establish the mapping between index fields and their disk
locations. This process consumes 1/O and compute resources. Therefore, consider
the following:

e If an index to be created involves a large amount of data, create it during off-
peak hours to minimize impact on production services.

e If multiple indexes need to be created for a given collection, use the
createlndexes method instead of createlndex. This allows multiple indexes
to be created with a single scan, reducing the compute resources and I/O
overhead associated with index creation.

e Plan the indexes required for core service tables in advance.

Impact of Indexes on Writing Data

While indexes can enhance query performance by reducing the need to scan every
document in a collection, they come with certain trade-offs. Each index on a
collection requires the database to update both the collection and the relevant
index fields whenever a document is inserted, updated, or deleted. For example, if
a collection has nine indexes, the database must execute ten write operations
before confirming the operation to the client. As a result, each additional index
increases write latency, 1/O operations, and overall storage usage. For optimal
performance, review and minimize the number of indexes in your collections, and
add only those that are necessary to enhance performance for common queries.
You are advised to keep the number of indexes per collection to 10 or fewer.

Issue 01 (2025-11-14) Copyright © Huawei Technologies Co., Ltd. 68

	Contents
	1 Overview
	2 Common Methods for Connecting to a DDS Instance
	3 How Do Replica Sets Achieve High Availability and Read/Write Splitting?
	4 Sharding
	5 How Do I Improve DDS Performance by Optimizing SQL Statements?
	6 How Do I Prevent the dds mongos Cache Problem?
	7 How Do I Solve the High CPU Usage Issue?
	8 Creating a User and Granting the Read-Only Permission to the User
	9 How Is a DDS Node Going to Be Disconnected and What Can I Do?
	10 Avoiding Cursor Invalidity Caused by hideIndex
	11 Using DDS to Store and Analyze Log Data
	12 DDS Query Plans and Query Replanning
	13 DDS Transactions and Read/Write Concerns
	14 DDS Metric Alarm Configuration Suggestions
	15 Working with Indexes

