
Document Database Service

Best Practices

Issue 01

Date 2022-08-30

HUAWEI TECHNOLOGIES CO., LTD.



 
 
Copyright © Huawei Technologies Co., Ltd. 2022. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.
 
Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.
 
Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.
  
 
 
 
 
 

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. i



Contents

1 Overview....................................................................................................................................1

2 Common Methods for Connecting to a DDS Instance....................................................2

3 How Do Replica Sets Achieve High Availability and Read/Write Splitting?............. 7

4 Sharding...................................................................................................................................10

5 How Do I Improve DDS Performance by Optimizing SQL Statements?...................15

6 How Do I Prevent the Mongos Cache Problem?............................................................ 18

7 How Do I Solve the High CPU Usage Issue?................................................................... 23

8 Creating a User and Granting the Read-Only Permission to the User.....................29

Document Database Service
Best Practices Contents

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. ii



1 Overview

This document provides best practices for Huawei Cloud Document Database
Service (DDS) and guides you through using DDS to best suit your business needs.

Servic
e

Reference Overview

Docu
ment
Datab
ase
Servic
e

Common Methods for
Connecting to a DDS
Instance

This section describes common DDS
connection methods.

How Do Replica Sets
Achieve High Availability
and Read/Write
Splitting?

This section describes how to connect to a
replica set instance to achieve high
availability.

Sharding This section describes how to set cluster
shards to improve database performance.

How Do I Improve DDS
Performance by
Optimizing SQL
Statements?

This section describes DDS usage
suggestions.

How Do I Prevent the
Mongos Cache Problem?

This section describes how to avoid the
mongos route cache defect of the cluster.

How Do I Solve the High
CPU Usage Issue?

This section describes how to
troubleshoot high CPU usage.

Creating a User and
Granting the Read-Only
Permission to the User

This section describes how to use IAM to
grant read-only permissions to DDS.

Document Database Service
Best Practices 1 Overview

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 1



2 Common Methods for Connecting to a
DDS Instance

This section describes how to connect to a DDS instance using the following three
methods:

● Mongo Shell
● Python Mongo
● Java Mongo

Mongo Shell
● Prerequisites

a. To connect an ECS to a DDS instance, run the following command to
connect to the IP address and port of the instance server to test the
network connectivity.
curl ip:port
If the message It looks like you are trying to access MongoDB over
HTTP on the native driver port is displayed, the ECS and DDS instance
can communicate with each other.

b. Download the client installation package whose version is the same as
the instance version from the MongoDB official website. Decompress
the package, obtain the mongo file, and upload it to the ECS.

c. If SSL is enabled, download the root certificate and upload it to the ECS.
● Connection commands

– SSL is enabled.
./mongo ip:port --authenticationDatabase admin -u username -p
password --ssl --sslCAFile $path to certificate authority file --
sslAllowInvalidHostnames

– SSL is disabled.
./mongo ip:port --authenticationDatabase admin -u username -p
password

Document Database Service
Best Practices

2 Common Methods for Connecting to a DDS
Instance

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 2

https://www.mongodb.com/download-center#community


Table 2-1 Parameter description

Parameter Description

ip If you access an instance from an ECS, ip is the
private IP address of the instance.

If you access an instance from a device over a public
network, ip is the EIP bound to the instance,

port Database port displayed on the Basic Information
page. Default value: 8635

username Current username

password Password of the current username

path to
certificate
authority file

Path of the SSL certificate

 
● Precautions

a. If SSL is enabled, the connection command must contain --ssl and --
sslCAFile.

b. --authenticationDatabase must be set to admin. If you log in to the
database as user rwuser, switch to admin for authentication.

For details, see Connecting to an Instance in Getting Started with Document
Database Service.

Python Mongo
● Prerequisites

a. To connect an ECS to a DDS instance, run the following command to
connect to the IP address and port of the instance server to test the
network connectivity.
curl ip:port
If the message It looks like you are trying to access MongoDB over
HTTP on the native driver port is displayed, the network connectivity is
normal.

b. Install Python and third-party installation package pymongo on the ECS.
Pymongo 2.8 is recommended.

c. If SSL is enabled, download the root certificate and upload it to the ECS.
● Input the connection code.

– SSL is enabled.
import ssl
from pymongo import MongoClient
conn_urls="mongodb://rwuser:rwuserpassword@ip:port/{mydb}?authSource=admin"
connection = MongoClient(conn_urls,connectTimeoutMS=5000,ssl=True, 
ssl_cert_reqs=ssl.CERT_REQUIRED,ssl_match_hostname=False,ssl_ca_certs=${path to 
certificate authority file})
dbs = connection.database_names()
print "connect database success! database names is %s" % dbs

Document Database Service
Best Practices

2 Common Methods for Connecting to a DDS
Instance

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0044018334.html
https://pypi.python.org/pypi/pymongo/2.7#downloads


– SSL is disabled.
import ssl
from pymongo import MongoClient
conn_urls="mongodb://rwuser:rwuserpassword@ip:port/{mydb}?authSource=admin"
connection = MongoClient(conn_urls,connectTimeoutMS=5000)
dbs = connection.database_names()
print "connect database success! database names is %s" % dbs

● Precautions

a. {mydb} is the name of the database to be connected.
b. The authentication database in the URL must be admin. Set authSource

to admin.

Java Mongo
● Prerequisites

a. To connect an ECS to a DDS instance, run the following command to
connect to the IP address and port of the instance server to test the
network connectivity.
curl ip:port
If the message It looks like you are trying to access MongoDB over
HTTP on the native driver port is displayed, the ECS and DDS instance
can communicate with each other.

b. Download the MongoDB JAR package compatible with the instance
version by referring to the MongoDB Compatibility table.

c. JDK is installed on the ECS.
d. If SSL is enabled, download the root certificate and upload it to the ECS.

● Input the connection code.
Use keytool to generate a trustStore.
keytool -import -file /var/chroot/mongodb/CA/ca.crt -keystore /home/Mike/
jdk1.8.0_112/jre/lib/security/mongostore -storetype pkcs12 -storepass ****

NO TE

● /var/chroot/mongodb/CA/ca.crt is the root certificate path.
● /home/Mike/jdk1.8.0_112/jre/lib/security/mongostore indicates the path of the

generated truststore.
● **** is the password of the trustStore.

– SSL is enabled.
import java.util.ArrayList;
import java.util.List;
import org.bson.Document;
import com.mongodb.MongoClient;
import com.mongodb.MongoCredential;
import com.mongodb.ServerAddress;
import com.mongodb.client.MongoDatabase;
import com.mongodb.client.MongoCollection;
import com.mongodb.MongoClientURI;
import com.mongodb.MongoClientOptions;
public class MongoDBJDBC {
public static void main(String[] args){
      try {
              System.setProperty("javax.net.ssl.trustStore", "/home/Mike/
jdk1.8.0_112/jre/lib/security/mongostore");

Document Database Service
Best Practices

2 Common Methods for Connecting to a DDS
Instance

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 4

https://mongodb.github.io/mongo-java-driver/
https://www.mongodb.com/docs/drivers/reactive-streams/#compatibility


              System.setProperty("javax.net.ssl.trustStorePassword", "****");
              ServerAddress serverAddress = new ServerAddress("ip", port);
              List addrs = new ArrayList();
              addrs.add(serverAddress);
              MongoCredential credential = 
MongoCredential.createScramSha1Credential("rwuser", "admin", "!
rwuserPassword".toCharArray());
              List credentials = new ArrayList();
              credentials.add(credential);
              MongoClientOptions opts= MongoClientOptions.builder()
              .sslEnabled(true)
              .sslInvalidHostNameAllowed(true)
              .build();
              MongoClient mongoClient = new MongoClient(addrs,credentials,opts);
              MongoDatabase mongoDatabase = mongoClient.getDatabase("testdb");
              MongoCollection collection = 
mongoDatabase.getCollection("testCollection");
              Document document = new Document("title", "MongoDB").
              append("description", "database").
              append("likes", 100).
              append("by", "Fly");
              List documents = new ArrayList();
              documents.add(document);
              collection.insertMany(documents);
              System.out.println("Connect to database successfully");
              } catch (Exception e) {
              System.err.println( e.getClass().getName() + ": " + e.getMessage() );
         }
      }
}

Sample codes:
javac -cp .:mongo-java-driver-3.2.0.jar MongoDBJDBC.java
java -cp .:mongo-java-driver-3.2.0.jar MongoDBJDBC

– SSL is disabled.
import java.util.ArrayList;
import java.util.List;
import org.bson.Document;
import com.mongodb.MongoClient;
import com.mongodb.MongoCredential;
import com.mongodb.ServerAddress;
import com.mongodb.client.MongoDatabase;
import com.mongodb.client.MongoCollection;
import com.mongodb.MongoClientURI;
import com.mongodb.MongoClientOptions;
public class MongoDBJDBC {
public static void main(String[] args){
      try {
              ServerAddress serverAddress = new ServerAddress("ip", port);
              List addrs = new ArrayList();
              addrs.add(serverAddress);
              MongoCredential credential = 
MongoCredential.createScramSha1Credential("rwuser", "admin", "!
rwuserPassword".toCharArray());
              List credentials = new ArrayList();
              credentials.add(credential);
              MongoClient mongoClient = new MongoClient(addrs,credentials);
              MongoDatabase mongoDatabase = mongoClient.getDatabase("testdb");
              MongoCollection collection = 
mongoDatabase.getCollection("testCollection");
              Document document = new Document("title", "MongoDB").
              append("description", "database").

Document Database Service
Best Practices

2 Common Methods for Connecting to a DDS
Instance

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 5



              append("likes", 100).
              append("by", "Fly");
              List documents = new ArrayList();
              documents.add(document);
              collection.insertMany(documents);
              System.out.println("Connect to database successfully");
              } catch (Exception e) {
              System.err.println( e.getClass().getName() + ": " + e.getMessage() );
         }
        }
}

● Precautions

a. In SSL mode, you need to manually generate the trustStore file.
b. Change the authentication database to admin, and then switch to the

service database after authentication.

Document Database Service
Best Practices

2 Common Methods for Connecting to a DDS
Instance

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 6



3 How Do Replica Sets Achieve High
Availability and Read/Write Splitting?

DDS replica set instances can store multiple duplicates to ensure data high
availability and support the automatic switch of private IP addresses to ensure
service high availability. To enhance the read and write performance of your client
for connecting to the instance, you can use your client to read different data
copies. You are advised to use the recommended method to connect replica set
instances. Otherwise, the high availability and high read performance of replica
set instances cannot be guaranteed.

The primary node of a replica set instance is not fixed. If the instance settings are
changed, or the primary node fails, or primary and secondary nodes are switched,
a new primary node will be elected and the previous one becomes a secondary
node. The following figure shows the process of a switchover.

Figure 3-1 Primary/Secondary switchover

Connecting to a Replica Set Instance (HA)
A DDS replica set consists of the primary, secondary, and hidden nodes. The
hidden node is invisible to users. Read/Write splitting and HA can be realized only
when you connect to the IP addresses and ports of the primary and secondary
nodes of the replica set at the same time (in HA mode).

The following describes how to use URL and Java to connect to an instance in HA
mode.

Method 1: Using a URL

Document Database Service
Best Practices

3 How Do Replica Sets Achieve High Availability and
Read/Write Splitting?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 7



On the Instances page, click the instance name. The Basic Information page is
displayed. Choose Connections. Click the Private Connection tab and obtain the
connection address of the current instance from the Private HA Connection
Address field.

Figure 3-2 Obtaining the private HA connection address

Example: mongodb://rwuser:****@192.168.0.148:8635,192.168.0.96:8635/test?
authSource=admin&replicaSet=replica

In the preceding URL, 192.168.0.148:8635 and 192.168.0.96:8635 are the IP
addresses and ports of the primary and secondary nodes, respectively. If you use
this address, the connection between your client and the instance can be ensured
even when a primary/standby switchover occurs. In addition, using multiple IP
addresses and port numbers can enhance the read and write performance of the
entire database.

Figure 3-3 Data read and write process

Method 2: Using a Java Driver

Sample code:

MongoClientURI connectionString = new MongoClientURI("mongodb://
rwuser:****@192.168.0.148:8635,192.168.0.96:8635/test?authSource=admin&replicaSet=replica"); 
MongoClient client = new MongoClient(connectionString);
MongoDatabase database = client.getDatabase("test");
MongoCollection<Document> collection = database.getCollection("mycoll");

Document Database Service
Best Practices

3 How Do Replica Sets Achieve High Availability and
Read/Write Splitting?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 8



Table 3-1 Parameter description

Parameter Description

rwuser:**** Username and password for starting authentication

192.168.0.148:8635,
192.168.0.96:8635

IP addresses and ports of the primary and secondary
nodes in a replica set instance

test Name of the database to be connected

authSource=admin Database username for authentication

replicaSet=replica Name of the replica set instance type

 

(Not Recommended) Connecting to a Replica Set Instance
Using the Connection Address

mongodb://rwuser:****@192.168.0.148:8635/test?
authSource=admin&replicaSet=replica

In the preceding URL, 192.168.0.148:8635 is the IP address and port number of
the current primary node. If a switchover occurs or the primary node is changed,
the client fails to connect to the replica set instance because the IP address and
port of the newly elected primary node is unknown. As a result, the database
service becomes unavailable. In addition, read and write operations can only be
performed on a fixed primary node, so the read and write performance cannot be
improved by adding nodes.

Figure 3-4 Data read and write process

Read/Write Splitting
For details about read/write splitting, see MongoDB official documents.

Document Database Service
Best Practices

3 How Do Replica Sets Achieve High Availability and
Read/Write Splitting?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 9

https://docs.mongodb.com/v4.0/core/read-preference/


4 Sharding

You can shard a large-size collection for a sharded cluster instance. Sharding
distributes data across different machines to make full use of the storage space
and compute capability of each shard.

Number of Shards

The following is an example using database mytable, collection mycoll, and the
field name as the shard key.

Step 1 Log in to a sharded cluster instance using Mongo Shell.

Step 2 Enable sharding for the databases that belong to the cluster instance.

● Method 1
sh.enableSharding("<database>") 

Example:
sh.enableSharding("mytable")

● Method 2
use admin 
db.runCommand({enablesharding:"<database>"})

Step 3 Shard a collection.

● Method 1
sh.shardCollection("<database>.<collection>",{"<keyname>":<value> })

Example:
sh.shardCollection("mytable.mycoll",{"name":"hashed"})

● Method 2
use admin
db.runCommand({shardcollection:"<database>.<collection>",key:{"keyname":<value> }})

Table 4-1 Parameter description

Parameter Description

<database> Database name

<collection> Collection name

Document Database Service
Best Practices 4 Sharding

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 10



Parameter Description

<keyname> Shard key
Cluster instances are sharded based on the value of this
parameter. Select a proper shard key for the collection based on
your service requirements. For details, see Selecting a Shard
Key.

<value> The sort order based on the range of the shard key.
● 1: Ascending indexes
● -1: Descending indexes
● hashed: indicates that hash sharding is used. Hashed

sharding provides more even data distribution across the
sharded cluster.

For details, see sh.shardCollection().

 

Step 4 Check the data storage status of the database on each shard.
sh.status()

Example:

----End

Selecting a Shard Key
● Background

Each sharded cluster contains collections as its basic unit. Data in the
collection is partitioned by the shard key. Shard key is a field in the collection.
It distributes data evenly across shards. If you do not select a proper shard
key, the cluster performance may deteriorate, and the sharding statement
execution process may be blocked.

Document Database Service
Best Practices 4 Sharding

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 11

https://docs.mongodb.com/manual/reference/method/sh.shardCollection/index.html#sh-shardcollection


Once the shard key is determined it cannot be changed. If no shard key is
suitable for sharding, you need to use a sharding policy and migrate data to a
new collection for sharding.

● Characteristics of proper shard keys

– All inserts, updates, and deletes are evenly distributed to all shards in a
cluster.

– The distribution of keys is sufficient.

– Rare scatter-gather queries.

If the selected shard key does not have all the preceding features, the read
and write scalability of the cluster is affected. For example, If the workload of
the find() operation is unevenly distributed in the shards, hot shards will be
generated. Similarly, if your write load (inserts, updates, and deletes) is not
uniformly distributed across your shards, then you could end up with a hot
shard. Therefore, you need to adjust the shard keys based on service
requirements, such as read/write status, frequently queried data, and written
data.

After existing data is sharded, if the filter filed of the update request does not
contain shard keys and upsert:true or multi:false, the update request will
report an error and return message "An upsert on a sharded collection must
contain the shard key and have the simple collation.".

● Judgment criteria

You can use the dimensions provided in Table 4-2 to determine whether the
selected shard keys meet your service requirements:

Table 4-2 Reasonable shard keys

Identification
Criteria

Description

Cardinality Cardinality refers to the capability of dividing chunks. For
example, if you need to record the student information of
a school and use the age as a shard key, data of students
of the same age will be stored in only one data segment,
which may affect the performance and manageability of
your clusters. A much better shard key would be the
student number because it is unique. If the student
number is used as a shard key, the relatively large
cardinality can ensure the even distribution of data.

Write
distribution

If a large number of write operations are performed in the
same period of time, you want your write load to be
evenly distributed over the shards in the cluster. If the
data distribution policy is ranged sharding, a
monotonically increasing shard key will guarantee that all
inserts go into a single shard.

Read
distribution

Similarly, if a large number of read operations are
performed in the same period, you want your read load to
be evenly distributed over the shards in a cluster to fully
utilize the computing performance of each shard.

Document Database Service
Best Practices 4 Sharding

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 12



Identification
Criteria

Description

Targeted read The mongos query router can perform either a targeted
query (query only one shard) or a scatter/gather query
(query all of the shards). The only way for the mongos to
be able to target a single shard is to have the shard key
present in the query. Therefore, you need to pick a shard
key that will be available for use in the common queries
while the application is running. If you pick a synthetic
shard key, and your application cannot use it during
typical queries, all of your queries will become scatter/
gather, thus limiting your ability to scale read load.

 

Choosing a Distribution Policy
A sharded cluster can store a collection's data on multiple shards. You can
distribute data based on the shard keys of documents in the collection.

There are two data distribution policies: ranged sharding and hashed sharding. For
details, see Step 3.

The following describes the advantages and disadvantages of the two methods.

● Ranged sharding
Ranged-based sharding involves dividing data into contiguous ranges
determined by the shard key values. If you assume that a shard key is a line
stretched out from positive infinity and negative infinity, each value of the
shard key is the mark on the line. You can also assume small and separate
segments of a line and that each chunk contains data of a shard key within a
certain range.

Figure 4-1 Distribution of data

As shown in the preceding figure, field x indicates the shard key of ranged
sharding. The value range is [minKey,maxKey] and the value is an integer. The
value range can be divided into multiple chunks, and each chunk (usually 64
MB) contains a small segment of data. For example, chunk 1 contains all
documents in range [minKey, -75] and all data of each chunk is stored on the
same shard. That means each shard containing multiple chunks. In addition,
the data of each shard is stored on the config server and is evenly distributed
by mongos based on the workload of each shard.

Document Database Service
Best Practices 4 Sharding

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 13



Ranged sharding can easily meet the requirements of query in a certain
range. For example, if you need to query documents whose shard key is in
range [-60,20], mongos only needs to forward the request to chunk 2.
However, if shard keys are in ascending or descending order, newly inserted
documents are likely to be distributed to the same chunk, affecting the
expansion of write capability. For example, if _id is used as a shard key, the
high bits of _id automatically generated in the cluster are ascending.

● Hashed sharding
Hashed sharding computes the hash value (64-bit integer) of a single field as
the index value; this value is used as your shard key to partition data across
your shared cluster. Hashed sharding provides more even data distribution
across the sharded cluster because documents with similar shard keys may
not be stored in the same chunk.

Figure 4-2 Distribution of data

Hashed sharding randomly distributes documents to each chunk, which fully
expands the write capability and makes up for the deficiency of ranged
sharding. However, queries in a certain range need to be distributed to all
backend shards to obtain documents that meet conditions, resulting in low
query efficiency.

Document Database Service
Best Practices 4 Sharding

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 14



5 How Do I Improve DDS Performance by
Optimizing SQL Statements?

DDS is inherently a NoSQL database with high performance and strong
extensibility. Similar to RDS, such as RDS for MySQL, Microsoft SQL Server, and
Oracle, DDS performance may also be affected by database design, statement
optimization, and index creation.

The following provides suggestions for improving DDS performance in different
dimensions:

Creating Databases and Collections
1. Use short field names to save storage space. Different from an RDS database,

each DDS document has its field names stored in the collection. Short name is
recommended.

2. Limit the number of documents in a collection to avoid the impact on the
query performance. Archive documents periodically if necessary.

3. Each document has a default _id. Do not change the value of this parameter.
4. Capped collections have a faster insertion speed than other collections and

can automatically delete old data. You can create capped collections to
improve performance based on your service requirements.

For details, see Usage Suggestions in the Document Database Service Developer
Guide.

Query
Indexes

1. Create proper number of indexes for frequently queried fields based on
service requirements. Indexes occupy some storage space, and the insert and
indexing operations consume resources. It is recommended that the number
of indexes in each collection should not exceed 5.
If data query is slow due to lack of indexes, create proper indexes for
frequently queried fields.

2. For a query that contains multiple shard keys, create a compound index that
contains these keys. The order of shard keys in a compound index is

Document Database Service
Best Practices

5 How Do I Improve DDS Performance by
Optimizing SQL Statements?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 15

https://support.huaweicloud.com/eu/usermanual-dds/dds_taps_0002.html


important. A compound index support queries that use the leftmost prefix of
the index, and the query is only relevant to the creation sequence of indexes.

3. TTL indexes can be used to automatically filter out and delete expired
documents. The index for creating TTL must be of type date. TTL indexes are
single-field indexes.

4. You can create field indexes in a collection. However, if a large number of
documents in the collection do not contain key values, you are advised to
create sparse indexes.

5. When you create text indexes, the field is specified as text instead of 1 or -1.
Each collection has only one text index, but it can index multiple fields.

Command usage

1. The findOne method returns the first document that satisfies the specified
query criteria from the collection according to the natural order. To return
multiple documents, use this method.

2. If the query does not require the return of the entire document or is only used
to determine whether the key value exists, you can use $project to limit the
returned field, reducing the network traffic and the memory usage of the
client.

3. In addition to prefix queries, regular expression queries take longer to execute
than using selectors, and indexes are not recommended.

4. Some operators that contain $ in the query may deteriorate the system
performance. The following types of operators are not recommended in
services. $or, $nin, $not, $ne, and $exists.

NO TE

● $or: The times of queries depend on the number of conditions. It is used to query
all the documents that meet the query conditions in the collection. You are advised
to use $in instead.

● $nin: Matches most of indexes, and the full table scan is performed.
● $not: The query optimizer may fail to match a specific index, and the full table

scan is performed.
● $ne: Selects the documents where the value of the field is not equal to the

specified value. The entire document is scanned.
● $exists: matches each document that contains the field.
For more information, see official MongoDB documents.

Precautions

1. Indexes cannot be used in operators $where and $exists.
2. If the query results need to be sorted, control the number of result sets.
3. If multiple field indexes are involved, place the field used for exact match

before the index.
4. If the key value sequence in the search criteria is different from that in the

compound index, DDS automatically changes the query sequence to the same
as index sequence.
– Modification operation

Modify a document by using operators can improve performance. This
method does not need to obtain and modify document data back and
forth on the server, and takes less time to serialize and transfer data.

Document Database Service
Best Practices

5 How Do I Improve DDS Performance by
Optimizing SQL Statements?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 16

https://docs.mongodb.com/manual/reference/operator/query/


– Batch insert
Batch insert can reduce the number of times data is submitted to the
server and improve the performance. The BSON size of the data
submitted in batches cannot exceed 48 MB.

– Aggregated operation
During aggregation, $match must be placed before $group to reduce the
number of documents to be processed by the $group operator.

Document Database Service
Best Practices

5 How Do I Improve DDS Performance by
Optimizing SQL Statements?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 17



6 How Do I Prevent the Mongos Cache
Problem?

Background

DDS is a document-oriented database service based on distributed file storage,
famed for its scalability, high performance, open source, and free mode.

Figure 6-1 DDS cluster architecture

Document Database Service
Best Practices 6 How Do I Prevent the Mongos Cache Problem?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 18



A cluster instance consists of the following three parts:

● Mongos is deployed on a single node. It provides APIs to allow access from
external users and shields the internal complexity of the distributed database.
A DDS cluster can contain 2 to 12 mongos. You can add them as required.

● Config server is deployed as a replica set. It stores metadata for a sharded
cluster. The metadata include information about routes and shards. A cluster
contains only one config server.

● Shard server is deployed as a replica set. It stores user data on shards. You can
add shard servers in a cluster as required.

Sharding
Sharding is a method for distributing data evenly across multiple shard servers
based on a specified shard key. The collection that has a shard key is called
sharded collection. If the collection is not sharded, data is stored on only one
shard server. DDS cluster mode allows the coexistence of sharded collection and
non-sharded collection.

You can run the sh.shardCollection command to convert a non-sharded collection
into a sharded collection. Before sharding, ensure that the sharding function is
enabled on the database where the collections to be sharded are located. You can
run the sh.enableSharding command to enable the sharding function.

Caching Metadata with mongos
User data is stored in the shard server and metadata is stored in the config server.
The route information belongs to metadata and is also stored in the config server.
When a user needs to access data through mongos, mongos sends the user's
requests to the corresponding shard server according to the route information
stored on the config server.

This means that every time the user accesses the data, mongos needs to connect
to the config server for the route information, which may affect the system
performance. Therefore, a cache mechanism is developed for the mongos to cache
the route information of the config server. In this scenario, not only the config
server stores the route information, but also the mongos caches the route
information.

If no operation is performed on mongos, mongos does not cache any route
information. In addition, the route information cached on mongos may not be the
latest because the information is only updated in the following scenarios:

● If the mongos is started, it will obtain the latest route information from the
config server and caches them locally.

● If the mongos processes the data request for the first time, it will obtain the
route information from the config server. After that, the information is cached
and can be used directly at the time when it is required.

● Updating route information by running commands on mongos.

NO TE

Only the metadata related to the requested data is updated.

The data to be updated is in the unit of DB.

Document Database Service
Best Practices 6 How Do I Prevent the Mongos Cache Problem?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 19



Scenarios
In the scenario where data is not sharded and multiple mongos exist in a sharded
cluster, if data is accessed through different mongos, the cached route information
on each mongos may become different. The following shows an example scenario:

1. Create database A with sharding disabled through mongos1. After data1 is
written, data1 is allocated to shard server1 for storage. Then, mongos2 is used
to query data. Both mongos1 and mongos2 have cached the route
information of database A.

2. If database A is deleted through mongos2, the information about database A
in the config server and shard server1 is deleted. As a result, mongos1 cannot
identify data1 because database A has been deleted.

3. When data2 is written to database A through mongos1, data2 will be stored
on shard server1 based on the cached route information but actually
database A has been deleted. Then, when data3 is written into database A
through mongos2, new information about database A will be generated again
on the config server and shard server2 because mongos2 has identified that
database A has been deleted.

4. In this case, the route information cached in the mongos1 and mongos2 is
inconsistent. mongos1 and mongos2 are associated with different shard
servers, and data is not shared between them. As a result, data inconsistency
occurs.

Document Database Service
Best Practices 6 How Do I Prevent the Mongos Cache Problem?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 20



Figure 6-2 mongos cache defect scenario

The client queries data through different mongos:

● mongos1: Data2 can be queried, but data3 cannot be queried.
● mongos2: Data3 can be queried, but data2 cannot be queried.

Workaround Suggestion

MongoDB official suggestions: After deleting databases or collections, run
db.adminCommand("flushRouterConfig") on all mongos nodes to update the
route information.

Reference link: https://docs.mongodb.com/manual/reference/method/
db.dropDatabase/index.html#replica-set-and-sharded-clusters

https://jira.mongodb.org/browse/SERVER-17397

Workaround Suggestion

● For the cluster mode, you are advised to enable the sharding function and
then shard the collections in the cluster.

Document Database Service
Best Practices 6 How Do I Prevent the Mongos Cache Problem?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 21

https://docs.mongodb.com/manual/reference/method/db.dropDatabase/index.html#replica-set-and-sharded-clusters
https://docs.mongodb.com/manual/reference/method/db.dropDatabase/index.html#replica-set-and-sharded-clusters
https://jira.mongodb.org/browse/SERVER-17397


● If the database with sharding disabled is deleted, do not create a database or
collection with the same name as the deleted database or collection.
If you need to create a database or collection with the same name as the
deleted database or collection, log in to all the mongos nodes to update the
route information before creating the database and collection.

Document Database Service
Best Practices 6 How Do I Prevent the Mongos Cache Problem?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 22



7 How Do I Solve the High CPU Usage
Issue?

If the CPU usage is high or close to 100% when you use DDS, data read and write
will slow down, affecting your services.

The following describes how to analyze current slow queries. After the analysis
and optimization, queries will be processed better and indexes will be used more
efficiently.

Analyzing Current Queries
1. Connect to an instance using Mongo Shell.

To access an instance from the Internet
For details, see
– Connecting to a Cluster Instance over a Public Network
– Connecting to a Replica Set Instance over a Public Network
– Connecting to a Single Node Instance over a Public Network
To access an instance that is not publicly accessible
For details, see
– Connecting to a Cluster Instance over a Private Network
– Connecting to a Replica Set Instance over a Private Network
– Connecting to a Single Node Instance over a Private Network

2. Run the following command to view the operations being performed on the
database:
db.currentOp()
Command output:
{
        "raw" : {
                "shard0001" : {
                        "inprog" : [
                                {
                                        "desc" : "StatisticsCollector",
                                        "threadId" : "140323686905600",
                                        "active" : true,
                                        "opid" : 9037713,
                                        "op" : "none",

Document Database Service
Best Practices 7 How Do I Solve the High CPU Usage Issue?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 23

https://support.huaweicloud.com/eu/qs-dds/dds_02_0006.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0047.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0048.html
https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0044018334.html
https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0105284966.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0028.html


                                        "ns" : "",
                                        "query" : {
 
                                        },
                                        "numYields" : 0,
                                        "locks" : {
 
                                        },
                                        "waitingForLock" : false,
                                        "lockStats" : {
 
                                        }
                                },
                                {
                                        "desc" : "conn2607",
                                        "threadId" : "140323415066368",
                                        "connectionId" : 2607,
                                        "client" : "172.16.36.87:37804",
                                        "appName" : "MongoDB Shell",
                                        "active" : true,
                                        "opid" : 9039588,
                                        "secs_running" : 0,
                                        "microsecs_running" : NumberLong(63),
                                        "op" : "command",
                                        "ns" : "admin.",
                                        "query" : {
                                                "currentOp" : 1
                                   },
                                        "numYields" : 0,
                                        "locks" : {
 
                                        },
                                        "waitingForLock" : false,
                                        "lockStats" : {
 
                                        }
                                }
                        ],
                        "ok" : 1
                },
    ...
}

NO TE

● client: IP address of the client that sends the request

● opid: unique operation ID

● secs_running: elapsed time for execution, in seconds. If the returned value of this
field is too large, check whether the request is reasonable.

● microsecs_running: elapsed time for execution, in seconds. If the returned value of
this field is too large, check whether there is something wrong with the request.

● op: operation type. The operations can be query, insert, update, delete, or
command.

● ns: target collection

● For details, see the db.currentOp() command in official document.

3. Based on the command output, check whether there are requests that take a
long time to process.
If the CPU usage is low while services are being processed but then becomes
high during just certain operations, analyze the requests that take a long time
to execute.
If an abnormal query is found, find the opid corresponding to the operation
and run db.killOp(opid) to kill it.

Document Database Service
Best Practices 7 How Do I Solve the High CPU Usage Issue?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 24

https://docs.mongodb.com/manual/reference/method/db.currentOp/?spm=a2c4g.11186623.2.13.79cc3474Y5mI48


Analyzing Slow Queries
Slow query profiling is enabled for DDS by default. The system automatically
records any queries whose execution takes longer than 100 ms to the
system.profile collection in the corresponding database. You can:

1. Connect to an instance using Mongo Shell.
To access an instance from the Internet
For details, see
– Connecting to a Cluster Instance over a Public Network
– Connecting to a Replica Set Instance over a Public Network
– Connecting to a Single Node Instance over a Public Network
To access an instance that is not publicly accessible
For details, see
– Connecting to a Cluster Instance over a Private Network
– Connecting to a Replica Set Instance over a Private Network
– Connecting to a Single Node Instance over a Private Network

2. Select a specific database (using the test database as an example):
use test

3. Check whether slow SQL queries have been collected in system.profile.
show collections;
– If the command output includes system.profile, slow SQL queries have

been generated. Go to the next step.
mongos> show collections
system.profile
test

– If the command output does not contain system.profile, no slow SQL
queries have been generated, and slow query analysis is not required.
mongos> show collections
test

4. Check the slow query logs in the database.
db.system.profile.find().pretty()

5. Analyze slow query logs to find the cause of the high CPU usage.
The following is an example of a slow query log. The log shows a request that
scanned the entire table, including 1,561,632 documents and without using a
search index.
{
        "op" : "query",
        "ns" : "taiyiDatabase.taiyiTables$10002e",
        "query" : {
                "find" : "taiyiTables",
                "filter" : {
                        "filed19" : NumberLong("852605039766")
                },
                "shardVersion" : [
                        Timestamp(1, 1048673),
                        ObjectId("5da43185267ad9c374a72fd5")
                ],
                "chunkId" : "10002e"
        },
        "keysExamined" : 0,
        "docsExamined" : 1561632,

Document Database Service
Best Practices 7 How Do I Solve the High CPU Usage Issue?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 25

https://support.huaweicloud.com/eu/qs-dds/dds_02_0006.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0047.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0048.html
https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0044018334.html
https://support.huaweicloud.com/eu/qs-dds/en-us_topic_0105284966.html
https://support.huaweicloud.com/eu/qs-dds/dds_02_0028.html


        "cursorExhausted" : true,
        "numYield" : 12335,
        "locks" : {
                "Global" : {
                        "acquireCount" : {
                                "r" : NumberLong(24672)
                        }
                },
                "Database" : {
                        "acquireCount" : {
                                "r" : NumberLong(12336)
                        }
                },
                "Collection" : {
                        "acquireCount" : {
                                "r" : NumberLong(12336)
                        }
                }
        },
        "nreturned" : 0,
        "responseLength" : 157,
        "protocol" : "op_command",
        "millis" : 44480,
        "planSummary" : "COLLSCAN",
        "execStats" : {
              "stage" : 
"SHARDING_FILTER",                                                                                                                       
                [3/1955]
                "nReturned" : 0,
                "executionTimeMillisEstimate" : 43701,
                "works" : 1561634,
                "advanced" : 0,
                "needTime" : 1561633,
                "needYield" : 0,
                "saveState" : 12335,
                "restoreState" : 12335,
                "isEOF" : 1,
                "invalidates" : 0,
                "chunkSkips" : 0,
                "inputStage" : {
                        "stage" : "COLLSCAN",
                        "filter" : {
                                "filed19" : {
                                        "$eq" : NumberLong("852605039766")
                                }
                        },
                        "nReturned" : 0,
                        "executionTimeMillisEstimate" : 43590,
                        "works" : 1561634,
                        "advanced" : 0,
                        "needTime" : 1561633,
                        "needYield" : 0,
                        "saveState" : 12335,
                        "restoreState" : 12335,
                        "isEOF" : 1,
                        "invalidates" : 0,
                        "direction" : "forward",
                        "docsExamined" : 1561632
                }
        },
        "ts" : ISODate("2019-10-14T10:49:52.780Z"),
        "client" : "172.16.36.87",
        "appName" : "MongoDB Shell",
        "allUsers" : [
                {
                        "user" : "__system",
                        "db" : "local"
                }
        ],

Document Database Service
Best Practices 7 How Do I Solve the High CPU Usage Issue?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 26



       "user" : "__system@local"
}

The following stages can be causes for a slow query:
– COLLSCAN involves a full collection (full table) scan.

When a request (such as query, update, and delete) requires a full table
scan, a large amount of CPU resources are occupied. If you find
COLLSCAN in the slow query log, CPU resources may be occupied.
If such requests are frequent, create indexes for the fields to be queried.

– docsExamined involves a full collection (full table) scan.
You can view the value of docsExamined to check the number of
documents scanned. A larger value indicates a higher CPU usage.

– IXSCAN and keysExamined scan indexes.

NO TE

An excessive number of indexes can affect the write and update performance.

If your application has more write operations, creating indexes may increase
write latency.

You can view the value of keyExamined to see how many indexes are
scanned in a query. A larger value indicates a higher CPU usage.
If the index is not appropriate or there are many matching results, the
CPU usage may spike and the execution can slow down.
Example: For the data of a collection, the number of values of the a field
is small (only 1 and 2), but the b field has more values.
{ a: 1, b: 1 }
{ a: 1, b: 2 }
{ a: 1, b: 3 }
......
{ a: 1, b: 100000}
{ a: 2, b: 1 }
{ a: 2, b: 2 }
{ a: 2, b: 3 }
......
{ a: 1, y: 100000}

The following shows how to implement the {a: 1, b: 2} query.
db.createIndex({a: 1}): The query is not effective because the a field has too many 
same values.
db.createIndex({a: 1, b: 1}): The query is not effective because the a field has too 
many same values.
db.createIndex({b: 1}): The query is effective because the b field has a few same 
values.
db.createIndex({b: 1, a: 1}): The query is not effective because the a field has a few 
same values.

For the differences between {a: 1} and {b: 1, a: 1}, see the official
documents.

– SORT and hasSortStage may involve sorting a large amount of data.
If the value of hasSortStage in the system.profile collection is true, the
query request involves sorting. If the sorting cannot be implemented
through indexes, the query results are sorted, and sorting is a CPU
intensive operation. In this scenario, you need to create indexes for fields
that are frequently sorted.

Document Database Service
Best Practices 7 How Do I Solve the High CPU Usage Issue?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 27

https://docs.mongodb.com/manual/core/index-compound/
https://docs.mongodb.com/manual/core/index-compound/


If the system.profile collection contains SORT, you can use indexing to
improve sorting speed.

Other operations, such as index creation and aggregation (combinations of
traversal, query, update, and sorting), also apply to the preceding scenarios
because they are also CPU intensive operations. For more information about
profiling, see official documents.

Analysis Capability
After the analysis and optimization of the requests that are being executed and
slow requests, all requests use proper indexes, and the CPU usage becomes stable.
If the CPU usage remains high after the analysis and troubleshooting, the current
instance may have reached the performance bottleneck and cannot meet service
requirements. In this case, you can perform the following operations to solve the
problem:

1. View monitoring information to analyze instance resource usage. For details,
see Viewing Monitoring Metrics.

2. Change the DDS instance class or add shard nodes.

Document Database Service
Best Practices 7 How Do I Solve the High CPU Usage Issue?

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 28

https://docs.mongodb.com/manual/tutorial/manage-the-database-profiler/
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0076.html


8 Creating a User and Granting the Read-
Only Permission to the User

Step 1: Create a User Group and Grant Permissions

Users in the same user group have the same permissions. Users created in IAM
inherit permissions from the groups to which they belong. Users created in IAM
inherit permissions from the groups they belong to. To create a user group,
perform the following steps:

Step 1 Log in to Huawei Cloud using your HUAWEI ID.

Figure 8-1 HUAWEI ID Login

Document Database Service
Best Practices

8 Creating a User and Granting the Read-Only
Permission to the User

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 29



Step 2 On the management console, click the username in the upper right corner and
then choose Identity and Access Management.

Figure 8-2 Choosing IAM

Step 3 On the IAM console, choose User Groups in the navigation pane. Then click
Create User Group.

Figure 8-3 User group

Step 4 Enter a user group name (for example, test_01), set the password, and click OK.

The user group is then displayed in the user group list.

Step 5 In the user group list, choose Authorize in the row that contains the test_01 user
group.

Step 6 Select Document Database Service from the drop-down list, select DDS
ReadOnlyAccess, and click Next.

Document Database Service
Best Practices

8 Creating a User and Granting the Read-Only
Permission to the User

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 30



Figure 8-4 Authorization

Step 7 Specify the scope and click OK.
● All resources
● Region-specific projects: The selected permissions will be applied to resources

in the region-specific projects you select.

Figure 8-5 Specifying the scope

----End

Step 2: Create an IAM User
IAM users can be created for employees or applications of an enterprise. Each IAM
user has their own security credentials, and inherits permissions from the groups it
is a member of. To create an IAM user, perform the following steps:

Step 1 On the IAM console, choose Users in the navigation pane. Then click Create User.

Step 2 Specify the user information on the Create User page. To create more users, click
Add User. You can add a maximum of 10 users at a time.

Document Database Service
Best Practices

8 Creating a User and Granting the Read-Only
Permission to the User

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 31



Figure 8-6 Creating a user

● Username: Used for logging in to Huawei Cloud. For this example, enter
James.

● Email Address: Email address bound to the IAM user. This parameter is
mandatory if the access type is specified as Set by user.

● (Optional) Mobile Number: Mobile number bound to the IAM user.

● (Optional) Description: Description of the user.

Step 3 Configure required parameters and click Next.

Figure 8-7 Configuring user details

Table 8-1 Configuration items

Parame
ter

Description

Access
Type

● Programmatic access: Select this option to allow the user to
access cloud services using development tools, such as APIs, CLI,
and SDKs. You can generate an access key or set a password for
the user.

● Management console access: Select this option to allow the user
to access cloud services using the management console. You can
set or generate a password for the user or request the user to set
a password at first login.

Credenti
al Type

● Access key: Download the access key after the user is created.
● Password: If you create multiple users, set a password for the

users and determine whether to require the users to reset the
password at first login. If you create one user, you can select
Automatically generated and the system automatically
generates a login password for the user.

Document Database Service
Best Practices

8 Creating a User and Granting the Read-Only
Permission to the User

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 32



Parame
ter

Description

Login
Protecti
on

To ensure account security, you are advised to select Enable.

 

Step 4 Add the users to user group created in Step 4 and click Create User.

Figure 8-8 Creating a user

Step 5 Check the created users in the user list. If you select Access key for Credential
Type, you can download the access key after you create the user. You can also
manage the access keys on the My Credentials page.

Figure 8-9 Viewing the results

----End

Step 3: Log In and Verify Permissions

After the user is created, use the username and identity credential to log in to
Huawei Cloud, and verify that the user has the permissions defined by the DDS
ReadOnlyAccess policy. For more login methods, see "Create IAM Users and Log
In".

Step 1 On the Huawei Cloud login page, click IAM User in the lower left corner.

Document Database Service
Best Practices

8 Creating a User and Granting the Read-Only
Permission to the User

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 33



Figure 8-10 IAM user login

Step 2 Enter the account name, username, and password, and click Log In.
● The account name is the name of the Huawei Cloud account that created the

IAM user.
● The username and password are those set by the account when creating the

IAM user.

If the login fails, contact the entity owning the account to verify the username and
password. Alternatively, you can reset the password by following the procedure in
"Resetting Password for an IAM User".

Step 3 After successful login, switch to a region where the user has been granted
permissions on the management console.

Document Database Service
Best Practices

8 Creating a User and Granting the Read-Only
Permission to the User

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 34



Figure 8-11 Region

Step 4 Choose Service List > Document Database Service. Then click Buy DB Instance
on the DDS console. If a message appears indicating insufficient permissions to
perform the operation, the DDS ReadOnlyAccess policy has already taken effect.

Step 5 Choose any other service in the Service List. If a message appears indicating
insufficient permissions to access the service, the DDS ReadOnlyAccess policy has
already taken effect.

----End

Document Database Service
Best Practices

8 Creating a User and Granting the Read-Only
Permission to the User

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 35


	Contents
	1 Overview
	2 Common Methods for Connecting to a DDS Instance
	3 How Do Replica Sets Achieve High Availability and Read/Write Splitting?
	4 Sharding
	5 How Do I Improve DDS Performance by Optimizing SQL Statements?
	6 How Do I Prevent the Mongos Cache Problem?
	7 How Do I Solve the High CPU Usage Issue?
	8 Creating a User and Granting the Read-Only Permission to the User

