
Cloud Container Engine

Best Practices

Issue 01

Date 2024-11-12

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Checklist for Deploying Containerized Applications in the Cloud...............................1

2 Containerization.. 7
2.1 Containerizing an Enterprise Application (ERP)... 7
2.1.1 Solution Overview... 7
2.1.2 Procedure... 10
2.1.2.1 Containerizing an Entire Application...10
2.1.2.2 Containerization Process... 12
2.1.2.3 Analyzing the Application... 13
2.1.2.4 Preparing the Application Runtime... 15
2.1.2.5 Compiling a Startup Script..17
2.1.2.6 Compiling the Dockerfile...17
2.1.2.7 Building and Uploading an Image... 18
2.1.2.8 Creating a Container Workload.. 19

3 Migration...25
3.1 Migrating Kubernetes Clusters to CCE.. 25
3.1.1 Solution Overview... 25
3.1.2 Planning Resources for the Target Cluster..29
3.1.3 Procedure... 32
3.1.3.1 Migrating Resources Outside a Cluster.. 32
3.1.3.2 Installing the Migration Tool..33
3.1.3.3 Migrating Resources in a Cluster.. 37
3.1.3.4 Updating Resources Accordingly.. 40
3.1.3.5 Performing Additional Tasks.. 43
3.1.3.6 Troubleshooting.. 44

4 Disaster Recovery.. 47
4.1 Recommended Configurations for HA CCE Clusters...47
4.2 Implementing High Availability for Applications in CCE...56
4.3 Implementing High Availability for Add-ons in CCE.. 59

5 Security.. 63
5.1 Configuration Suggestions on CCE Cluster Security... 63
5.2 Configuration Suggestions on CCE Node Security.. 66
5.3 Configuration Suggestions on CCE Container Runtime Security..68

Cloud Container Engine
Best Practices Contents

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

5.4 Configuration Suggestions on CCE Container Security..70
5.5 Configuration Suggestions on CCE Container Image Security.. 74
5.6 Configuration Suggestions on CCE Secret Security... 76

6 Auto Scaling..79
6.1 Using HPA and CA for Auto Scaling of Workloads and Nodes...79

7 Monitoring.. 87
7.1 Monitoring Multiple Clusters Using Prometheus...87
7.2 Reporting Prometheus Monitoring Data to a Third-Party Monitoring Platform..91

8 Cluster.. 94
8.1 Suggestions on CCE Cluster Selection... 94
8.2 Creating a Custom CCE Node Image...100
8.3 Connecting to Multiple Clusters Using kubectl..106
8.4 Selecting a Data Disk for the Node... 112
8.5 Protecting a CCE Cluster Against Overload...118

9 Networking...123
9.1 Planning CIDR Blocks for a Cluster.. 123
9.2 Selecting a Network Model.. 129
9.3 Implementing Sticky Session Through Load Balancing.. 135
9.4 Pre-Binding Container ENI for CCE Turbo Clusters... 142
9.5 Accessing an IP Address Outside a Cluster That Uses a VPC Network Using Source Pod IP Addresses in
the Cluster.. 146

10 Storage.. 149
10.1 Expanding the Storage Space.. 149
10.2 Mounting Object Storage Across Accounts...158
10.3 Dynamically Creating an SFS Turbo Subdirectory Using StorageClass... 171
10.4 Using Custom Storage Classes.. 175
10.5 Scheduling EVS Disks Across AZs Using csi-disk-topology.. 186

11 Container.. 192
11.1 Properly Allocating Container Computing Resources..192
11.2 Modifying Kernel Parameters Using a Privileged Container...194
11.3 Using Init Containers to Initialize an Application... 196
11.4 Configuring the /etc/hosts File of a Pod Using hostAliases.. 197
11.5 Locating Container Faults Using the Core Dump File... 200

12 Permission...202
12.1 Configuring kubeconfig for Fine-Grained Management on Cluster Resources..202

13 Release.. 206
13.1 Overview... 206
13.2 Using Services to Implement Simple Grayscale Release and Blue-Green Deployment...........................208
13.3 Using Nginx Ingress to Implement Grayscale Release and Blue-Green Deployment.............................. 214

Cloud Container Engine
Best Practices Contents

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Checklist for Deploying Containerized
Applications in the Cloud

Overview
Security, efficiency, stability, and availability are common requirements on all
cloud services. To meet these requirements, the system availability, data reliability,
and O&M stability must be coordinated. This checklist describes the check items
for deploying containerized applications on the cloud to help you efficiently
migrate services to CCE, reducing potential cluster or application exceptions
caused by improper use.

Check Items

Table 1-1 System availability

Category Check Item Type Impact

Cluster Before creating a
cluster, properly plan
the node network and
container network
based on service
requirements to allow
subsequent service
expansion.

Network
planning

If the subnet or
container CIDR block
where the cluster
resides is small, the
number of available
nodes supported by
the cluster may be
less than required.

Before creating a
cluster, properly plan
CIDR blocks for the
related Direct
Connect, peering
connection, container
network, service
network, and subnet
to avoid IP address
conflicts.

Network
planning

If CIDR blocks are not
properly set and IP
address conflicts
occur, service access
will be affected.

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Category Check Item Type Impact

When a cluster is
created, the default
security group is
automatically created
and bound to the
cluster. You can set
custom security group
rules based on service
requirements.

Deployment Security groups are
key to security
isolation. Improper
security policy
configuration may
cause security risks
and service
connectivity problems.

Enable the multi-
master node mode,
and set the number of
master nodes to 3
when creating a
cluster.

Reliability After the multi-master
node mode is enabled,
three master nodes
will be created. If a
master node is faulty,
the cluster can still be
available without
affecting service
functions. In
commercial scenarios,
it is advised to enable
the multi-master node
mode.

When creating a
cluster, select a proper
network model as
needed.
● Select VPC

network or Tunnel
network for your
CCE standard
cluster.

● Select Cloud
Native Network
2.0 for your CCE
Turbo cluster.

Deployment After a cluster is
created, the network
model cannot be
changed. Exercise
caution when
selecting a network
model.

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Category Check Item Type Impact

Workload When creating a
workload, set the CPU
and memory limits to
improve service
robustness.

Deployment When multiple
applications are
deployed on the same
node, if the upper and
lower resource limits
are not set for an
application, resource
leakage occurs. As a
result, resources
cannot be allocated to
other applications,
and the application
monitoring
information will be
inaccurate.

When creating a
workload, you can set
probes for container
health check,
including liveness
probe and readiness
probe.

Reliability If the health check
function is not
configured, a pod
cannot detect service
exceptions or
automatically restart
the service to restore
it. This results in a
situation where the
pod status is normal
but the service in the
pod is abnormal.

When creating a
workload, select a
proper access mode
(Service). Currently,
the following types of
Services are
supported: ClusterIP,
NodePort, and
LoadBalancer.

Deployment Improper Service
configuration may
cause logic confusion
for internal and
external access and
resource waste.

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Category Check Item Type Impact

When creating a
workload, do not set
the number of replicas
for a single pod. Set a
proper node
scheduling policy
based on your service
requirements.

Reliability For example, if the
number of replicas of
a single pod is set, the
service will be
abnormal when the
node or pod is
abnormal. To ensure
that your pods can be
successfully scheduled,
ensure that the node
has idle resources for
container scheduling
after you set the
scheduling rule.

Properly set affinity
and anti-affinity.

Reliability If affinity and anti-
affinity are both
configured for an
application that
provides Services
externally, Services
may fail to be
accessed after the
application is
upgraded or restarted.

When creating a
workload, set the pre-
stop processing
command (Lifecycle >
Pre-Stop) to ensure
that the services
running in the pods
can be completed in
advance in the case of
application upgrade or
pod deletion.

Reliability If the pre-stop
processing command
is not configured, the
pod will be directly
killed and services will
be interrupted during
application upgrade.

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Table 1-2 Data reliability

Category Check Item Type Impact

Container data
persistency

Select a proper data
volume type based
on service
requirements.

Reliability When a node is
faulty and cannot be
recovered, data in the
local disk cannot be
recovered. Therefore,
you are advised to
use cloud storage
volumes to ensure
data reliability.

Backup Back up application
data.

Reliability Data cannot be
restored after being
lost.

Table 1-3 O&M reliability

Category Check Item Type Impact

Project The quotas of ECS,
VPC, subnet, EIP,
and EVS resources
must meet customer
requirements.

Deployment If the quota is
insufficient, resources
will fail to be created.
Specifically, users
who have configured
auto scaling must
have sufficient
resource quotas.

You are not advised
to modify kernel
parameters, system
configurations,
cluster core
component versions,
security groups, and
ELB-related
parameters on
cluster nodes, or
install software that
has not been
verified.

Deployment Exceptions may occur
on CCE clusters or
Kubernetes
components on the
node, making the
node unavailable for
application
deployment.

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Category Check Item Type Impact

Do not modify
information about
resources created by
CCE, such as security
groups and EVS
disks. Resources
created by CCE are
labeled cce.

Deployment CCE cluster functions
may be abnormal.

Proactive
O&M

CCE provides multi-
dimensional
monitoring and
alarm reporting
functions, allowing
users to locate and
rectify faults as soon
as possible.
● Application

Operations
Management
(AOM): The
default basic
resource
monitoring of
CCE covers
detailed
container-related
metrics and
provides alarm
reporting
functions.

● Open source
Prometheus: A
monitoring tool
for cloud native
applications. It
integrates an
independent
alarm system to
provide more
flexible
monitoring and
alarm reporting
functions.

Monitoring If the alarms are not
configured, the
standard of container
cluster performance
cannot be
established. When an
exception occurs, you
cannot receive alarms
and will need to
manually locate the
fault.

Cloud Container Engine
Best Practices

1 Checklist for Deploying Containerized Applications
in the Cloud

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

2 Containerization

2.1 Containerizing an Enterprise Application (ERP)

2.1.1 Solution Overview
This chapter provides CCE best practices to walk you through the application
containerization.

What Is a Container?

A container is a lightweight high-performance resource isolation mechanism
implemented based on the Linux kernel. It is a built-in capability of the operating
system (OS) kernel.

CCE is an enterprise-class container service based on open-source Kubernetes. It is
a high-performance and high-reliability service through which enterprises can
manage containerized applications. CCE supports native Kubernetes applications
and tools, allowing you to easily set up a container runtime in the cloud.

Why Is a Container Preferred?
● More efficient use of system resources

A container does not require extra costs such as fees for hardware
virtualization and those for running a complete OS. Therefore, a container has
higher resource usage. Compared with a VM with the same configurations, a
container can run more applications.

● Faster startup
A container directly runs on the host kernel and does not need to start a
complete OS. Therefore, a container can be started within seconds or even
milliseconds, greatly saving the development, testing, and deployment time.

● Consistent runtime environment
A container image provides a complete runtime environment to ensure
environment consistency. In this case, problems (for example, some code runs
properly on machine A but fails to run on machine B) will not occur.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

● Easier application migration, maintenance, and scaling
A consistent runtime environment makes application migration easier. In
addition, the in-use storage and image technologies facilitate the reuse of
repeated applications and simplifies the expansion of images based on base
images.

Containerization Modes
The following modes are available for containerizing applications:

● Mode 1: Containerize a single application as a whole. Application code and
architecture remain unchanged.

● Mode 2: Separate the components that are frequently upgraded or have high
requirements on auto scaling from an application, and then containerize these
components.

● Mode 3: Transform an application to microservices and then containerize the
microservices one by one.

Table 2-1 lists the advantages and disadvantages of the three modes.

Table 2-1 Containerization modes

Containerization Mode Advantage Disadvantage

Method 1:
Containerize a single
application as a whole.

● Zero modification on
services: The
application architecture
and code require no
change.

● The deployment and
upgrade efficiency is
improved. Applications
can be packed as
container images to
ensure application
environment
consistency and
improve deployment
efficiency.

● Reduce resource costs:
Containers use system
resources more
efficiently. Compared
with a VM with the
same configurations, a
container can run more
applications.

● Difficult to expand
the entire
architecture of an
application. As the
code size increases,
code update and
maintenance would
be complicated.

● Difficult to launch
new functions,
languages,
frameworks, and
technologies.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Containerization Mode Advantage Disadvantage

Method 2:
Containerize first the
application components
that are frequently
updated or have high
requirements on auto
scaling.

● Progressive
transformation:
Reconstructing the
entire architecture
involves a heavy
workload. This mode
containerizes only a
part of components,
which is easy to accept
for customers.

● Flexible scaling:
Application
components that have
high requirements on
auto scaling are
containerized. When
the application needs
to be scaled, you only
need to scale the
containers, which is
flexible and reduces the
required system
resources.

● Faster rollout of new
features: Application
components that are
frequently upgraded
are containerized. In
subsequent upgrades,
only these containers
need to be upgraded.
This shortens the time
to market (TTM) of
new features.

Need to decouple some
services.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Containerization Mode Advantage Disadvantage

Method 3:
Transform an
application to
microservices and then
containerize the
microservices one by
one.

● Independent scaling:
After an application is
split into microservices,
you can independently
increase or decrease
the number of
instances for each
microservice.

● Increased development
speed: Microservices
are decoupled from
one another. Code
development of a
microservice does not
affect other
microservices.

● Security assurance
through isolation: For
an overall application,
if a security
vulnerability exists,
attackers can use this
vulnerability to obtain
the permission to all
functions of the
application. However,
in a microservice
architecture, if a service
is attacked, attackers
can only obtain the
access permission to
this service, but cannot
intrude other services.

● Breakdown isolation: If
one microservice
breaks down, other
microservices can still
run properly.

Need to transform the
application to
microservices, which
involves a large number
of changes.

Mode 1 is used as an example in this tutorial to illustrate how to containerize an
enterprise resource planning (ERP) system.

2.1.2 Procedure

2.1.2.1 Containerizing an Entire Application
This tutorial describes how to containerize an ERP system by migrating it from a
VM to CCE.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

No recoding or re-architecting is required. You only need to pack the entire
application into a container image and deploy the container image on CCE.

Introduction
In this example, the enterprise management application is developed by
enterprise A. This application is provided for third-party enterprises for use, and
enterprise A is responsible for application maintenance.

When a third-party enterprise needs to use this application, a suit of Tomcat
application and MongoDB database must be deployed for the third-party
enterprise. The MySQL database, used to store data of third-party enterprises, is
provided by enterprise A.

Figure 2-1 Application architecture

As shown in Figure 2-1, the application is a standard Tomcat application, and its
backend interconnects with MongoDB and MySQL databases. For this type of
applications, there is no need to split the architecture. The entire application is
built as an image, and the MongoDB database is deployed in the same image as
the Tomcat application. In this way, the application can be deployed or upgraded
through the image.

● Interconnecting with the MongoDB database for storing user files.
● Interconnecting with the MySQL database for storing third-party enterprise

data. The MySQL database is an external cloud database.

Benefits
In this example, the application was deployed on a VM. During application
deployment and upgrade, a series of problems is encountered, but application
containerization has solved these problems.

By using containers, you can easily pack application code, configurations, and
dependencies and convert them into easy-to-use building blocks. This achieves the
environmental consistency and version management, as well as improves the
development and operation efficiency. Containers ensure quick, reliable, and
consistent deployment of applications and prevent applications from being
affected by deployment environment.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Table 2-2 Comparison between the two deployment modes

Category Before: Application
Deployment on VM

After: Application Deployment
Using Containers

Deployment High deployment cost.
A VM is required for
deploying a system for a
customer.

More than 50% cost reduced.
Container services achieve multi-
tenant isolation, which allows you
to deploy systems for different
enterprises on the same VM.

Upgrade Low upgrade efficiency.
During version upgrades,
log in to VMs one by one
and manually configure
the upgrades, which is
inefficient and error-prone.

Per-second level upgrade.
Version upgrades can be completed
within seconds by replacing the
image tag. In addition, CCE
provides rolling updates, ensuring
zero service downtime during
upgrades.

Operation
and
maintenanc
e (O&M)

High O&M cost.
As the number of
applications deployed for
customer grows, the
number of VMs that need
to be maintained increases
accordingly, which requires
a large sum of
maintenance cost.

Automatic O&M
Enterprises can focus on service
development without paying
attention to VM maintenance.

2.1.2.2 Containerization Process
To fully containerize an application, you must go through the entire process.

This involves analyzing the application, setting up the runtime environment for the
application, compiling the startup script and Dockerfile, creating and uploading
images, and creating containerized workloads.

For details about each step of the containerization, see Containerization Process.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Figure 2-2 Process of containerizing an application

2.1.2.3 Analyzing the Application
Before containerizing an application, analyze the running environment and
dependencies of the application, and get familiar with the application deployment
mode. For details, see Table 2-3.

Table 2-3 Application environment

Category Sub-category Description

Runtime
environmen
t

OS OS that the application runs on, such as CentOS
or Ubuntu.
In this example, the application runs on CentOS
7.1.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Category Sub-category Description

Runtime
environment

The Java application requires Java Development
Kit (JDK), the Go language requires GoLang, the
web application requires Tomcat environment,
and the corresponding version number needs to
be confirmed.
In this example, the web application of the
Tomcat type is used. This application requires the
runtime environment of Tomcat 7.0, and Tomcat
requires JDK 1.8.

Dependency
package

Understand required dependency packages, such
as OpenSSL and other system software, and their
version numbers.
In this example, no dependency package is
required.

Deployment
mode

Peripheral
configuration
s

MongoDB database: In this example, the
MongoDB database and Tomcat application are
deployed on the same server. Therefore, their
configurations can be fixed and there is no need
to extract their configurations.

External services with which the application
needs to interconnect, such as databases and file
systems.
These configurations need to be manually
configured each time you deploy an application
on a VM. However, through containerized
deployment, environment variables can be
injected into a container, facilitating deployment.
In this example, the application needs to
interconnect with the MySQL database. Obtain
the database configuration file. The server
address, database name, database login
username, and database login password are
injected through environment variables.
url=jdbc:mysql://Server address/Database name #Database
connection URL
username=**** #Username for logging in to the
database
password=**** #Password for logging in to the
database

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Category Sub-category Description

Application
configuration
s

Sort out the configuration parameters, such as
configurations that need to be modified
frequently and those remain unchanged during
the running of the application.
In this example, no application configurations
need to be extracted.
NOTE

To avoid frequent image replacement, you are advised
to classify configurations of the application.
● For the configurations (such as peripheral

interconnection information and log levels) that are
frequently changed, you are advised to configure
them as environment variables.

● For the configurations that remain unchanged,
directly write them into images.

2.1.2.4 Preparing the Application Runtime
After application analysis, you have gained the understanding of the OS and
runtime required for running the application. Make the following preparations:

● Installing Docker: During application containerization, build a container
image. To do so, you have to prepare a PC and install Docker on it.

● Obtaining the runtime: Obtain the runtime of the application and the
MongoDB database with which the application interconnects.

Installing Docker
Docker is compatible with almost all operating systems. Select a Docker version
that best suits your needs.

NO TE

SWR uses Docker 1.11.2 or later to upload images.
It is recommended that you install Docker and build images as the user root. Make sure to
obtain the user root password for the host where Docker will be installed beforehand.

Step 1 Log in as user root to the device on which Docker is about to be installed.

Step 2 Quickly install Docker on the device running Linux. You can also manually install
Docker. For details, see Docker Engine installation.

curl -fsSL get.docker.com -o get-docker.sh

sh get-docker.sh

Step 3 Run the following command to check the Docker version:

docker version
Client:
Version: 17.12.0-ce
API Version:1.35
...

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://docs.docker.com/engine/install/#server

Version indicates the version number.

----End

Obtaining the Runtime

In this example, the web application of the Tomcat type is used. This application
requires the runtime of Tomcat 7.0, and Tomcat requires JDK 1.8. In addition, the
application must interconnect with the MongoDB database in advance.

NO TE

Download the environment required by the application.

Step 1 Download Tomcat, JDK, and MongoDB installation packages of the specific
versions.

1. Download JDK 1.8.
Download address: https://www.oracle.com/java/technologies/jdk8-
downloads.html.

2. Download Tomcat 7.0 from http://archive.apache.org/dist/tomcat/
tomcat-7/v7.0.82/bin/apache-tomcat-7.0.82.tar.gz.

3. Download MongoDB 3.2 from https://fastdl.mongodb.org/linux/mongodb-
linux-x86_64-rhel70-3.2.9.tgz.

Step 2 Log in as user root to the device running Docker.

Step 3 Run the following commands to create the directory where the application is to be
stored: For example, set the directory to apptest.

mkdir apptest

cd apptest

Step 4 Use Xshell to save the downloaded dependency files to the apptest directory.

Step 5 Run the following commands to decompress the dependency files:

tar -zxf apache-tomcat-7.0.82.tar.gz

tar -zxf jdk-8u151-linux-x64.tar.gz

tar -zxf mongodb-linux-x86_64-rhel70-3.2.9.tgz

Step 6 Save the enterprise application (for example, apptest.war) in the webapps/
apptest directory of the Tomcat runtime environment.

NO TE

apptest.war is used as an example only. Use your own application for actual configuration.

mkdir -p apache-tomcat-7.0.82/webapps/apptest

cp apptest.war apache-tomcat-7.0.82/webapps/apptest

cd apache-tomcat-7.0.82/webapps/apptest

./../../../jdk1.8.0_151/bin/jar -xf apptest.war

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://www.oracle.com/java/technologies/jdk8-downloads.html
https://www.oracle.com/java/technologies/jdk8-downloads.html
http://archive.apache.org/dist/tomcat/tomcat-7/v7.0.82/bin/apache-tomcat-7.0.82.tar.gz
http://archive.apache.org/dist/tomcat/tomcat-7/v7.0.82/bin/apache-tomcat-7.0.82.tar.gz
https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.2.9.tgz
https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.2.9.tgz

rm -rf apptest.war

----End

2.1.2.5 Compiling a Startup Script
During application containerization, prepare a startup script. The method of
compiling this script is the same as that of compiling a shell script. The startup
script is used to:

● Start up the software on which the application depends.
● Set the configurations that need to be changed as the environment variables.

NO TE

Startup scripts vary according to applications. Edit the script based on your service
requirements.

Procedure

Step 1 Log in as user root to the device running Docker.

Step 2 Run the following command to switch to the directory where the application is to
be stored:

cd apptest

Step 3 Compile a script file. The name and content of the script file vary according to
applications. Edit the script file based on your application. The following example
is only for your reference.

vi start_tomcat_and_mongo.sh
#!/bin/bash
Load system environment variables.
source /etc/profile
Start MongoDB. The data is stored in /usr/local/mongodb/data.
./usr/local/mongodb/bin/mongod --dbpath=/usr/local/mongodb/data --logpath=/usr/local/mongodb/logs
--port=27017 –fork
These three script commands indicate that the contents related to the MySQL database in the
environment variables are written into the configuration file when Docker is started.
sed -i "s|mysql://.*/awcp_crmtile|mysql://$MYSQL_URL/$MYSQL_DB|g" /root/apache-tomcat-7.0.82/
webapps/awcp/WEB-INF/classes/conf/jdbc.properties
sed -i "s|username=.*|username=$MYSQL_USER|g" /root/apache-tomcat-7.0.82/webapps/awcp/WEB-INF/
classes/conf/jdbc.properties
sed -i "s|password=.*|password=$MYSQL_PASSWORD|g" /root/apache-tomcat-7.0.82/webapps/awcp/WEB-
INF/classes/conf/jdbc.properties
Start Tomcat.
bash /root/apache-tomcat-7.0.82/bin/catalina.sh run

----End

2.1.2.6 Compiling the Dockerfile
An image is the basis of a container. A container runs based on the content
defined in the image. An image has multiple layers. Each layer includes the
modifications made based on the previous layer.

Generally, Dockerfiles are used to customize images. Dockerfile is a text file and
contains various instructions. Each instruction is used to build an image layer. That
is, each instruction describes how to build an image layer.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

This section describes how to compile a Dockerfile file.

NO TE

Dockerfiles vary according to applications. Dockerfiles need to be compiled based on actual
service requirements.

Procedure
Step 1 Log in as the root user to the device running Docker.

Step 2 Compile a Dockerfile.

vi Dockerfile

The content is as follows:
CentOS 7.1.1503 is used as the base image.
FROM centos:7.1.1503
Create a folder to store data and dependency files. You are advised to write multiple commands into one
line to reduce the image size.
RUN mkdir -p /usr/local/mongodb/data \
 && mkdir -p /usr/local/mongodb/bin \
 && mkdir -p /root/apache-tomcat-7.0.82 \
 && mkdir -p /root/jdk1.8.0_151

Copy the files in the apache-tomcat-7.0.82 directory to the container path.
COPY ./apache-tomcat-7.0.82 /root/apache-tomcat-7.0.82
Copy the files in the jdk1.8.0_151 directory to the container path.
COPY ./jdk1.8.0_151 /root/jdk1.8.0_151
Copy the files in the mongodb-linux-x86_64-rhel70-3.2.9 directory to the container path.
COPY ./mongodb-linux-x86_64-rhel70-3.2.9/bin /usr/local/mongodb/bin
Copy start_tomcat_and_mongo.sh to the /root directory of the container.
COPY ./start_tomcat_and_mongo.sh /root/

Enter Java environment variables.
RUN chown root:root -R /root \
 && echo "JAVA_HOME=/root/jdk1.8.0_151 " >> /etc/profile \
 && echo "PATH=\$JAVA_HOME/bin:$PATH " >> /etc/profile \
 && echo "CLASSPATH=.:\$JAVA_HOME/lib/dt.jar:\$JAVA_HOME/lib/tools.jar" >> /etc/profile \
 && chmod +x /root \
 && chmod +x /root/start_tomcat_and_mongo.sh

When the container is started, commands in start_tomcat_and_mongo.sh are automatically run. The file
can be one or more commands, or a script.
ENTRYPOINT ["/root/start_tomcat_and_mongo.sh"]

In the preceding information:

● FROM statement: indicates that centos:7.1.1503 is used as the base image.
● Run statement: indicates that a shell command is executed in the container.
● COPY statement: indicates that files in the local computer are copied to the

container.
● ENTRYPOINT statement: indicates the commands that are run after the

container is started.

----End

2.1.2.7 Building and Uploading an Image
This section describes how to build an entire application into a Docker image.
After building an image, you can use the image to deploy and upgrade the
application. This reduces manual configuration and improves efficiency.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

NO TE

When building an image, ensure that files used to build the image are stored in the same
directory.

Required Cloud Services
SoftWare Repository for Container (SWR) provides easy, secure, and reliable
management over container images throughout their lifecycle, facilitating the
deployment of containerized services.

Basic Concepts
● Image: A Docker image is a special file system that includes everything

needed to run containers: programs, libraries, resources, settings, and so on. It
also includes corresponding configuration parameters (such as anonymous
volumes, environment variables, and users) required within a container
runtime. An image does not contain any dynamic data, and its content
remains unchanged after being built.

● Container: Images become containers at runtime, that is, containers are
created from images. A container can be created, started, stopped, deleted, or
suspended.

Procedure

Step 1 Log in as the root user to the device running Docker.

Step 2 Enter the apptest directory.

cd apptest

Ensure that files used to build the image are stored in the same directory.

Step 3 Build an image.

docker build -t apptest:v1 .

Step 4 Upload the image to SWR. For details, see Uploading an Image Through a
Container Engine Client.

----End

2.1.2.8 Creating a Container Workload
This section describes how to deploy a workload on CCE. When using CCE for the
first time, create an initial cluster and add a node into the cluster.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://support.huaweicloud.com/eu/usermanual-swr/swr_01_0011.html
https://support.huaweicloud.com/eu/usermanual-swr/swr_01_0011.html

NO TE

Containerized workloads are deployed in a similar way. The difference lies in:
● Whether environment variables need to be set.
● Whether cloud storage is used.

Required Cloud Services
● Cloud Container Engine (CCE): a highly reliable and high-performance service

that allows enterprises to manage containerized applications. With support
for Kubernetes-native applications and tools, CCE makes it simple to set up an
environment for running containers in the cloud.

● Elastic Cloud Server (ECS): a scalable and on-demand cloud server. It helps
you to efficiently set up reliable, secure, and flexible application environments,
ensuring stable service running and improving O&M efficiency.

● Virtual Private Cloud (VPC): an isolated and private virtual network
environment that users apply for in the cloud. You can configure the IP
address ranges, subnets, and security groups, as well as assign elastic IP
addresses and allocate bandwidth in a VPC.

Basic Concepts
● A cluster is a collection of computing resources, including a group of node

resources. A container runs on a node. Before creating a containerized
application, you must have an available cluster.

● A node is a virtual or physical machine that provides computing resources.
You must have sufficient node resources to ensure successful operations such
as creating applications.

● A workload indicates a group of container pods running on CCE. CCE supports
third-party application hosting and provides the full lifecycle (from
deployment to O&M) management for applications. This section describes
how to use a container image to create a workload.

Procedure

Step 1 Prepare the environment as described in Table 2-4.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Table 2-4 Preparing the environment

No. Category Procedure

1 Creating a
VPC

Create a VPC before you create a cluster. A VPC provides
an isolated, configurable, and manageable virtual
network environment for CCE clusters.
If you have a VPC already, skip to the next task.
1. Log in to the management console.
2. In the service list, choose Networking > Virtual

Private Cloud.
3. On the Dashboard page, click Create VPC.
4. Follow the instructions to create a VPC. Retain default

settings for parameters unless otherwise specified.

2 Creating a
key pair

Create a key pair before you create a containerized
application. Key pairs are used for identity authentication
during remote login to a node. If you have a key pair
already, skip this task.
1. Log in to the management console.
2. In the service list, choose Data Encryption Workshop

under Security & Compliance.
3. In the navigation pane, choose Key Pair Service. On

the Private Key Pairs tab, click Create Key Pair.
4. Enter a key pair name, select I agree to host the

private key of the key pair. and I have read and
agree to the Key Pair Service Disclaimer, and click
OK.

5. View and save the private key. For security purposes, a
key pair can be downloaded only once. Keep it secure
to ensure successful login.

Step 2 Create a cluster and a node.

1. Log in to the CCE console. On the Clusters page, click Buy Cluster and select
the type for the cluster to be created.

Configure cluster parameters and select the VPC created in Step 1.

2. Buy a node and select the key pair created in Step 1 as the login option.

Step 3 Deploy a workload on CCE.

1. Log in to the CCE console and click the name of the cluster to access the
cluster console. In the navigation pane, choose Workloads and click Create
Workload.

2. Configure the following parameters, and retain the default settings for other
parameters:

– Workload Name: Set it to apptest.

– Pods: Set it to 1.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Figure 2-3 Basic settings

3. In the Container Settings area, select the image uploaded in Building and
Uploading an Image.

4. In the Container Settings area, choose Environment Variables and add
environment variables for interconnecting with the MySQL database. The
environment variables are set in the startup script.

NO TE

In this example, interconnection with the MySQL database is implemented through
configuring the environment variables. Determine whether to use environment
variables based on your service requirements.

Table 2-5 Configuring environment variables

Variable Name Variable Value/Variable Reference

MYSQL_DB Database name.

MYSQL_URL IP address and port number of the database.

MYSQL_USER Database username.

MYSQL_PASSWOR
D

Database user password.

5. In the Container Settings area, choose Data Storage and configure cloud

storage for persistent data storage.

NO TE

In this example, the MongoDB database is used and persistent data storage is also
needed, so you need to configure cloud storage. Determine whether to use cloud
storage based on your service requirements.

The mounted path must be the same as the MongoDB storage path in the
Docker startup script. For details, see the startup script. In this example, the
path is /usr/local/mongodb/data.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Figure 2-4 Configuring cloud storage

6. In the Service Settings area, click to add a service, configure workload
access parameters, and click OK.

NO TE

In this example, the application will be accessible from public networks by using an
elastic IP address.

– Service Name: name of the application that can be accessed externally.
In this example, this parameter is set to apptest.

– Service Type: Select NodePort.
– Service Affinity

▪ Cluster-level: The IP addresses and access ports of all nodes in a
cluster can be used to access the workload associated with the
Service. Service access will cause performance loss due to route
redirection, and the source IP address of the client cannot be
obtained.

▪ Node-level: Only the IP address and access port of the node where
the workload is located can be used to access the workload
associated with the Service. Service access will not cause
performance loss due to route redirection, and the source IP address
of the client can be obtained.

– Port

▪ Protocol: Set it to TCP.

▪ Service Port: port for accessing the Service.

▪ Container Port: port that the application will listen on the container.
In this example, this parameter is set to 8080.

▪ Node Port: Set it to Auto. The system automatically opens a real
port on all nodes in the current cluster and then maps the port
number to the container port.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Figure 2-5 Creating a Service

7. Click Create Workload.
After the workload is created, you can view the running workload in the
workload list.

----End

Verifying a Workload
After a workload is created, you can access the workload to check whether the
deployment is successful.

In the preceding configuration, the NodePort mode is selected to access the
workload by using IP address:Port number. If the access is successful, the
workload is successfully deployed.

You can obtain the access mode from the Access Mode tab on the workload
details page.

Cloud Container Engine
Best Practices 2 Containerization

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

3 Migration

3.1 Migrating Kubernetes Clusters to CCE

3.1.1 Solution Overview

Application Scenarios

Containers are growing in popularity and Kubernetes simplifies containerized
deployment. Many companies choose to build their own Kubernetes clusters.
However, the O&M workload of on-premises clusters is heavy, and O&M personnel
need to configure the management systems and monitoring solutions by
themselves. This increases the labor costs while decreasing the efficiency.

In terms of performance, an on-premises cluster has poor scalability due to its
fixed specifications. Auto scaling cannot be implemented in case of traffic surges,
which may easily result in the insufficient or waste of cluster resources. In
addition, disaster recovery risks are not considered for deploying an on-premises
cluster, leading to poor reliability. Once a fault occurs, the entire cluster may fail,
resulting in serious production incidents.

Now you can address the preceding challenges by using CCE, a service that allows
easy cluster management and flexible scaling, integrated with application service
mesh and Helm charts to simplify cluster O&M and reduce operations costs. CCE is
easy to use and delivers high performance, security, reliability, openness, and
compatibility. This section describes the solution and procedure for migrating on-
premises clusters to CCE.

Migration Solution

This section describes a cluster migration solution, which applies to the following
types of clusters:

● Kubernetes clusters built in local IDCs
● On-premises clusters built using multiple ECSs
● Cluster services provided by other cloud service providers

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

● CCE clusters that are no longer maintained and cannot be upgraded in place

Before the migration, analyze all resources in the source clusters and then
determine the migration solution. Resources that can be migrated include
resources inside and outside the clusters, as listed in the following table.

Table 3-1 Resources that can be migrated

Category Migration Object Remarks

Resources
inside a
cluster

All objects in a cluster,
including pods, jobs, Services,
Deployments, and ConfigMaps.

You are not advised to migrate
the resources in the velero and
kube-system namespaces.
● velero: Resources in this

namespace are created by
the migration tool and do
not need to be migrated.

● kube-system: Resources in
this namespace are system
resources. If this namespace
of the source cluster
contains resources created
by users, migrate the
resources on demand.

CAUTION
If you are migrating or backing up
cluster resources in CCE, for
example, from a namespace to
another, do not back up Secret
paas.elb. It is because secret
paas.elb is periodically updated.
After the backup is complete, the
secret may become invalid when it
is restored. As a result, network
storage functions are affected.

PersistentVolumes (PVs)
mounted to containers

Due to restrictions of the Restic
tool, migration is not
supported for the hostPath
storage volume. For details
about how to solve the
problem, see Storage Volumes
of the HostPath Type Cannot
Be Backed Up.

Resources
outside a
cluster

On-premises image repository Resources can be migrated to
SoftWare Repository for
Container (SWR).

Non-containerized database Resources can be migrated to
Relational Database Service
(RDS).

Non-local storage, such as
object storage

Resources can be migrated to
Object Storage Service (OBS).

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Figure 3-1 shows the migration process. You can migrate resources outside a
cluster as required.

Figure 3-1 Migration solution diagram

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Migration Process

The cluster migration process is as follows:

Step 1 Plan resources for the target cluster.

For details about the differences between CCE clusters and on-premises clusters,
see Key Performance Parameter in Planning Resources for the Target Cluster.
Plan resources as required and ensure that the performance configuration of the
target cluster is the same as that of the source cluster.

Step 2 Migrate resources outside a cluster.

To migrate resources outside the cluster, see Migrating Resources Outside a
Cluster.

Step 3 Install the migration tool.

After resources outside a cluster are migrated, you can use a migration tool to
back up and restore application configurations in the source and target clusters.
For details about how to install the tool, see Installing the Migration Tool.

Step 4 Migrate resources in the cluster.

Use Velero to back up resources in the source cluster to OBS and restore the
resources in the target cluster. For details, see Migrating Resources in a Cluster.

● Backing Up Applications in the Source Cluster
To back up resources, use the Velero tool to create a backup object in the
original cluster, query and back up cluster data and resources, package the

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

data, and upload the package to the object storage that is compatible with
the S3 protocol. Cluster resources are stored in the JSON format.

● Restoring Applications in the Target Cluster
During restoration in the target cluster, Velero specifies the temporary object
bucket that stores the backup data, downloads the backup data to the new
cluster, and redeploys resources based on the JSON file.

Step 5 Update resources accordingly.

After the migration, cluster resources may fail to be deployed. Update the faulty
resources. The possible adaptation problems are as follows:

● Updating Images
● Updating Services
● Updating the Storage Class
● Updating Databases

Step 6 Perform additional tasks.

After cluster resources are properly deployed, verify application functions after the
migration and switch service traffic to the target cluster. After confirming that all
services are running properly, bring the source cluster offline.

----End

3.1.2 Planning Resources for the Target Cluster
CCE allows you to customize cluster resources to meet various service
requirements. Table 3-2 lists the key performance parameters of a cluster and
provides the planned values. You can set the parameters based on your service
requirements. It is recommended that the performance configuration be the same
as that of the source cluster.

NO TICE

After a cluster is created, the resource parameters marked with asterisks (*) in
Table 3-2 cannot be modified.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Table 3-2 CCE cluster planning

Resourc
e

Key
Performanc
e Parameter

Description Example
Value

Cluster *Cluster Type ● CCE cluster: supports VM nodes. You
can run your containers in a secure
and stable container runtime
environment based on a high-
performance network model.

● CCE Turbo cluster: runs on a cloud
native infrastructure that features
software-hardware synergy to support
passthrough networking, high security
and reliability, and intelligent
scheduling, and BMS nodes.

CCE
cluster

*Network
Model

● VPC network: The container network
uses VPC routing to integrate with the
underlying network. This network
model is applicable to performance-
intensive scenarios. The maximum
number of nodes allowed in a cluster
depends on the route quota in a VPC
network.

● Tunnel network: The container
network is an overlay tunnel network
on top of a VPC network and uses the
VXLAN technology. This network
model is applicable when there is no
high requirements on performance.

● Cloud Native Network 2.0: The
container network deeply integrates
the elastic network interface (ENI)
capability of VPC, uses the VPC CIDR
block to allocate container addresses,
and supports passthrough networking
to containers through a load balancer.

VPC
network

*Number of
master
nodes

● 3: Three master nodes will be created
to deliver better DR performance. If
one master node is faulty, the cluster
can still be available without affecting
service functions.

● 1: A single master node will be
created. This mode is not
recommended in commercial
scenarios.

3

Node OS ● EulerOS
● CentOS

EulerOS

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Resourc
e

Key
Performanc
e Parameter

Description Example
Value

Node
Specification
s (vary
depending
on the actual
region)

● General-purpose: provides a balance
of computing, memory, and network
resources. It is a good choice for many
applications. General-purpose nodes
can be used for web servers, workload
development, workload testing, and
small-scale databases.

● Memory-optimized: provides higher
memory capacity than general-
purpose nodes and is suitable for
relational databases, NoSQL, and
other workloads that are both
memory-intensive and data-intensive.

● GPU-accelerated: provides powerful
floating-point computing and is
suitable for real-time, highly
concurrent massive computing.
Graphical processing units (GPUs) of P
series are suitable for deep learning,
scientific computing, and CAE. GPUs of
G series are suitable for 3D animation
rendering and CAD. GPU-accelerated
nodes can be added only to clusters of
v1.11 or later.

● Disk-intensive: supports local disk
storage and provides high networking
performance. It is designed for
workloads requiring high throughput
and data switching, such as big data
workloads.

General-
purpose
(node
specifica
tions: 4
vCPUs
and 8
GiB
memory)

System Disk ● High I/O: The backend storage media
is SAS disks.

● Ultra-high I/O: The backend storage
media is SSD disks.

High I/O

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Resourc
e

Key
Performanc
e Parameter

Description Example
Value

Storage Type ● EVS volumes: Mount an EVS volume
to a container path. When containers
are migrated, the attached EVS
volumes are migrated accordingly. This
storage mode is suitable for data that
needs to be permanently stored.

● SFS volumes: Create SFS volumes and
mount them to a container path. The
file system volumes created by the
underlying SFS service can also be
used. SFS volumes are applicable to
persistent storage for frequent read/
write in multiple workload scenarios,
including media processing, content
management, big data analysis, and
workload analysis.

● OBS volumes: Create OBS volumes
and mount them to a container path.
OBS volumes are applicable to
scenarios such as cloud workload, data
analysis, content analysis, and hotspot
objects.

● SFS Turbo volumes: Create SFS Turbo
volumes and mount them to a
container path. SFS Turbo volumes are
fast, on-demand, and scalable, which
makes them suitable for DevOps,
containerized microservices, and
enterprise office applications.

EVS
volumes

3.1.3 Procedure

3.1.3.1 Migrating Resources Outside a Cluster
If your migration does not involve resources outside a cluster listed in Table 3-1 or
you do not need to use other services to update resources after the migration, skip
this section.

Migrating Container Images
To ensure that container images can be properly pulled after cluster migration and
improve container deployment efficiency, you are advised to migrate private
images to SoftWare Repository for Container (SWR). CCE works with SWR to
provide a pipeline for automated container delivery. Images are pulled in parallel,
which greatly improves container delivery efficiency.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Manually migrate container images.

Step 1 Remotely log in to any node in the source cluster and run the docker pull
command to pull all images to the local host.

Step 2 Log in to the SWR console, click Login Command in the upper right corner of the
page, and copy the command.

Step 3 Run the copied login command on the node.

The message "Login Succeeded" will be displayed upon a successful login.

Step 4 Add tags to all local images.
docker tag [Image name 1:tag 1] [Image repository address]/[Organization name]/[Image name 2:tag 2]

● [Image name 1:tag 1]: name and tag of the local image to be pulled.
● [Image repository address]: You can obtain the image repository address on

the SWR console.
● [Organization name]: Enter the name of the organization you created on the

SWR console.
● {Image name 2:Tag 2}: image name and tag displayed on the SWR console.

The following is an example:

Step 5 Run the docker push command to upload all local container image files to SWR.
docker push [Image repository address]/[Organization name]/[Image name 2:tag 2]

The following is an example:

----End

3.1.3.2 Installing the Migration Tool
Velero is an open-source backup and migration tool for Kubernetes clusters. With
Restic's PV data backup capability integrated into it, Velero can back up
Kubernetes resource objects (such as Deployments, jobs, Services, and
ConfigMaps) in source clusters and data in PVs mounted to pods and uploaded
them to object storage. When a disaster occurs or migration is required, a target
cluster can obtain the corresponding backup data from the object storage using
Velero and restore cluster resources as required.

According to Migration Solution, prepare temporary object storage to store
backup files before the migration. Velero supports OBS or MinIO as the object
storage. The object storage requires sufficient storage space for storing backup
files. You can estimate the storage space based on your cluster scale and data
volume. OBS buckets are recommended for data backup. For details about how to
deploy Velero, see Installing Velero.

Prerequisites
● The Kubernetes version of the source on-premises cluster must be 1.10 or

later, and the cluster can use DNS and Internet services properly.
● If you use OBS to store backup files, obtain the AK/SK of a user who has the

right to operate OBS.
● If you use MinIO to store backup files, bind an EIP to the server where MinIO

is installed and enable the API and console port of MinIO in the security
group.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://min.io/

● The target CCE cluster has been created.
● The source cluster and target cluster must each have at least one idle node. It

is recommended that the node specifications be 4 vCPUs and 8 GiB memory
or higher.

(Optional) Installing MinIO
MinIO is an open-source, high-performance object storage tool compatible with
the S3 API protocol. If MinIO is used to store backup files for cluster migration,
you need a temporary server to deploy MinIO and provide services for external
systems. If you use OBS to store backup files, skip this section and go to Installing
Velero.

MinIO can be installed in any of the following locations:

● Temporary ECS outside the cluster
If the MinIO server is installed outside the cluster, backup files will not be
affected when a catastrophic fault occurs in the cluster.

● Idle nodes in the cluster
You can remotely log in to a node and install MinIO or install the
containerized MinIO. For details, see Velero official document.

NO TICE

For example, to install MinIO in a container, run the following command:
● The storage type in the YAML file provided by Velero is emptyDir. You are

advised to change the storage type to HostPath or Local. Otherwise,
backup files will be permanently lost after the container is restarted.

● Ensure that the MinIO service is accessible externally. Otherwise, backup
files cannot be downloaded outside the cluster. You can change the Service
type to NodePort or use other types of public network access Services.

Regardless of which deployment method is used, the server where MinIO is
installed must have sufficient storage space, an EIP must be bound to the server,
and the MinIO service port must be enabled in the security group. Otherwise,
backup files cannot be uploaded or downloaded.

In this example, MinIO is installed on a temporary ECS outside the cluster.

Step 1 Download MinIO.
mkdir /opt/minio
mkdir /opt/miniodata
cd /opt/minio
wget https://dl.minio.io/server/minio/release/linux-amd64/minio
chmod +x minio

Step 2 Set the username and password of MinIO.

The username and password configured using this method are temporary
environment variables and must be reset after the service is restarted. Otherwise,
the default root credential minioadmin:minioadmin will be used to create the
service.
export MINIO_ROOT_USER=minio
export MINIO_ROOT_PASSWORD=minio123

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://velero.io/docs/v1.13/contributions/minio/#set-up-server

Step 3 Create a service. In the command, /opt/miniodata/ indicates the local disk path
for MinIO to store data.

The default API port of MinIO is 9000, and the console port is randomly
generated. You can use the --console-address parameter to specify a console port.
./minio server /opt/miniodata/ --console-address ":30840" &

NO TE

Enable the API and console ports in the firewall and security group on the server where
MinIO is to be installed. Otherwise, access to the object bucket will fail.

Step 4 Use a browser to access http://{EIP of the node where MinIO resides}:30840. The
MinIO console page is displayed.

----End

Installing Velero
Go to the OBS console or MinIO console and create a bucket named velero to
store backup files. You can custom the bucket name, which must be used when
installing Velero. Otherwise, the bucket cannot be accessed and the backup fails.
For details, see Step 5.

NO TICE

● Velero instances need to be installed and deployed in both the source and
target clusters. The installation procedures are the same, which are used for
backup and restoration, respectively.

● The master node of a CCE cluster does not provide a port for remote login. You
can install Velero using kubectl.

● If there are a large number of resources to back up, you are advised to adjust
the CPU and memory resources of Velero and node-agent to 1 vCPU and 1 GiB
memory or higher. For details, see Backup Tool Resources Are Insufficient.

● The object storage bucket for storing backup files must be empty.

Download the latest, stable binary file from https://github.com/vmware-tanzu/
velero/releases. This section uses Velero 1.13.1 as an example. The installation
process in the source cluster is the same as that in the target cluster.

Step 1 Log in to a VM that can access the public network and use kubectl to access the
cluster where Velero is to be installed.

Step 2 Download the binary file of Velero 1.13.1.
wget https://github.com/vmware-tanzu/velero/releases/download/v1.13.1/velero-v1.13.1-linux-amd64.tar.gz

Step 3 Install the Velero client.
tar -xvf velero-v1.13.1-linux-amd64.tar.gz
cp ./velero-v1.13.1-linux-amd64/velero /usr/local/bin

Step 4 Create the access key file credentials-velero for the backup object storage.
vim credentials-velero

Replace the AK/SK in the file based on the site requirements. If MinIO is used, the
AK/SK are the username and password created in Step 2.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases

[default]
aws_access_key_id = {AK}
aws_secret_access_key = {SK}

Step 5 Deploy the Velero server. Change the value of --bucket to the name of the created
object storage bucket. In this example, the bucket name is velero. For more
information about custom installation parameters, see Customize Velero Install.

Table 3-3 Installation parameters of Velero

Parameter Description

--provider AWS S3 component to be used

--plugins API component compatible with AWS S3. Both OBS and MinIO
support the S3 protocol.

--bucket Name of the object storage bucket for storing backup files. The
bucket must be created in advance.

--secret-file Secret file for accessing the object storage, that is, the
credentials-velero file created in Step 4.

--use-node-
agent

Whether to enable PV data backup. You are advised to enable
this function. Otherwise, storage volume resources cannot be
backed up.

--use-volume-
snapshots

Whether to create the VolumeSnapshotLocation object for PV
snapshot, which requires support from the snapshot program.
Set this parameter to false.

--backup-
location-
config

OBS bucket configurations, including region, s3ForcePathStyle,
and s3Url.

region Region to which object storage bucket belongs.
● If MinIO is used, set this parameter to minio.

s3ForcePathSt
yle

The value true indicates that the S3 file path format is used.

s3Url API access address of the object storage bucket.
● If MinIO is used, set this parameter to http://{EIP of the

node where minio is located}:9000. The value of this
parameter is determined based on the IP address and port
of the node where MinIO is installed.
NOTE

– The access port in s3Url must be set to the API port of MinIO
instead of the console port. The default API port of MinIO is
9000.

– To access MinIO installed outside the cluster, enter the public IP
address of MinIO.

Step 6 By default, a namespace named velero is created for the Velero instance. Run the
following command to view the pod status:

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://velero.io/docs/v1.13/customize-installation/

$ kubectl get pod -n velero
NAME READY STATUS RESTARTS AGE
node-agent-rn29c 1/1 Running 0 16s
velero-c9ddd56-tkzpk 1/1 Running 0 16s

NO TE

To prevent memory insufficiency during backup in the actual production environment, you
are advised to change the CPU and memory allocated to node-agent and Velero by
referring to Backup Tool Resources Are Insufficient.

Step 7 Check the interconnection between Velero and the object storage and ensure that
the status is Available.
$ velero backup-location get
NAME PROVIDER BUCKET/PREFIX PHASE LAST VALIDATED ACCESS MODE DEFAULT
default aws velero Available 2021-10-22 15:21:12 +0800 CST ReadWrite true

----End

3.1.3.3 Migrating Resources in a Cluster

Application Scenarios

WordPress is used as an example to describe how to migrate an application from
an on-premises Kubernetes cluster to a CCE cluster. The WordPress application
consists of the WordPress and MySQL components, which are containerized. The
two components are bound to two local storage volumes of the Local type
respectively and provide external access through the NodePort Service.

Before the migration, use a browser to access the WordPress site, create a site
named Migrate to CCE, and publish an article to verify the integrity of PV data
after the migration. The article published in WordPress will be stored in the
wp_posts table of the MySQL database. If the migration is successful, all contents
in the database will be migrated to the new cluster. You can verify the PV data
migration based on the migration result.

Prerequisites
● Before the migration, clear the abnormal pod resources in the source cluster.

If the pod is in the abnormal state and has a PVC mounted, the PVC is in the
pending state after the cluster is migrated.

● Ensure that the cluster on the CCE side does not have the same resources as
the cluster to be migrated because Velero does not restore the same resources
by default.

● To ensure that container images can be properly pulled after cluster
migration, migrate the images to SWR.

● CCE does not support EVS disks of the ReadWriteMany type. If resources of
this type exist in the source cluster, change the storage type to
ReadWriteOnce.

● Velero cannot back up or restore HostPath volumes. For details, see
Limitations. To back up storage volumes of this type, replace the hostPath
volumes with local volumes. If a backup task involves storage of the HostPath
type, the storage volumes of this type will be automatically skipped and a
warning message will be generated. This will not cause a backup failure.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

https://velero.io/docs/v1.13/file-system-backup/#limitations

Backing Up Applications in the Source Cluster

Step 1 (Optional) To back up the data of a specified storage volume in the pod, add an
annotation to the pod. The annotation template is as follows:
kubectl -n <namespace> annotate <pod/pod_name> backup.velero.io/backup-
volumes=<volume_name_1>,<volume_name_2>,...

● <namespace>: namespace where the pod is located.
● <pod_name>: pod name.
● <volume_name>: name of the persistent volume mounted to the pod. You

can run the describe statement to query the pod information. The Volume
field indicates the names of all persistent volumes attached to the pod.

Add annotations to the pods of WordPress and MySQL. The pod names are
wordpress-758fbf6fc7-s7fsr and mysql-5ffdfbc498-c45lh. As the pods are in the
default namespace default, the -n <NAMESPACE> parameter can be omitted.

kubectl annotate pod/wordpress-758fbf6fc7-s7fsr backup.velero.io/backup-volumes=wp-storage
kubectl annotate pod/mysql-5ffdfbc498-c45lh backup.velero.io/backup-volumes=mysql-storage

Step 2 Back up the application. During the backup, you can specify resources based on
parameters. If no parameter is added, the entire cluster resources are backed up
by default. For details about the parameters, see Resource filtering.
● --default-volumes-to-fs-backup: indicates that the PV backup tool is used to

back up all storage volumes attached to a pod. HostPath volumes are not
supported. If this parameter is not specified, the storage volume specified by
annotation in Step 1 is backed up by default. This parameter is available only
when --use-node-agent is specified during Velero installation.
velero backup create <backup-name> --default-volumes-to-fs-backup

● --include-namespaces: backs up resources in a specified namespace.
velero backup create <backup-name> --include-namespaces <namespace>

● --include-resources: backs up the specified resources.
velero backup create <backup-name> --include-resources deployments

● --selector: backs up resources that match the selector.
velero backup create <backup-name> --selector <key>=<value>

In this section, resources in the namespace default are backed up. wordpress-
backup is the backup name. Specify the same backup name when restoring
applications. An example is as follows:

velero backup create wordpress-backup --include-namespaces default --default-volumes-to-fs-backup

If the following information is displayed, the backup task is successfully created:

Backup request "wordpress-backup" submitted successfully.
Run `velero backup describe wordpress-backup` or `velero backup logs wordpress-backup` for more details.

Step 3 Check the backup status.
velero backup get

Information similar to the following is displayed:
NAME STATUS ERRORS WARNINGS CREATED EXPIRES STORAGE
LOCATION SELECTOR
wordpress-backup Completed 0 0 2021-10-14 15:32:07 +0800 CST 29d default
<none>

In addition, you can go to the object bucket to view the backup files. The backups
path is the application resource backup path, and the other is the PV data backup
path.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

https://velero.io/docs/v1.13/resource-filtering/

----End

Restoring Applications in the Target Cluster
The storage infrastructure of an on-premises cluster is different from that of a
cloud cluster. After the cluster is migrated, PVs cannot be mounted to pods.
Therefore, during the migration, update the storage class of the target cluster to
shield the differences of underlying storage interfaces between the two clusters
when creating a workload and request storage resources of the corresponding
type. For details, see Updating the Storage Class.

Step 1 Use kubectl to connect to the CCE cluster. Create a storage class with the same
name as that of the source cluster.

In this example, the storage class name of the source cluster is local and the
storage type is local disk. Local disks completely depend on the node availability.
The data DR performance is poor. When the node is unavailable, the existing
storage data is affected. Therefore, EVS volumes are used as storage resources in
CCE clusters, and SAS disks are used as backend storage media.

NO TE

● When an application containing PV data is restored in a CCE cluster, the defined storage
class dynamically creates and mounts storage resources (such as EVS volumes) based on
the PVC.

● The storage resources of the cluster can be changed as required, not limited to EVS
volumes. To mount other types of storage, such as file storage and object storage, see
Updating the Storage Class.

YAML file of the migrated cluster:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

The following is an example of the YAML file of the migration cluster:
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local
 selfLink: /apis/storage.k8s.io/v1/storageclasses/csi-disk
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SAS
 everest.io/passthrough: "true"
provisioner: everest-csi-provisioner

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

reclaimPolicy: Delete
volumeBindingMode: Immediate

Step 2 Use the Velero tool to create a restore and specify a backup named wordpress-
backup to restore the WordPress application to the CCE cluster.
velero restore create --from-backup wordpress-backup

You can run the velero restore get statement to view the application restoration
status.

Step 3 After the restoration is complete, check whether the application is running
properly. If other adaptation problems may occur, rectify the fault by following the
procedure described in Updating Resources Accordingly.

----End

3.1.3.4 Updating Resources Accordingly

Updating Images
The WordPress and MySQL images used in this example can be pulled from SWR.
Therefore, the image pull failure (ErrImagePull) will not occur. If the application to
be migrated is created from a private image, perform the following steps to
update the image:

Step 1 Migrate the image resources to SWR.

Step 2 Log in to the SWR console and obtain the image path used after the migration.

The image path is in the following format:

Step 3 Run the following command to modify the workload and replace the image field
in the YAML file with the image path:
kubectl edit deploy wordpress

Step 4 Check the running status of the workload.

----End

Updating Services
After the cluster is migrated, the Service of the source cluster may fail to take
effect. You can perform the following steps to update the Service. If ingresses are
configured in the source cluster, connect the new cluster to ELB again after the
migration.

Step 1 Connect to the cluster using kubectl.

Step 2 Edit the YAML file of the corresponding Service to change the Service type and
port number.
kubectl edit svc wordpress

To update load balancer resources, connect to ELB again. Add the annotations.
annotations:
 kubernetes.io/elb.class: union # Shared load balancer
 kubernetes.io/elb.id: 9d06a39d-xxxx-xxxx-xxxx-c204397498a3 # Load balancer ID, which can be queried
on the ELB console.
 kubernetes.io/elb.subnet-id: f86ba71c-xxxx-xxxx-xxxx-39c8a7d4bb36 # ID of the subnet where the load
balancer resides

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

 kubernetes.io/elb.session-affinity-mode: SOURCE_IP # Enable the sticky session based on the source IP
address.

Step 3 Use a browser to check whether the Service is available.

----End

Updating the Storage Class

As the storage infrastructures of clusters may be different, storage volumes cannot
be mounted to the target cluster. You can use either of the following methods to
update the volumes:

NO TICE

Both update methods can be performed only before the application is restored in
the target cluster. Otherwise, PV data resources may fail to be restored. In this
case, use Velero to restore applications after the storage class update is complete.
For details, see Restoring Applications in the Target Cluster.

Method 1: Creating a ConfigMap mapping

Step 1 Create a ConfigMap in the CCE cluster and map the storage class used by the
source cluster to the default storage class of the CCE cluster.
apiVersion: v1
kind: ConfigMap
metadata:
 name: change-storageclass-plugin-config
 namespace: velero
 labels:
 app.kubernetes.io/name: velero
 velero.io/plugin-config: "true"
 velero.io/change-storage-class: RestoreItemAction
data:
 {Storage class name01 in the source cluster}: {Storage class name01 in the target cluster}
 {Storage class name02 in the source cluster}: {Storage class name02 in the target cluster}

Step 2 Run the following command to apply the ConfigMap configuration:
$ kubectl create -f change-storage-class.yaml
configmap/change-storageclass-plugin-config created

----End

Method 2: Creating a storage class with the same name

Step 1 Run the following command to query the default storage class supported by CCE:
kubectl get sc

Information similar to the following is displayed:
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
csi-disk everest-csi-provisioner Delete Immediate true 3d23h
csi-disk-topology everest-csi-provisioner Delete WaitForFirstConsumer true 3d23h
csi-sfs everest-csi-provisioner Delete Immediate false 3d23h
csi-obs everest-csi-provisioner Delete Immediate false 3d23h
csi-sfsturbo everest-csi-provisioner Delete Immediate true 3d23h

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Table 3-4 Storage classes

Storage Class Storage Resource

csi-disk EVS

csi-disk-topology EVS with delayed binding

csi-sfs SFS

csi-obs OBS

csi-sfsturbo SFS Turbo

Step 2 Run the following command to export the required storage class details in YAML
format:
kubectl get sc <storageclass-name> -o=yaml

Step 3 Copy the YAML file and create a new storage class.

Change the storage class name to the name used in the source cluster to call basic
storage resources of the cloud.

The YAML file of csi-obs is used as an example. Delete the unnecessary
information in italic under the metadata field and modify the information in bold.
You are advised not to modify other parameters.
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 creationTimestamp: "2021-10-18T06:41:36Z"
 name: <your_storageclass_name> # Use the name of the storage class used in the source cluster.
 resourceVersion: "747"
 selfLink: /apis/storage.k8s.io/v1/storageclasses/csi-obs
 uid: 4dbbe557-ddd1-4ce8-bb7b-7fa15459aac7
parameters:
 csi.storage.k8s.io/csi-driver-name: obs.csi.everest.io
 csi.storage.k8s.io/fstype: obsfs
 everest.io/obs-volume-type: STANDARD
provisioner: everest-csi-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate

NO TE

● SFS Turbo file systems cannot be directly created using StorageClass. Go to the SFS
Turbo console to create SFS Turbo file systems that belong to the same VPC subnet and
have inbound ports (111, 445, 2049, 2051, 2052, and 20048) enabled in the security
group.

● CCE does not support EVS disks of the ReadWriteMany type. If resources of this type
exist in the source cluster, change the storage type to ReadWriteOnce.

Step 4 Restore the cluster application by referring to Restoring Applications in the
Target Cluster and check whether the PVC is successfully created.
kubectl get pvc

In the command output, the VOLUME column indicates the name of the PV
automatically created using the storage class.
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc Bound pvc-4c8e655a-1dbc-4897-ae6c-446b502f5e77 5Gi RWX local 13s

----End

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Updating Databases
In this example, the database is a local MySQL database and does not need to be
reconfigured after the migration.

NO TE

● If the RDS instance is in the same VPC as the CCE cluster, it can be accessed using the
private IP address. Otherwise, it can only be accessed only through public networks by
binding an EIP. You are advised to use the private network access mode for high security
and good RDS performance.

● Ensure that the inbound rule of the security group to which RDS belongs has been
enabled for the cluster. Otherwise, the connection will fail.

Step 1 Log in to the RDS console and obtain the private IP address and port number of
the DB instance on the Basic Information page.

Step 2 Run the following command to modify the WordPress workload:
kubectl edit deploy wordpress

Set the environment variables in the env field.

● WORDPRESS_DB_HOST: address and port number used for accessing the
database, that is, the internal network address and port number obtained in
the previous step.

● WORDPRESS_DB_USER: username for accessing the database.
● WORDPRESS_DB_PASSWORD: password for accessing the database.
● WORDPRESS_DB_NAME: name of the database to be connected.

Step 3 Check whether the RDS database is properly connected.

----End

3.1.3.5 Performing Additional Tasks

Verifying Application Functions
Cluster migration involves full migration of application data, which may cause
intra-application adaptation problems. In this example, after the cluster is
migrated, the redirection link of the article published in WordPress is still the
original domain name. If you click the article title, you will be redirected to the
application in the source cluster. Therefore, search for the original domain name in
WordPress and replace it with the new domain name, change the values of
site_url and primary URL in the database. For details, see Changing The Site
URL.

Access the new address of the WordPress application. If the article published
before the migration is displayed, the data of the persistent volume is successfully
restored.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://wordpress.org/support/article/changing-the-site-url/
https://wordpress.org/support/article/changing-the-site-url/

Switching Live Traffic to the Target Cluster

O&M personnel switch DNS to direct live traffic to the target cluster.

● DNS traffic switching: Adjust the DNS configuration to switch traffic.
● Client traffic switching: Upgrade the client code or update the configuration

to switch traffic.

Bringing the Source Cluster Offline

After confirming that the service on the target cluster is normal, bring the source
cluster offline and delete the backup files.

● Verify that the service on the target cluster is running properly.
● Bring the source cluster offline.
● Delete backup files.

3.1.3.6 Troubleshooting

Storage Volumes of the HostPath Type Cannot Be Backed Up

Both HostPath and Local volumes are local storage volumes. However, the Restic
tool integrated in Velero cannot back up the PVs of the HostPath type and
supports only the Local type. Therefore, you need to replace the storage volumes
of the HostPath type with the Local type in the source cluster.

NO TE

It is recommended that Local volumes be used in Kubernetes v1.10 or later and can only be
statically created. For details, see local.

Step 1 Create a storage class for the Local volume.

Example YAML:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

https://kubernetes.io/docs/concepts/storage/volumes/#local

Step 2 Change the hostPath field to the local field, specify the original local disk path of
the host machine, and add the nodeAffinity field.

Example YAML:
apiVersion: v1
kind: PersistentVolume
metadata:
 name: mysql-pv
 labels:
 app: mysql
spec:
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 5Gi
 storageClassName: local # Storage class created in the previous step
 persistentVolumeReclaimPolicy: Delete
 local:
 path: "/mnt/data" # Path of the attached local disk
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: Exists

Step 3 Run the following commands to verify the creation result:
kubectl get pv

Information similar to the following is displayed:
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
mysql-pv 5Gi RWO Delete Available local 3s

----End

Backup Tool Resources Are Insufficient
In the production environment, if there are many backup resources, for example,
the default resource size of the backup tool is used, the resources may be
insufficient. In this case, perform the following steps to adjust the CPU and
memory size allocated to the Velero and Restic:

Before installing Velero:

You can specify the size of resources used by Velero and Restic when installing
Velero.

The following is an example of installation parameters:
velero install \
 --velero-pod-cpu-request 500m \
 --velero-pod-mem-request 1Gi \
 --velero-pod-cpu-limit 1000m \
 --velero-pod-mem-limit 1Gi \
 --use-node-agent \
 --node-agent-pod-cpu-request 500m \
 --node-agent-pod-mem-request 1Gi \
 --node-agent-pod-cpu-limit 1000m \
 --node-agent-pod-mem-limit 1Gi

After Velero is installed:

Step 1 Edit the YAML files of the Velero and node-agent workloads in the velero
namespace.

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

kubectl edit deploy velero -n velero
kubectl edit ds node-agent -n velero

Step 2 Modify the resource size under the resources field. The modification is the same
for the Velero and Restic workloads, as shown in the following:
resources:
 limits:
 cpu: "1"
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi

----End

Cloud Container Engine
Best Practices 3 Migration

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

4 Disaster Recovery

4.1 Recommended Configurations for HA CCE Clusters
This section describes the recommended configurations for a Kubernetes cluster in
which applications can run stably and reliably.

Item Description Recommended
Operations

Master
node

CCE is a hosted Kubernetes cluster
service. You do not need to perform
O&M on the master nodes. You can
configure your cluster specifications to
improve the stability and reliability.

● Deploying the Master
Nodes in Different
AZs

● Selecting a Network
Model

● Selecting a Service
Forwarding Mode

● Configuring Quotas
and Limits for the
Cloud Service
Resources and
Resources in a Cluster

● Monitoring Metrics of
the Master Nodes

Worker
node

In a Kubernetes cluster, the data plane
consists of worker nodes that can run
containerized applications and
transmit network traffic. When using
CCE, perform O&M on worker nodes
by yourself. To achieve HA, ensure the
worker nodes' scalability and
repairability and pay attention to the
running statuses of the worker nodes'
key components.

● Partitioning Data
Disks Attached to a
Node

● Running npd
● Configuring the DNS

Cache
● Properly Deploying

CoreDNS

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Item Description Recommended
Operations

Applicatio
n

If you want your applications to be
always available, especially during
peak hours, run them in a scalable
and elastic manner and pay attention
to their running statuses.

● Running Multiple
Pods

● Configuring Resource
Quotas for a
Workload

● Deploying an
Application in
Multiple AZs

● Deploying the System
Add-ons in Multiple
AZs

● Configuring Auto
Scaling

● Viewing Logs,
Monitoring Metrics,
and Adding Alarm
Rules

Deploying the Master Nodes in Different AZs

Multiple regions are provided for you to deploy your services, and there are
different availability zones (AZs) in each region. An AZ is a collection of one or
more physical data centers with independent cooling, fire extinguishing, moisture-
proof, and electricity facilities in each AZ. AZs within a region are connected using
high-speed optical fibers. This allows you to build cross-AZ HA systems.

When creating a cluster, enable the HA mode of the cluster and configure the
distribution mode of the master nodes. The master nodes are randomly deployed
in different AZs. This ensures a higher disaster recovery (DR) capability of the
cluster.

You can also customize the distribution mode. The following two modes are
supported:

● Random: Master nodes are deployed in different AZs for DR.

● Custom: Master nodes are deployed in specific AZs.

– Host: Master nodes are deployed on different hosts in the same AZ.

– Custom: Master nodes are deployed in the AZ you specify.

Figure 4-1 Configuring an HA cluster

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Selecting a Network Model
● Network model: CCE supports VPC network, Cloud Native 2.0 network, and

container tunnel network models for your clusters. Different models have
different performance and functions. For details, see Network Models.

● VPC network: To enable your applications to access other cloud services like
RDS, create related services in the same VPC network as your cluster which
runs these applications. This is because services using different VPC networks
are isolated from each other. If you have created instances, use VPC peering
connections to enable communications between VPCs.

● Container CIDR block: Do not configure a small container CIDR block.
Otherwise, the number of supported nodes will be limited.
– For a cluster using a VPC network, if the subnet mask of the container

CIDR block is /16, there are 256 x 256 IP addresses available. If the
maximum number of pods reserved on each node is 128, the maximum
number of nodes supported is 512.

– For a cluster using a container tunnel network, if the subnet mask of the
container CIDR block is /16, there are 256 x 256 IP addresses assigned to
your cluster. The container CIDR block allocates 16 IP addresses to the
nodes at a time by default. The maximum number of nodes supported by
your cluster is 4096 (65536/16=4096).

– For a cluster using a Cloud Native 2.0 network, the container CIDR block
is the VPC subnet, and the number of containers can be created depends
on the size of the selected subnet.

● Service CIDR block: The service CIDR block determines the upper limit of
Service resources in your cluster. Evaluate your actual needs and then
configure the CIDR block. A created CIDR block cannot be modified. Do not
configure an excessively small one.

For details, see Planning CIDR Blocks for a Cluster.

Selecting a Service Forwarding Mode
kube-proxy is a key component of a Kubernetes cluster. It is responsible for load
balancing and forwarding between a Service and its backend pod. When using
clusters, consider the potential performance problems of the forwarding mode.

CCE supports the iptables and IPVS forwarding modes.

● IPVS allows higher throughput and faster forwarding. It applies to scenarios
where the cluster scale is large or the number of Services is large.

● iptables is the traditional kube-proxy mode. This mode applies to the scenario
where the number of Services is small or there are a large number of short
concurrent connections on the client. When there are more than 1000
Services in the cluster, network delay may occur.

Configuring Quotas and Limits for the Cloud Service Resources and
Resources in a Cluster

CCE allows you to configure resource quotas and limits for your cloud service
resources and resources in your clusters. This prevents excessive use of resources.
When creating your applications for CCE clusters, consider these limits and

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

https://support.huaweicloud.com/eu/usermanual-vpc/en-us_topic_0046809840.html
https://support.huaweicloud.com/eu/usermanual-vpc/en-us_topic_0046809840.html

periodically review them. This will avoid scaling failures caused by insufficient
quotas during application running.

● Configuring resource quotas for cloud services: Cloud services like ECS, EVS,
VPC, ELB, and SWR are also used to run the CCE clusters. If the existing
resource quotas cannot meet your requirements, submit a service ticket to
increase the quotas.

● Configuring resource quotas for a cluster: You are allowed to configure the
namespace-level resource quotas to limit the number of objects of a certain
type created in a namespace and the total computing resources like CPU and
memory consumed by the objects. For details, see Configuring Resource
Quotas.

Monitoring Metrics of the Master Nodes
Monitoring metrics of the master nodes allows you to check the master nodes'
performance and efficiently identify problems occurred on them. The master
nodes which are not running properly may lower application reliability.

To monitor the kube-apiserver, kube-controller, kube-scheduler, and etcd-server
components of the master nodes, you need to install the Cloud Native Cluster
Monitoring add-on in the cluster. With grafana, you can use the Kubernetes
monitoring overview dashboard to monitor metrics of Kubernetes API server
requests and latency and etcd latency.

If your prometheus add-on is used, you can manually add monitoring metrics. For
details, see Monitoring Metrics of Master Node Components Using
Prometheus.

Partitioning Data Disks Attached to a Node
By default, the first data disk of a worker node is for storing the container runtime
and kubelet components. The remaining capacity of this data disk affects image
download and container startup and running. For details, see Data Disk Space
Allocation.

The default space of this date disk is 100 GiB. You can adjust the space as
required. Images, system logs, and application logs are stored on data disks.
Therefore, you need to evaluate the number of pods to be deployed on each node,
the size of logs, images, and temporary data of each pod, as well as some
reserved space for the system. For details, see Selecting a Data Disk for the
Node.

Running npd
A failure in a worker node may affect the availability of the applications. CCE
Node Problem Detector is used to monitor node exceptions. It helps you detect
and handle latent exceptions in a timely manner. You can also customize the
check items, including target node, check period, and triggering threshold.

Configuring the DNS Cache
When the number of DNS requests in a cluster increases, the load of CoreDNS
increases and the following issues may occur:

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0287.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0287.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0406.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0406.html
https://grafana.com/grafana/dashboards/14623
https://grafana.com/grafana/dashboards/14623
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0559.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0559.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0341.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0341.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0132.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0132.html

● Increased delay: CoreDNS needs to process more requests, which may slow
down the DNS query and affect service performance.

● Increased resource usage: To ensure DNS performance, CoreDNS requires
higher specifications.

To minimize the impact of DNS delay, deploy NodeLocal DNSCache in the cluster
to improve the networking stability and performance. NodeLocal DNSCache runs a
DNS cache proxy on cluster nodes. All pods with DNS configurations use the DNS
cache proxy running on nodes instead of the CoreDNS service for domain name
resolution. This reduces CoreDNS' load and improves the cluster DNS performance.

You can install the NodeLocal DNSCache add-on to deploy NodeLocal DNSCache.
For details, see Using NodeLocal DNSCache to Improve DNS Performance.

Properly Deploying CoreDNS

Deploy the CoreDNS instances in different AZs and nodes to mitigate the single-
node or single-AZ faults.

Ensure that the CPU and memory of the node where CoreDNS is running are not
fully used. Otherwise, the Queries per second (QPS) and response of domain
name resolution will be affected.

Running Multiple Pods

If your application runs in one pod, the application will be unavailable if the pod is
abnormal. Use Deployments or other types of replicas to deploy your applications.
Each time a pod fails or is terminated, the controller automatically restarts a new
pod that has the same specifications as the original one to ensure that a specified
number of pods are always running in the cluster.

When creating a workload, set the number of instances to a value greater than 2.
If an instance is faulty, the remaining instances still run until Kubernetes
automatically creates another pod to compensate for the loss. You can also use
HPA and CA (Using HPA and CA for Auto Scaling of Workloads and Nodes) to
automatically scale in or out the workloads as required.

Using Containers to Isolate Processes

Containers provide process-level isolation. Each container has its own file system,
network, and resource allocation. This prevents interference between different
processes and avoids attacks and data leakage from malicious processes. Using
containers to isolate processes can improve the reliability, security, and portability
of applications.

If several processes work together, create multiple containers in a pod so that they
can share the same network, PV, and other resources. Taking the init container as
an example. The init containers run before the main containers are started to
complete some initialization tasks like configuring environment variables, loading
databases or data stores, and pulling Git repositories.

Note that multiple containers in a pod share the lifecycle of this pod. Therefore, if
one container is abnormal, the entire pod will be restarted.

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0404.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0362.html

Configuring Resource Quotas for a Workload
Configure and adjust resource requests and limits for all workloads.

If too many pods are scheduled to one node, the node will be overloaded and
unable to provide services.

To avoid this problem, when deploying a pod, specify the resource request and
limit required by the pod. Kubernetes then selects a node with enough idle
resources for this pod. In the following example, the Nginx pod requires 1-core
CPU and 1024 MiB memory. The actual usage cannot exceed 2-core CPU and 4096
MiB memory.

Kubernetes statically schedules resources. The remaining resources on each node
are calculated as follows: Remaining resources on a node = Total resources on the
node – Allocated resources (not resources in use). If you manually run a resource-
consuming process, Kubernetes cannot detect it.

Additionally, the resource usage must be claimed for all pods. For a pod that does
not claim the resource usage, after it is scheduled to a node, Kubernetes does not
deduct the resources used by this pod from the node on which it is running. Other
pods may still be scheduled to this node.

Deploying an Application in Multiple AZs
You can run pods on nodes in multiple AZs to prevent an application from being
affected by faults of a single AZ.

When creating a node, manually specify an AZ for the node.

Figure 4-2 Specifying an AZ of a node

During application deployment, configure anti-affinity policies for pods so that the
scheduler can schedule pods across multiple AZs. For details, see Implementing
High Availability for Applications in CCE. The following is an example:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: web-server
 labels:
 app: web-server
spec:
 replicas: 4
 selector:
 matchLabels:
 app: web-server
 template:
 metadata:
 labels:
 app: web-server

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

 spec:
 containers:
 - name: web-app
 image: nginx
 imagePullSecrets:
 - name: default-secret
 affinity:
 podAntiAffinity: # Workload anti-affinity
 preferredDuringSchedulingIgnoredDuringExecution: # Indicates that the rule is met as much as
possible. Otherwise, scheduling cannot be performed when the number of pods exceeds the number of AZs.
 - podAffinityTerm:
 labelSelector: # Pod label matching rule. Configure anti-affinity policies between pods and their
own labels.
 matchExpressions:
 - key: app
 operator: In
 values:
 - web-server
 topologyKey: topology.kubernetes.io/zone # Topology domain of the AZ where the node is
located
 weight: 100

You can also use Pod Topology Spread Constraints to deploy pods in multiple
AZs.

Deploying the System Add-ons in Multiple AZs
The Deployment pods of CCE system add-ons like CoreDNS and Everest can be
deployed in multiple AZs, the same way as deploying an application. This function
can satisfy different user requirements.

Table 4-1 Deployment description

Mode Configuration
Description

Usage Description Recommended
Configuration
Scenario

Preferred Add-on pods will
have labels with the
key
topology.kubernete
s.io/zone for soft
anti-affinity
deployment, and the
anti-affinity type is
preferredDuring-
SchedulingIgnored-
DuringExecution.

Add-on pods will be
preferentially scheduled to
nodes in different AZs. If
resources in some AZs are
insufficient, some add-on
pods may be scheduled to
the same AZ which has
enough resources.

No mandatory
requirements for
multi-AZ DR

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Mode Configuration
Description

Usage Description Recommended
Configuration
Scenario

Required Add-on pods will
have labels with the
key
topology.kubernete
s.io/zone for hard
anti-affinity
deployment, and the
anti-affinity type is
requiredDuringSche
dulingIgnoredDur-
ingExecution.

A maximum of one pod of
the same add-on can be
deployed in each AZ. The
number of running pods
cannot exceed the number
of AZs in the cluster. If the
node where the add-on
pod runs is faulty, pods
running on the faulty
node cannot be
automatically migrated to
other nodes in the same
AZ.

Changing
number of AZs
(This mode is
used to prevent
all pods from
being scheduled
to the node in
the current AZ
in advance.)

Equivale
nt mode

Add-on pods will
have labels with the
key
topology.kubernete
s.io/zone for
configuring topology
spread constraints.
The pod difference
between different
topology domains
cannot exceed 1 for
add-on pods to be
evenly distributed in
different AZs.

The effect of this mode is
between that of the
preferred mode and that
of the required mode. In
the equivalent mode, add-
on pods can be deployed
in different AZs.
Additionally, multiple pods
can be deployed in a
single AZ when there are
more pods than AZs. To
use this mode, you need
to plan node resources in
each AZ in advance to
ensure that each AZ has
enough node resources for
deploying pods. (If there
are more than one add-on
pods in a single AZ, the
nodes to which the add-
on pods can be scheduled
in each AZ should be one
more than the actual add-
on pods in the current
AZ.) This ensures
successful deployment of
add-on pods although
node resources in some
AZ are insufficient and
smooth scheduling of
add-on pods during
update.

Scenarios have
high
requirements for
DR

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Configuring Health Check for a Container
Kubernetes automatically restarts pods that are not running properly. This
prevents service interruption caused by exceptions of pods. In some cases,
however, even if a pod is running, it does not mean that it can provide services
properly. For example, a deadlock may occur in a process in a running pod, but
Kubernetes does not automatically restart the pod because it is still running. To
solve this problem, configure a liveness probe to check whether the pod is healthy.
If the liveness probe detects a problem, Kubernetes will restart the pod.

You can also configure a readiness probe to check whether the pod can provide
normal services. After an application container is started, it may take some time
for initialization. During this process, the pod on which this container is running
cannot provide services to external systems. The Services forward requests to this
pod only when the readiness probe detects that the pod is ready. When a pod is
faulty, the readiness probe can prevent new traffic from being forwarded to the
pod.

The startup probe is used to check whether the application container is started.
The startup probe ensures that the containers can start successfully before the
liveness probe and readiness probe do their tasks. This ensures that the liveness
probe and readiness probe do not affect the startup of containers. Configuring the
startup probe ensures that the slow-start containers can be detected by the
liveness probe to prevent Kubernetes from terminating them before they are
started.

You can configure the preceding probes when creating an application. The
following is an example:

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-http
spec:
 containers:
 - name: liveness
 image: nginx:alpine
 args:
 - /server
 livenessProbe:
 httpGet:
 path: /healthz
 port: 80
 httpHeaders:
 - name: Custom-Header
 value: Awesome
 initialDelaySeconds: 3
 periodSeconds: 3
 readinessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5
 startupProbe:
 httpGet:
 path: /healthz
 port: 80
 failureThreshold: 30
 periodSeconds: 10

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

For details, see Configuring Container Health Check.

Configuring Auto Scaling

Auto scaling can automatically adjust the number of application containers and
nodes as required. Containers and nodes can be quickly scaled out or scaled in to
save resources and costs.

Typically, two types of auto scaling may occur during peak hours:

● Workload scaling: When deploying applications in pods, you can configure
requested resources and resource limits for the pods to prevent unlimited
usage of resources during peak hours. However, after the upper limit is
reached, an application error may occur. To resolve this issue, scale in the
number of pods to share workloads.

● Node scaling: After the number of pods grows, the resource usage of the
node may increase to a certain extent. This results in that the added pods
cannot be scheduled. To solve this problem, scale in or out nodes based on
the resource usage.

For details, see Using HPA and CA for Auto Scaling of Workloads and Nodes.

Viewing Logs, Monitoring Metrics, and Adding Alarm Rules
● Logging

– Control plane logs are reported from the master nodes. CCE supports
kube-controller-manager, kube-apiserver, kube-scheduler, and audit logs.
For details, see Collecting Control Plane Component Logs.

– Application logs are generated by pods. These logs include logs generated
by pods in which the service containers are running and Kubernetes
system components like CoreDNS. CCE allows you to configure policies
for collecting, managing, and analyzing logs periodically to prevent logs
from being over-sized. For details, see Logging Overview.

● Monitoring
– Metrics of the master nodes: Monitoring these metrics enables you to

efficiently identify problems occurred on the master nodes. For details,
see Monitoring Metrics of the Master Nodes.

– Metrics of the applications: CCE can comprehensively monitor
applications in clusters by checking these metrics. In addition to standard
metrics, you can configure custom metrics of your applications that
comply with their specifications to improve the observability.

4.2 Implementing High Availability for Applications in
CCE

Basic Principles

To achieve high availability for your CCE containers, you can do as follows:

1. Deploy three master nodes for the cluster.

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0112.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0554.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0557.html

2. Create nodes in different AZs. When nodes are deployed across AZs, you can
customize scheduling policies based on your requirements to maximize
resource utilization.

3. Create multiple node pools in different AZs and use them for node scaling.
4. Set the number of pods to be greater than 2 when creating a workload.
5. Set pod affinity rules to distribute pods to different AZs and nodes.

Procedure
Assume that there are four nodes in a cluster distributed in different AZs.

$ kubectl get node -L topology.kubernetes.io/zone,kubernetes.io/hostname
NAME STATUS ROLES AGE VERSION ZONE HOSTNAME
192.168.5.112 Ready <none> 42m v1.21.7-r0-CCE21.11.1.B007 zone01 192.168.5.112
192.168.5.179 Ready <none> 42m v1.21.7-r0-CCE21.11.1.B007 zone01 192.168.5.179
192.168.5.252 Ready <none> 37m v1.21.7-r0-CCE21.11.1.B007 zone02 192.168.5.252
192.168.5.8 Ready <none> 33h v1.21.7-r0-CCE21.11.1.B007 zone03 192.168.5.8

Create workloads according to the following podAntiAffinity rules:

● Pod anti-affinity in an AZ. Configure the parameters as follows:
– weight: A larger weight value indicates a higher priority of scheduling. In

this example, set it to 50.
– topologyKey: includes a default or custom key for the node label that

the system uses to denote a topology domain. A topology key determines
the scope where the pod should be scheduled to. In this example, set this
parameter to topology.kubernetes.io/zone, which is the label for
identifying the AZ where the node is located.

– labelSelector: Select the label of the workload to realize the anti-affinity
between this container and the workload.

● The second one is the pod anti-affinity in the node hostname. Configure the
parameters as follows:
– weight: Set it to 50.
– topologyKey: Set it to kubernetes.io/hostname.
– labelSelector: Select the label of the pod, which is anti-affinity with the

pod.
kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
 namespace: default
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: container-0
 image: nginx:alpine
 resources:
 limits:
 cpu: 250m

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

 memory: 512Mi
 requests:
 cpu: 250m
 memory: 512Mi
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 50
 podAffinityTerm:
 labelSelector: # Select the label of the workload to realize the anti-affinity
between this container and the workload.
 matchExpressions:
 - key: app
 operator: In
 values:
 - nginx
 namespaces:
 - default
 topologyKey: topology.kubernetes.io/zone # It takes effect in the same AZ.
 - weight: 50
 podAffinityTerm:
 labelSelector: # Select the label of the workload to realize the anti-affinity
between this container and the workload.
 matchExpressions:
 - key: app
 operator: In
 values:
 - nginx
 namespaces:
 - default
 topologyKey: kubernetes.io/hostname # It takes effect on the node.
 imagePullSecrets:
 - name: default-secret

Create a workload and view the node where the pod is located.

$ kubectl get pod -owide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-6fffd8d664-dpwbk 1/1 Running 0 17s 10.0.0.132 192.168.5.112
nginx-6fffd8d664-qhclc 1/1 Running 0 17s 10.0.1.133 192.168.5.252

Increase the number of pods to 3. The pod is scheduled to another node, and the
three nodes are in three different AZs.

$ kubectl scale --replicas=3 deploy/nginx
deployment.apps/nginx scaled
$ kubectl get pod -owide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-6fffd8d664-8t7rv 1/1 Running 0 3s 10.0.0.9 192.168.5.8
nginx-6fffd8d664-dpwbk 1/1 Running 0 2m45s 10.0.0.132 192.168.5.112
nginx-6fffd8d664-qhclc 1/1 Running 0 2m45s 10.0.1.133 192.168.5.252

Increase the number of pods to 4. The pod is scheduled to the last node. With
podAntiAffinity rules, pods can be evenly distributed to AZs and nodes.

$ kubectl scale --replicas=4 deploy/nginx
deployment.apps/nginx scaled
$ kubectl get pod -owide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-6fffd8d664-8t7rv 1/1 Running 0 2m30s 10.0.0.9 192.168.5.8
nginx-6fffd8d664-dpwbk 1/1 Running 0 5m12s 10.0.0.132 192.168.5.112
nginx-6fffd8d664-h796b 1/1 Running 0 78s 10.0.1.5 192.168.5.179
nginx-6fffd8d664-qhclc 1/1 Running 0 5m12s 10.0.1.133 192.168.5.252

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

4.3 Implementing High Availability for Add-ons in CCE

Application Scenarios
CCE offers various add-ons that enhance the cloud native capabilities of clusters.
These add-ons include features like container scheduling and elasticity, cloud
native observability, container networking, storage, and security. Helm charts are
used to deploy these add-ons. Workload pods of the add-ons are deployed on
worker nodes within the clusters.

As add-ons have become more popular, their stability and reliability have become
essential requirements. By default, CCE implements a policy for add-on
deployment where worker nodes have a hard anti-affinity configuration, and AZs
have a soft anti-affinity configuration. This section explains how to enhance the
CCE add-on scheduling policy, allowing you to customize the deployment policy
according to your requirements.

Deployment Solution
An add-on typically runs as Deployments or DaemonSets. By default, DaemonSet
pods are deployed on all nodes. To ensure HA of the add-on, there are multiple
pods, AZ affinity policies, and specified node scheduling configured for
Deployments.

Pod-level HA solution:

● Increasing the Number of Pods: Multi-pod deployment can effectively
prevent service unavailability caused by a single point of failure (SPOF).

Node-level HA solutions:

● Deploying the Add-on Pods on Dedicated Nodes: To prevent resource
preemption between service applications and core add-ons, it is best to
deploy the core add-on pods on dedicated nodes. This ensures that the add-
on resources are isolated and restricted on the node level.

● Deploying the Add-on in Multiple AZs: Multi-AZ deployment can effectively
prevent service unavailability caused by the failure of a single AZ.

Take the CoreDNS add-on as an example. This add-on is deployed as two pods by
default in the preferred mode, and the scheduling policies are hard anti-affinity for
nodes and soft anti-affinity for AZs. In this case, two nodes are needed to ensure
that all add-on pods in the cluster can run properly, and Deployment pods of the
add-on can be preferentially scheduled to nodes in different AZs.

The following sections describe how to further improve the add-on SLA.

Increasing the Number of Pods
You can adjust the number of CoreDNS pods ensure high performance and HA.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.
In the navigation pane, choose Add-ons, locate CoreDNS on the right, and click
Edit.

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Step 2 Increase the number of replicas.

Figure 4-3 Changing the pod quantity

Step 3 Click OK.

----End

Deploying the Add-on Pods on Dedicated Nodes
You can adjust the node affinity policy of CoreDNS and make the CoreDNS pods
run on dedicated nodes. This can prevent the CoreDNS resources from being
preempted by service applications.

A custom policy is used as an example.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.
In the navigation pane, choose Nodes.

Step 2 Click the Nodes tab, select the node dedicated for CoreDNS, and click Labels and
Taints above the node list.

Add the following labels:

● Key: node-role.kubernetes.io/coredns
● Value: true

Add the following taints:

● Key: node-role.kubernetes.io/coredns
● Value: true
● Effect: NoSchedule

Step 3 In the navigation pane, choose Add-ons, locate CoreDNS, and click Edit.

Step 4 Select Custom Policies for Node Affinity and add the preceding node label.

Add tolerations for the preceding taint.

Step 5 Click OK.

----End

Deploying the Add-on in Multiple AZs
By default, the add-on scheduling policy can handle single-node faults. However, if
your services require a higher SLA, you can create nodes with different AZ

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

specifications on the node pool page and set the multi-AZ deployment mode of
the add-on to the required mode.

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 Create nodes in different AZs.

To create nodes in different AZs, you can simply repeat these steps. Alternatively,
you can create multiple node pools, associate them with different AZ
specifications, and increase the number of nodes in each pool to achieve the same
result.

1. In the navigation pane, choose Nodes, click the Nodes tab, and click Create
Node in the upper right corner.

2. On the page displayed, select an AZ for the node.

Figure 4-4 Creating a node

3. Configure other mandatory parameters following instructions to complete the
creation.

Step 3 In the navigation pane, choose Add-ons. In the right pane, locate CoreDNS and
click Edit.

Step 4 In the window that slides out from the right, set Multi AZ to Required and click
Install.

Figure 4-5 Changing the multi-AZ deployment mode to the required mode

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Step 5 Choose Workload, click the Deployments tab, and view the CoreDNS pods. Select
the kube-system namespace to view the pod distribution of the add-on.

Figure 4-6 Viewing the deployment and distribution of CoreDNS pods

Step 6 View that the Deployment pods of the add-on has been allocated to nodes in two
AZs.

Figure 4-7 Viewing CoreDNS pod distribution

----End

Cloud Container Engine
Best Practices 4 Disaster Recovery

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

5 Security

5.1 Configuration Suggestions on CCE Cluster Security
For security purposes, you are advised to configure a cluster as follows.

Using the CCE Cluster of the Latest Version

Kubernetes releases a major version in about four months. CCE follows the same
frequency as Kubernetes to release major versions. To be specific, a new CCE
version is released about three months after a new Kubernetes version is released
in the community. For example, Kubernetes v1.19 was released in September 2020
and CCE v1.19 was released in March 2021.

The latest cluster version has known vulnerabilities fixed or provides a more
comprehensive security protection mechanism. You are advised to select the latest
cluster version when creating a cluster. Before a cluster version is deprecated and
removed, upgrade your cluster to a supported version.

Disabling the Automatic Token Mounting Function of the Default Service
Account

By default, Kubernetes associates the default service account with every pod,
which means that the token is mounted to a container. The container can use this
token to pass the authentication by the kube-apiserver and kubelet components.
In a cluster with RBAC disabled, the service account who owns the token has the
control permissions for the entire cluster. In a cluster with RBAC enabled, the
permissions of the service account who owns the token depends on the roles
associated by the administrator. The service account's token is generally used by
workloads that need to access kube-apiserver, such as coredns, autoscaler, and
prometheus. For workloads that do not need to access kube-apiserver, you are
advised to disable the automatic association between the service account and
token.

Two methods are available:

● Method 1: Set the automountServiceAccountToken field of the service
account to false. After the configuration is complete, newly created workloads

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

will not be associated with the default service account by default. Configure
this field for each namespace as required.
apiVersion: v1
kind: ServiceAccount
metadata:
 name: default
automountServiceAccountToken: false
...

When a workload needs to be associated with a service account, explicitly set
automountServiceAccountToken to true in the YAML file of the workload.
...
 spec:
 template:
 spec:
 serviceAccountName: default
 automountServiceAccountToken: true
 ...

● Method 2: Explicitly disable the function of automatically associating service
accounts with workloads.
...
 spec:
 template:
 spec:
 automountServiceAccountToken: false
 ...

Configuring Proper Cluster Access Permissions for Users

CCE allows you to create multiple IAM users. Your account can create different
user groups, assign different access permissions to different user groups, and add
users to the user groups with corresponding permissions when creating IAM users.
In this way, users can control permissions on different regions and assign read-
only permissions. Your account can also assign namespace-level permissions for
users or user groups. To ensure security, it is advised that minimum user access
permissions are assigned.

If you need to create multiple IAM users, configure the permissions of the IAM
users and namespaces properly.

Configuring Resource Quotas for Cluster Namespaces

CCE provides resource quota management, which allows users to limit the total
amount of resources that can be allocated to each namespace. These resources
include CPU, memory, storage volumes, pods, Services, Deployments, and
StatefulSets. Proper configuration can prevent excessive resources created in a
namespace from affecting the stability of the entire cluster.

Configuring LimitRange for Containers in a Namespace

With resource quotas, cluster administrators can restrict the use and creation of
resources by namespace. In a namespace, a pod or container can use the
maximum CPU and memory resources defined by the resource quota of the
namespace. In this case, a pod or container may monopolize all available
resources in the namespace. You are advised to configure LimitRange to restrict
resource allocation within the namespace. The LimitRange parameter has the
following restrictions:

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

● Limits the minimum and maximum resource usage of each pod or container
in a namespace.

For example, create the maximum and minimum CPU usage limits for a pod
in a namespace as follows:

cpu-constraints.yaml
apiVersion: v1
kind: LimitRange
metadata:
 name: cpu-min-max-demo-lr
spec:
 limits:
 - max:
 cpu: "800m"
 min:
 cpu: "200m"
 type: Container

Then, run kubectl -n <namespace> create -f cpu-constraints.yaml to
complete the creation. If the default CPU usage is not specified for the
container, the platform automatically configures the default CPU usage. That
is, the default configuration is automatically added after the container is
created.
...
spec:
 limits:
 - default:
 cpu: 800m
 defaultRequest:
 cpu: 800m
 max:
 cpu: 800m
 min:
 cpu: 200m
 type: Container

● Limits the maximum and minimum storage space that each
PersistentVolumeClaim can apply for in a namespace.

storagelimit.yaml
apiVersion: v1
kind: LimitRange
metadata:
 name: storagelimit
spec:
 limits:
 - type: PersistentVolumeClaim
 max:
 storage: 2Gi
 min:
 storage: 1Gi

Then, run kubectl -n <namespace> create -f storagelimit.yaml to complete
the creation.

Configuring Network Isolation in a Cluster
● Container tunnel network

If networks need to be isolated between namespaces in a cluster or between
workloads in the same namespace, you can configure network policies to
isolate the networks.

● Cloud Native 2.0 network

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

In the Cloud Native Network 2.0 model, you can configure security groups to
isolate networks between pods.

● VPC network
Network isolation is not supported.

Enabling the Webhook Authentication Mode with kubelet

NO TICE

CCE clusters of v1.15.6-r1 or earlier are involved, whereas versions later than
v1.15.6-r1 are not.
Upgrade the CCE cluster version to 1.13 or 1.15 and enable the RBAC capability for
the cluster. If the version is 1.13 or later, no upgrade is required.

When creating a node, you can enable the kubelet authentication mode by
injecting the postinstall file (by setting the kubelet startup parameter --
authorization-node=Webhook).

Step 1 Run the following command to create clusterrolebinding:

kubectl create clusterrolebinding kube-apiserver-kubelet-admin --
clusterrole=system:kubelet-api-admin --user=system:kube-apiserver

Step 2 For an existing node, log in to the node, change authorization mode in /var/
paas/kubernetes/kubelet/kubelet_config.yaml on the node to Webhook, and
restart kubelet.

sed -i s/AlwaysAllow/Webhook/g /var/paas/kubernetes/kubelet/
kubelet_config.yaml; systemctl restart kubelet

Step 3 For a new node, add the following command to the post-installation script to
change the kubelet permission mode:

sed -i s/AlwaysAllow/Webhook/g /var/paas/kubernetes/kubelet/
kubelet_config.yaml; systemctl restart kubelet

----End

Uninstalling web-terminal After Use

The web-terminal add-on can be used to manage CCE clusters. Keep the login
password secure and uninstall the add-on when it is no longer needed.

5.2 Configuration Suggestions on CCE Node Security

Preventing Nodes from Being Exposed to Public Networks
● Do not bind an EIP to a node unless necessary to reduce the attack surface.
● If an EIP must be used, properly configure the firewall or security group rules

to restrict access of unnecessary ports and IP addresses.

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

You may have configured the kubeconfig.json file on a node in your cluster.
kubectl can use the certificate and private key in this file to control the entire
cluster. You are advised to delete unnecessary files from the /root/.kube directory
on the node to prevent malicious use.

rm -rf /root/.kube

Hardening VPC Security Group Rules
CCE is a universal container platform. Its default security group rules apply to
common scenarios. Based on security requirements, you can harden the security
group rules set for CCE clusters on the Security Groups page of Network
Console.

Hardening Nodes on Demand
CCE cluster nodes use the default settings of open source OSs. After a node is
created, you need to perform security hardening according to your service
requirements.

In CCE, you can perform hardening as follows:

● Use the post-installation script after the node is created. For details, see the
description about Post-installation Script in Advanced Settings when
creating a node. This script is user-defined.

● Build custom images in CCE to create worker nodes. For details about the
creation process, see Creating a Custom CCE Node Image.

Forbidding Containers to Obtain Host Machine Metadata
If a single CCE cluster is shared by multiple users to deploy containers, containers
cannot access the management address (169.254.169.254) of OpenStack,
preventing containers from obtaining metadata of host machines.

For details about how to restore the metadata, see the "Notes" section in
Obtaining Metadata.

WARNING

This solution may affect the password change on the ECS console. Therefore, you
must verify the solution before rectifying the fault.

Step 1 Obtain the network model and container CIDR of the cluster.

On the Clusters page of the CCE console, view the network model and container
CIDR of the cluster.

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

https://support.huaweicloud.com/eu/bestpractice-cce/cce_bestpractice_00026.html

Step 2 Prevent the container from obtaining host metadata.
● VPC network

a. Log in to each node in the cluster as user root and run the following
command:
iptables -I OUTPUT -s {container_cidr} -d 169.254.169.254 -j REJECT

{container_cidr} indicates the container CIDR of the cluster, for example,
10.0.0.0/16.
To ensure configuration persistence, write the command to the /etc/
rc.local script.

b. Run the following commands in the container to access the userdata and
metadata interfaces of OpenStack and check whether the request is
intercepted:
curl 169.254.169.254/openstack/latest/meta_data.json
curl 169.254.169.254/openstack/latest/user_data

● Container tunnel network
a. Log in to each node in the cluster as user root and run the following

command:
iptables -I FORWARD -s {container_cidr} -d 169.254.169.254 -j REJECT

{container_cidr} indicates the container CIDR of the cluster, for example,
10.0.0.0/16.
To ensure configuration persistence, write the command to the /etc/
rc.local script.

b. Run the following commands in the container to access the userdata and
metadata interfaces of OpenStack and check whether the request is
intercepted:
curl 169.254.169.254/openstack/latest/meta_data.json
curl 169.254.169.254/openstack/latest/user_data

● CCE Turbo cluster
No additional configuration is required.

----End

5.3 Configuration Suggestions on CCE Container
Runtime Security

Container technology uses Linux namespaces and cgroups to isolate and control
resources between containers and nodes. Namespaces provide kernel-level

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

isolation, allowing processes to be restricted from accessing specific sets of
resources, such as file systems, networks, processes, and users. Cgroups are a Linux
kernel feature that manages and limits the usage of resources, such as CPU,
memory, disk, and network, to prevent a single process from consuming too many
resources and negatively impacting the overall system performance.

While namespaces and cgroups isolate resources between containers and nodes in
an environment, node resources are not visible to containers. However, this
isolation does not provide true security isolation because containers share the
kernels of their nodes. If a container exhibits malicious behavior or a kernel
vulnerability is exploited by attackers, the container may breach resource isolation.
This can result in the container escaping and potentially compromising the node
and other containers on the node.

To enhance runtime security, there are various mechanisms that can be used to
detect and prevent malicious activities in containers. These mechanisms, such as
capabilities, seccomp, AppArmor, and SELinux, can be integrated into Kubernetes.
By using these mechanisms, container security can be improved and potential
threats can be minimized.

Capabilities

Capabilities are a permission mechanism that enables a process to perform certain
system operations without requiring full root permissions. This mechanism divides
root permissions into smaller, independent permissions known as capabilities. By
doing so, the process only obtains the minimum permission set necessary to
complete its tasks. This approach enhances system security and helps mitigate
potential security risks.

In a containerized environment, you can manage a container's capabilities by
configuring its securityContext. The following is a configuration example:

...
securityContext:
 capabilities:
 add:
 - NET_BIND_SERVICE
 drop:
 -all

In this way, you can ensure that the container only has the necessary permissions
to complete its tasks. This approach eliminates the risk of security breaches caused
by excessive permissions. For more information about how to configure
capabilities for a container, see Set capabilities for a Container.

Seccomp

Seccomp is a mechanism that filters system calls, limiting the ones that processes
can use to decrease the potential attack surface. Linux has many system calls, but
not all are needed for containerized applications. By restricting the system calls
that containers can execute, you can greatly reduce the risk of attacks on your
applications.

Seccomp's main principle is to intercept all system calls and only allow trusted
ones to pass. Container runtimes, such as Docker and containerd, come with
default seccomp configurations that work for most common workloads.

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container

In Kubernetes clusters, you can configure seccomp policies for containers to use
the default security configuration. The following shows how to configure seccomp
in different versions of Kubernetes clusters:
● For clusters of versions earlier than Kubernetes 1.19, you can use the

following annotations to specify the seccomp configuration:
annotations:
 seccomp.security.alpha.kubernetes.io/pod: "runtime/default"

● For clusters of Kubernetes 1.19 and later versions, you can use
securityContext to configure seccomp policies.
securityContext:
 seccompProfile:
 type: RuntimeDefault

These configurations use the default seccomp policy, which permits containers to
make a limited number of secure system calls. For more configuration options and
advanced settings of seccomp, see Restrict a Container's Syscalls with seccomp.

AppArmor and SELinux
AppArmor and SELinux are both Mandatory Access Control (MAC) systems that
offer a more stringent approach than traditional Discretionary Access Control
(DAC) to manage and restrict process permissions. While similar to seccomp in
concept, these systems provide more precise access control, including access to file
system paths, network ports, and other resources.

AppArmor and SELinux enable administrators to create policies that precisely
manage the resources that applications can access. They can limit read and write
permissions on specific files or directories, or regulate access to network ports.

Both systems are integrated into Kubernetes, allowing security policies to be
applied at the container level.
● For details about how to use AppArmor, see Restrict a Container's Access to

Resources with AppArmor.
● For SELinux, you can configure seLinuxOptions in securityContext.

...
securityContext:
 seLinuxOptions:
 level: "s0:c123,c456"

For details, see Assign SELinux labels to a Container.

5.4 Configuration Suggestions on CCE Container
Security

Controlling the Pod Scheduling Scope
The nodeSelector or nodeAffinity is used to limit the range of nodes to which
applications can be scheduled, preventing the entire cluster from being threatened
due to the exceptions of a single application.

To achieve strong isolation, like in logical multi-tenancy situations, it is important
to have system add-ons run on separate nodes or node pools. This helps keep
them separated from service pods and reduces the risk of privilege escalation
within a cluster. To do this, you can set the node affinity policy to either Node
Affinity or Specified Node Pool Scheduling on the add-on installation page.

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

https://kubernetes.io/docs/tutorials/security/seccomp/
https://kubernetes.io/docs/tutorials/security/apparmor/
https://kubernetes.io/docs/tutorials/security/apparmor/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#assign-selinux-labels-to-a-container

Suggestions on Container Security Configuration
● Set the computing resource limits (request and limit) of a container. This

prevents the container from occupying too many resources and affecting the
stability of the host and other containers on the same node.

● Unless necessary, do not mount sensitive host directories to containers, such
as /, /boot, /dev, /etc, /lib, /proc, /sys, and /usr.

● Do not run the sshd process in containers unless necessary.
● Unless necessary, it is not recommended that containers and hosts share the

network namespace.
● Unless necessary, it is not recommended that containers and hosts share the

process namespace.
● Unless necessary, it is not recommended that containers and hosts share the

IPC namespace.
● Unless necessary, it is not recommended that containers and hosts share the

UTS namespace.
● Unless necessary, do not mount the sock file of Docker to any container.

Container Permission Access Control
When using a containerized application, comply with the minimum privilege
principle and properly set securityContext of Deployments or StatefulSets.

● Configure runAsUser to specify a non-root user to run a container.
● Configure privileged to prevent containers being used in scenarios where

privilege is not required.
● Configure capabilities to accurately control the privileged access permission of

containers.
● Configure allowPrivilegeEscalation to disable privilege escape in scenarios

where privilege escalation is not required for container processes.
● Configure seccomp to restrict the container syscalls. For details, see Restrict a

Container's Syscalls with seccomp in the official Kubernetes documentation.
● Configure ReadOnlyRootFilesystem to protect the root file system of a

container.
Example YAML for a Deployment:
apiVersion: apps/v1
kind: Deployment
metadata:

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

https://kubernetes.io/docs/tutorials/security/seccomp/
https://kubernetes.io/docs/tutorials/security/seccomp/

 name: security-context-example
 namespace: security-example
spec:
 replicas: 1
 selector:
 matchLabels:
 app: security-context-example
 label: security-context-example
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 metadata:
 annotations:
 seccomp.security.alpha.kubernetes.io/pod: runtime/default
 labels:
 app: security-context-example
 label: security-context-example
 spec:
 containers:
 - image: ...
 imagePullPolicy: Always
 name: security-context-example
 securityContext:
 allowPrivilegeEscalation: false
 readOnlyRootFilesystem: true
 runAsUser: 1000
 capabilities:
 add:
 - NET_BIND_SERVICE
 drop:
 - all
 volumeMounts:
 - mountPath: /etc/localtime
 name: localtime
 readOnly: true
 - mountPath: /opt/write-file-dir
 name: tmpfs-example-001
 securityContext:
 seccompProfile:
 type: RuntimeDefault
 volumes:
 - hostPath:
 path: /etc/localtime
 type: ""
 name: localtime
 - emptyDir: {}
 name: tmpfs-example-001

Restricting the Access of Containers to the Management Plane
If application containers on a node do not need to access Kubernetes, you can
perform the following operations to disable containers from accessing kube-
apiserver:

Step 1 Query the container CIDR block and private API server address.

On the Clusters page of the CCE console, click the name of the cluster to find the
information on the details page.

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Step 2 Configure access rules.

● CCE cluster: Log in to each node in the cluster as user root and run the
following command:

– VPC network:
iptables -I OUTPUT -s {container_cidr} -d {Private API server IP} -j REJECT

– Container tunnel network:
iptables -I FORWARD -s {container_cidr} -d {Private API server IP} -j REJECT

{container_cidr} indicates the container CIDR of the cluster, for example,
10.0.0.0/16.

To ensure configuration persistence, write the command to the /etc/rc.local
script.

● CCE Turbo cluster: Add an outbound rule to the ENI security group of the
cluster.

a. Log in to the VPC console.

b. In the navigation pane, choose Access Control > Security Groups.

c. Locate the ENI security group corresponding to the cluster and name it in
the format of {Cluster name}-cce-eni-{Random ID}. Click the security
group name and configure rules.

d. Click the Outbound Rules tab and click Add Rule to add an outbound
rule for the security group.

▪ Priority: Set it to 1.

▪ Action: Select Deny, indicating that the access to the destination
address is denied.

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

▪ Type: Select IPv4.

▪ Protocol & Port: Enter 5443 based on the port in the intranet API
server address.

▪ Destination: Select IP address and enter the IP address of the
internal API server.

e. Click OK.

Step 3 Run the following command in the container to access kube-apiserver and check
whether the request is intercepted:
curl -k https://{Private API server IP}:5443

----End

5.5 Configuration Suggestions on CCE Container Image
Security

Container images are the primary defense against external attacks and are crucial
for securing applications, systems, and the entire supply chain. If an image is
insecure, it can become a vulnerability for attackers to exploit. This can lead to the
container escaping to its node, allowing attackers to access sensitive data on the
node or use it as a launching pad to gain control over the entire cluster or tenant
account. This section describes some recommended configurations to mitigate
such risks.

Minimizing a Container Image

To improve container image security, it is recommended that you remove any
unnecessary binary files. When using an unknown image from Docker Hub, you
are advised to review the image content with a tool like Dive. Dive provides layer-
by-layer details of an image, helping to identify potential security risks. For details,
see Dive.

For improved security, it is recommended that you delete binary files with setuid
and setgid permissions, because these can be exploited to elevate permissions. It is
also wise to remove shell tools and applications that could be used maliciously,
like nc and curl. To locate files with setuid and setgid bits, use the following
command:

find / -perm /6000 -type f -exec ls -ld {} \;

To remove special permissions from the obtained files, add the following
command to your container image:

RUN find / -xdev -perm /6000 -type f -exec chmod a-s {} \; || true

Using Multi-Stage Builds

Multi-stage builds are a great way to create container images efficiently, especially
in the CI process. With multi-stage builds, you can perform lint checks on source
code or static code analysis during the build process, providing quick feedback to
developers. There is no need to wait for the entire build to finish.

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

https://github.com/wagoodman/dive

Multi-stage builds offer significant security advantages by allowing developers to
include only necessary components in container images, excluding build tools and
other unnecessary binary files. This approach reduces the attack surface of images
and improves overall security.

For more information about the concepts, best practices, and advantages of multi-
stage builds, see the Docker documentation. This will help you create
streamlined and secure container images while optimizing development and
deployment processes.

Using SWR
SWR provides easy, secure, reliable management of container images throughout
their lifecycles, featuring image push, pull, and deletion.

SWR stands out for its precise permissions management, allowing administrators
to customize access permissions for different users with read, edit, and manage
levels. This ensures image security and compliance, meeting the needs of team
collaboration.

Additionally, SWR offers automatic deployment capabilities. You can set a trigger
to automatically deploy updated image versions. When a new image version is
released, SWR automatically triggers the application that uses the image in CCE to
update it, streamlining CI/CD.

To further enhance SWR's security and flexibility, fine-grained permissions control
can be added to IAM users. For details about authorization management, see User
Permissions.

Scanning an Image Using SWR
With SWR, you can easily scan and secure your images with just a few clicks.
Image scanning provides a thorough security check for your private images in
repositories. It detects potential vulnerabilities and offers rectification suggestions.

Using an Image Signature and Configuring a Signature Verification Policy
Image signature verification is a security measure that confirms whether a
container image has been tampered with after its creation. The image creator can
sign the image content, and a user can verify the image's integrity and source by
checking the signature.

This verification is crucial in maintaining container image security. By using image
signature verification, organizations can guarantee the security and reliability of
their containerized applications and safeguard them from potential security risks.

Adding the USER Instruction to a Dockerfile to Run Commands as a Non-
root User

Properly configuring user permissions during container build and deployment can
greatly enhance container security. This not only helps prevent potential malicious
activities, but also aligns with the principle of least privilege (PoLP).

By setting the USER instruction in Dockerfiles, subsequent commands are executed
as non-root users, which is a standard security practice.

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

https://docs.docker.com/develop/develop-images/multistage-build/
https://support.huaweicloud.com/eu/usermanual-swr/swr_01_0015.html
https://support.huaweicloud.com/eu/usermanual-swr/swr_01_0015.html

● Limited permissions: Running a container as a non-root user can also mitigate
potential security risks, because attackers cannot gain full control over the
node even if the container is attacked.

● Restricted access: Non-root users typically have limited permissions, which
restrict their access to and operation capabilities on node resources.

In addition to Dockerfiles, the securityContext field in podSpec of Kubernetes can
be used to configure user and group IDs and enforce security policies during
container deployment.

5.6 Configuration Suggestions on CCE Secret Security
Currently, CCE has configured static encryption for secret resources. The secrets
created by users will be encrypted and stored in etcd of the CCE cluster. Secrets
can be used in two modes: environment variable and file mounting. No matter
which mode is used, CCE still transfers the configured data to users. Therefore, it is
recommended that:

1. Do not record sensitive information in logs.
2. For the secret that uses the file mounting mode, the default file permission

mapped in the container is 0644. Configure stricter permissions for the file.
For example:
apiversion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 volumes:
 - name: foo
 secret:
 secretName: mysecret
 defaultMode: 256

In defaultMode: 256, 256 is a decimal number, which corresponds to the
octal number 0400.

3. When the file mounting mode is used, configure the secret file name to hide
the file in the container.
apiVersion: v1
kind: Secret
metadata:
 name: dotfile-secret
data:
 .secret-file: dmFsdWUtMg0KDQo=

apiVersion: v1
kind: Pod
metadata:
 name: secret-dotfiles-pod
spec:
 volumes:
 - name: secret-volume
 secret:
 secretName: dotfile-secret
 containers:
 - name: dotfile-test-container

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

 image: k8s.gcr.io/busybox
 command:
 - ls
 - "-1"
 - "/etc/secret-volume"
 volumeMounts:
 - name: secret-volume
 readOnly: true
 mountPath: "/etc/secret-volume"

In this way, .secret-file cannot be seen by running ls -l in the /etc/secret-
volume/ directory, but can be viewed by running ls -al.

4. Encrypt sensitive information before creating a secret and decrypt the
information when using it.

Using a Bound ServiceAccount Token to Access a Cluster
The secret-based ServiceAccount token does not support expiration time or auto
update. In addition, after the mounting pod is deleted, the token is still stored in
the secret. Token leakage may incur security risks. A bound ServiceAccount token
is recommended for CCE clusters of version 1.23 or later. In this mode, the
expiration time can be set and is the same as the pod lifecycle, reducing token
leakage risks. Example:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: security-token-example
 namespace: security-example
spec:
 replicas: 1
 selector:
 matchLabels:
 app: security-token-example
 label: security-token-example
 template:
 metadata:
 annotations:
 seccomp.security.alpha.kubernetes.io/pod: runtime/default
 labels:
 app: security-token-example
 label: security-token-example
 spec:
 serviceAccountName: test-sa
 containers:
 - image: ...
 imagePullPolicy: Always
 name: security-token-example
 volumes:
 - name: test-projected
 projected:
 defaultMode: 420
 sources:
 - serviceAccountToken:
 expirationSeconds: 1800
 path: token
 - configMap:
 items:
 - key: ca.crt
 path: ca.crt
 name: kube-root-ca.crt
 - downwardAPI:
 items:
 - fieldRef:
 apiVersion: v1
 fieldPath: metadata.namespace
 path: namespace

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

For details, see Managing Service Accounts.

Cloud Container Engine
Best Practices 5 Security

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/

6 Auto Scaling

6.1 Using HPA and CA for Auto Scaling of Workloads
and Nodes

Application Scenarios
The best way to handle surging traffic is to automatically adjust the number of
machines based on the traffic volume or resource usage, which is called scaling.

When deploying applications in pods, you can configure requested resources and
resource limits for the pods to prevent unlimited usage of resources during peak
hours. However, after the upper limit is reached, an application error may occur.
Pod scaling can effectively resolve this issue. If the resource usage on the node
increases to a certain extent, newly added pods cannot be scheduled to this node.
In this case, CCE will add nodes accordingly.

Solution
Two major auto scaling policies are HPA (Horizontal Pod Autoscaling) and CA
(Cluster AutoScaling). HPA is for workload auto scaling and CA is for node auto
scaling.

HPA and CA work with each other. HPA requires sufficient cluster resources for
successful scaling. When the cluster resources are insufficient, CA is needed to add
nodes. If HPA reduces workloads, the cluster will have a large number of idle
resources. In this case, CA needs to release nodes to avoid resource waste.

As shown in Figure 6-1, HPA performs scale-out based on the monitoring metrics.
When cluster resources are insufficient, newly created pods are in Pending state.
CA then checks these pending pods and selects the most appropriate node pool
based on the configured scaling policy to scale out the node pool.

Cloud Container Engine
Best Practices 6 Auto Scaling

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

Figure 6-1 HPA and CA working flows

Using HPA and CA enables automatic scaling for most scenarios while also
providing monitoring capabilities.

This section uses an example to describe the auto scaling process using HPA and
CA policies together.

Preparations

Step 1 Create a cluster with one node. The node should have 2 cores of vCPUs and 4 GiB
of memory, or a higher specification, as well as an EIP to allow external access. If
no EIP is bound to the node during node creation, you can manually bind one on
the ECS console after creating the node.

Step 2 Install add-ons for the cluster.
● autoscaler: node scaling add-on
● metrics-server: an aggregator of resource usage data in a Kubernetes cluster.

It can collect measurement data of major Kubernetes resources, such as pods,
nodes, containers, and Services.

Step 3 Log in to the cluster node and run a computing-intensive application. When a user
sends a request, the result needs to be calculated before being returned to the
user.

1. Create a PHP file named index.php to calculate the square root of the
request for 1,000,000 times before returning OK!.
vi index.php

The file content is as follows:
<?php
 $x = 0.0001;
 for ($i = 0; $i <= 1000000; $i++) {
 $x += sqrt($x);
 }
 echo "OK!";
?>

2. Compile a Dockerfile file to build an image.
vi Dockerfile

The content is as follows:

Cloud Container Engine
Best Practices 6 Auto Scaling

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

FROM php:5-apache
COPY index.php /var/www/html/index.php
RUN chmod a+rx index.php

3. Run the following command to build an image named hpa-example with the
tag latest.
docker build -t hpa-example:latest .

4. (Optional) Log in to the SWR console, choose Organizations in the
navigation pane, and click Create Organization in the upper right corner.
Skip this step if you already have an organization.

5. In the navigation pane, choose My Images and then click Upload Through
Client. On the page displayed, click Generate a temporary login command

and click to copy the command.
6. Run the login command copied in the previous step on the cluster node. If the

login is successful, the message "Login Succeeded" is displayed.
7. Tag the hpa-example image.

docker tag {Image name 1:Tag 1}/{Image repository address}/{Organization
name}/{Image name 2:Tag 2}
– {Image name 1:Tag 1}: name and tag of the local image to be uploaded.
– {Image repository address}: the domain name at the end of the login

command in login command. It can be obtained on the SWR console.
– {Organization name}: name of the created organization.
– {Image name 2:Tag 2}: desired image name and tag to be displayed on

the SWR console.
The following is an example:
docker tag hpa-example:latest {Image repository address}/group/hpa-
example:latest

8. Push the image to the image repository.
docker push {Image repository address}/{Organization name}/{Image name
2:Tag 2}
The following is an example:
docker push {Image repository address}/group/hpa-example:latest
The following information will be returned upon a successful push:
6d6b9812c8ae: Pushed
...
fe4c16cbf7a4: Pushed
latest: digest: sha256:eb7e3bbd*** size: **

To view the pushed image, go to the SWR console and refresh the My Images
page.

----End

Creating a Node Pool and a Node Scaling Policy

Step 1 Log in to the CCE console, access the created cluster, click Nodes on the left, click
the Node Pools tab, and click Create Node Pool in the upper right corner.

Step 2 Configure the node pool.
● Node Type: Select a node type.

Cloud Container Engine
Best Practices 6 Auto Scaling

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

● Specifications: 2 vCPUs | 4 GiB

Retain the defaults for other parameters.

Step 3 Locate the row containing the newly created node pool and click Auto Scaling in
the upper right corner.

If the CCE Cluster Autoscaler add-on is not installed in the cluster, install it first.
● Customize scale-out rules.: Click Add Rule. In the dialog box displayed,

configure parameters. If the CPU allocation rate is greater than 70%, a node
is added to each associated node pool. A node scaling policy needs to be
associated with a node pool. Multiple node pools can be associated. When
you need to scale nodes, node with proper specifications will be added or
reduced from the node pool based on the minimum waste principle.

● Nodes: Modify the node quantity range. The number of nodes in a node pool
will always be within the range during auto scaling.

● Cooldown Period: a period during which the nodes added in the current node
pool cannot be scaled in

Step 4 Click OK.

----End

Creating a Workload
Use the hpa-example image to create a Deployment with one replica. The image
path is related to the organization uploaded to the SWR repository and needs to
be replaced with the actual value.

kind: Deployment
apiVersion: apps/v1
metadata:
 name: hpa-example
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hpa-example
 template:
 metadata:
 labels:
 app: hpa-example
 spec:
 containers:
 - name: container-1
 image: 'hpa-example:latest' # Replace it with the address of the image you uploaded to SWR.
 resources:
 limits: # The value of limits must be the same as that of requests to prevent flapping
during scaling.
 cpu: 500m
 memory: 200Mi
 requests:
 cpu: 500m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Then, create a NodePort Service for the workload so that the workload can be
accessed from external networks.

kind: Service
apiVersion: v1

Cloud Container Engine
Best Practices 6 Auto Scaling

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

metadata:
 name: hpa-example
spec:
 ports:
 - name: cce-service-0
 protocol: TCP
 port: 80
 targetPort: 80
 nodePort: 31144
 selector:
 app: hpa-example
 type: NodePort

Creating an HPA Policy

Create an HPA policy. As shown below, the policy is associated with the hpa-
example workload, and the target CPU usage is 50%.

There are two other annotations. One annotation defines the CPU thresholds,
indicating that scaling is not performed when the CPU usage is between 30% and
70% to prevent impact caused by slight fluctuation. The other is the scaling time
window, indicating that after the policy is successfully executed, a scaling
operation will not be triggered again in this cooling interval to prevent impact
caused by short-term fluctuation.

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-policy
 annotations:
 extendedhpa.metrics: '[{"type":"Resource","name":"cpu","targetType":"Utilization","targetRange":
{"low":"30","high":"70"}}]'
 extendedhpa.option: '{"downscaleWindow":"5m","upscaleWindow":"3m"}'
spec:
 scaleTargetRef:
 kind: Deployment
 name: hpa-example
 apiVersion: apps/v1
 minReplicas: 1
 maxReplicas: 100
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 50

Observing the Auto Scaling Process

Step 1 Check the cluster node status. In the following example, there are two nodes.
kubectl get node
NAME STATUS ROLES AGE VERSION
192.168.0.183 Ready <none> 2m20s v1.17.9-r0-CCE21.1.1.3.B001-17.36.8
192.168.0.26 Ready <none> 55m v1.17.9-r0-CCE21.1.1.3.B001-17.36.8

Check the HPA policy. The CPU usage of the target workload is 0%.

kubectl get hpa hpa-policy
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-policy Deployment/hpa-example 0%/50% 1 100 1 4m

Cloud Container Engine
Best Practices 6 Auto Scaling

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Step 2 Run the following command to access the workload. In the following command,
{ip:port} indicates the access address of the workload, which can be queried on
the workload details page.

while true;do wget -q -O- http://{ip:port}; done

NO TE

If no EIP is displayed, the cluster node has not been assigned any EIP. Allocate one, bind it
to the node, and synchronize node data.

Observe the scaling process of the workload.

kubectl get hpa hpa-policy --watch
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-policy Deployment/hpa-example 0%/50% 1 100 1 4m
hpa-policy Deployment/hpa-example 190%/50% 1 100 1 4m23s
hpa-policy Deployment/hpa-example 190%/50% 1 100 4 4m31s
hpa-policy Deployment/hpa-example 200%/50% 1 100 4 5m16s
hpa-policy Deployment/hpa-example 200%/50% 1 100 4 6m16s
hpa-policy Deployment/hpa-example 85%/50% 1 100 4 7m16s
hpa-policy Deployment/hpa-example 81%/50% 1 100 4 8m16s
hpa-policy Deployment/hpa-example 81%/50% 1 100 7 8m31s
hpa-policy Deployment/hpa-example 57%/50% 1 100 7 9m16s
hpa-policy Deployment/hpa-example 51%/50% 1 100 7 10m
hpa-policy Deployment/hpa-example 58%/50% 1 100 7 11m

You can see that the CPU usage of the workload is 190% at 4m23s, which exceeds
the target value. In this case, scaling is triggered to expand the workload to four
replicas/pods. In the subsequent several minutes, the CPU usage does not decrease
until 7m16s. This is because the new pods may not be successfully created. The
possible cause is that resources are insufficient and the pods are in the pending
state. During this period, nodes are being scaled out.

At 7m16s, the CPU usage decreases, indicating that the pods are successfully
created and start to bear traffic. The CPU usage decreases to 81% at 8m, still
greater than the target value (50%) and the high threshold (70%). Therefore, 7
pods are added at 9m16s, and the CPU usage decreases to 51%, which is within
the range of 30% to 70%. From then on, the number of pods remains 7.

In the following output, you can see the workload scaling process and the time
when the HPA policy takes effect.

kubectl describe deploy hpa-example
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 25m deployment-controller Scaled up replica set hpa-example-79dd795485
to 1
 Normal ScalingReplicaSet 20m deployment-controller Scaled up replica set hpa-example-79dd795485
to 4
 Normal ScalingReplicaSet 16m deployment-controller Scaled up replica set hpa-example-79dd795485
to 7
kubectl describe hpa hpa-policy
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulRescale 20m horizontal-pod-autoscaler New size: 4; reason: cpu resource utilization
(percentage of request) above target
 Normal SuccessfulRescale 16m horizontal-pod-autoscaler New size: 7; reason: cpu resource utilization
(percentage of request) above target

Cloud Container Engine
Best Practices 6 Auto Scaling

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Check the number of nodes. The following output shows that two nodes are
added.

kubectl get node
NAME STATUS ROLES AGE VERSION
192.168.0.120 Ready <none> 3m5s v1.17.9-r0-CCE21.1.1.3.B001-17.36.8
192.168.0.136 Ready <none> 6m58s v1.17.9-r0-CCE21.1.1.3.B001-17.36.8
192.168.0.183 Ready <none> 18m v1.17.9-r0-CCE21.1.1.3.B001-17.36.8
192.168.0.26 Ready <none> 71m v1.17.9-r0-CCE21.1.1.3.B001-17.36.8

You can also view the scaling history on the console. For example, the CA policy is
executed once when the CPU allocation rate in the cluster is greater than 70%,
and the number of nodes in the node pool is increased from 2 to 3. The new node
is automatically added by autoscaler based on the pending state of pods in the
initial phase of HPA.

The node scaling process is as follows:

1. After the number of pods changes to 4, the pods are in Pending state due to
insufficient resources. As a result, the default scale-out policy of the
autoscaler add-on is triggered, and the number of nodes is increased by one.

2. The second node scale-out is triggered because the CPU allocation rate in the
cluster is greater than 70%. As a result, the number of nodes is increased by
one, which is recorded in the scaling history on the console. Scaling based on
the allocation rate ensures that the cluster has sufficient resources.

Step 3 Stop accessing the workload and check the number of pods.
kubectl get hpa hpa-policy --watch
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-policy Deployment/hpa-example 50%/50% 1 100 7 12m
hpa-policy Deployment/hpa-example 21%/50% 1 100 7 13m
hpa-policy Deployment/hpa-example 0%/50% 1 100 7 14m
hpa-policy Deployment/hpa-example 0%/50% 1 100 7 18m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 18m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 19m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 19m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 19m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 19m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 23m
hpa-policy Deployment/hpa-example 0%/50% 1 100 3 23m
hpa-policy Deployment/hpa-example 0%/50% 1 100 1 23m

You can see that the CPU usage is 21% at 13m. The number of pods is reduced to
3 at 18m, and then reduced to 1 at 23m.

In the following output, you can see the workload scaling process and the time
when the HPA policy takes effect.

kubectl describe deploy hpa-example
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 25m deployment-controller Scaled up replica set hpa-example-79dd795485
to 1
 Normal ScalingReplicaSet 20m deployment-controller Scaled up replica set hpa-example-79dd795485
to 4
 Normal ScalingReplicaSet 16m deployment-controller Scaled up replica set hpa-example-79dd795485
to 7
 Normal ScalingReplicaSet 6m28s deployment-controller Scaled down replica set hpa-
example-79dd795485 to 3
 Normal ScalingReplicaSet 72s deployment-controller Scaled down replica set hpa-
example-79dd795485 to 1
kubectl describe hpa hpa-policy

Cloud Container Engine
Best Practices 6 Auto Scaling

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulRescale 20m horizontal-pod-autoscaler New size: 4; reason: cpu resource utilization
(percentage of request) above target
 Normal SuccessfulRescale 16m horizontal-pod-autoscaler New size: 7; reason: cpu resource utilization
(percentage of request) above target
 Normal SuccessfulRescale 6m45s horizontal-pod-autoscaler New size: 3; reason: All metrics below target
 Normal SuccessfulRescale 90s horizontal-pod-autoscaler New size: 1; reason: All metrics below target

You can also view the HPA policy execution history on the console. Wait until the
one node is reduced.

The reason why the other two nodes in the node pool are not reduced is that they
both have pods in the kube-system namespace (and these pods are not created by
DaemonSets).

----End

Summary
By using HPA and CA, auto scaling can be effortlessly implemented in various
scenarios. Additionally, the scaling process of nodes and pods can be conveniently
tracked.

Cloud Container Engine
Best Practices 6 Auto Scaling

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

7 Monitoring

7.1 Monitoring Multiple Clusters Using Prometheus

Application Scenarios

Generally, a user has different clusters for different purposes, such as production,
testing, and development. To monitor, collect, and view metrics of these clusters,
you can deploy a set of Prometheus.

Solution Architecture

Multiple clusters are connected to the same Prometheus monitoring system, as
shown in the following figure. This reduces maintenance and resource costs and
facilitates monitoring information aggregation.

Cloud Container Engine
Best Practices 7 Monitoring

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Prerequisites
● The target cluster has been created.
● Prometheus has been properly connected to the target cluster.
● Prometheus has been installed on a Linux host using a binary file. For details,

see Installation.

Procedure

Step 1 Obtain the bearer_token information of the target cluster.

1. Create the RBAC permission in the target cluster.
Log in to the background node of the target cluster and create the
prometheus_rbac.yaml file.
apiVersion: v1
kind: ServiceAccount
metadata:
 name: prometheus-test
 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: prometheus-test
rules:
- apiGroups:
 - ""
 resources:
 - nodes
 - services
 - endpoints
 - pods
 - nodes/proxy
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - "extensions"
 resources:
 - ingresses
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - ""
 resources:
 - configmaps
 - nodes/metrics
 verbs:
 - get
- nonResourceURLs:
 - /metrics
 verbs:
 - get

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: prometheus-test
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole

Cloud Container Engine
Best Practices 7 Monitoring

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

https://prometheus.io/docs/prometheus/latest/installation/

 name: prometheus-test
subjects:
- kind: ServiceAccount
 name: prometheus-test
 namespace: kube-system

Run the following command to create the RBAC permission:
kubectl apply -f prometheus_rbac.yaml

2. Obtain the bearer_token information of the target cluster.

NO TE

– In clusters earlier than v1.21, a token is obtained by mounting the secret of the
service account to a pod. Tokens obtained this way are permanent. This approach
is no longer recommended starting from version 1.21. Service accounts will stop
auto creating secrets in clusters from version 1.25.
In clusters of version 1.21 or later, you can use the TokenRequest API to obtain
the token and use the projected volume to mount the token to the pod. Such
tokens are valid for a fixed period. When the mounting pod is deleted, the token
automatically becomes invalid.

– If you need a token that never expires, you can also manually manage secrets for
service accounts. Although a permanent service account token can be manually
created, you are advised to use a short-lived token by calling the TokenRequest
API for higher security.

Obtain the serviceaccount information.
kubectl describe sa prometheus-test -n kube-system

kubectl describe secret prometheus-test-token-hdhkg -n kube-system

Record the token value, which is the bearer_token information to be
collected.

Step 2 Configure bearer_token information.

Log in to the host where Prometheus is located, go to the Prometheus installation
directory, and save the token information of the target cluster in a file.

Cloud Container Engine
Best Practices 7 Monitoring

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/

Step 3 Configure a Prometheus monitoring job.

The example job monitors container metrics. To monitor other metrics, you can
add jobs and compile capture rules.
 - job_name: k8s_cAdvisor
 scheme: https
 bearer_token_file: k8s_token # Token file in the previous step.
 tls_config:
 insecure_skip_verify: true
 kubernetes_sd_configs: # kubernetes automatic discovery configuration
 - role: node # Automatic discovery of the node type
 bearer_token_file: k8s_token # Token file in the previous step
 api_server: https://192.168.0.153:5443 # API server address of the Kubernetes cluster
 tls_config:
 insecure_skip_verify: true # Skip the authentication on the server.
 relabel_configs: ## Modify the existing label of the target cluster before capturing metrics.
 - target_label: __address__
 replacement: 192.168.0.153:5443
 action: replace
 ## Convert metrics_path to /api/v1/nodes/${1}/proxy/metrics/cadvisor.
 # Obtain data from kubelet using the API server proxy.
 - source_labels: [__meta_kubernetes_node_name] # Specifies the source label to be processed.
 regex: (.+) # Matched value of the source label. (.+) indicates that any value of the source label can
be matched.
 target_label: __metrics_path__ # Specifies the label to be replaced.
 replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor # Indicates the new label, that is, the value of
__metrics_path__. ${1} indicates the value that matches the regular expression, that is, node name.
 - target_label: cluster
 replacement: xxxxx ## (Optional) Enter the cluster information.

The following job monitors another cluster.
 - job_name: k8s02_cAdvisor
 scheme: https
 bearer_token_file: k8s02_token # Token file in the previous step
 tls_config:
 insecure_skip_verify: true
 kubernetes_sd_configs:
 - role: node
 bearer_token_file: k8s02_token # Token file in the previous step
 api_server: https://192.168.0.147:5443 # API server address of the Kubernetes cluster
 tls_config:
 insecure_skip_verify: true # Skip the authentication on the server.
 relabel_configs: ## Modify the existing label of the target cluster before capturing metrics.
 - target_label: __address__
 replacement: 192.168.0.147:5443
 action: replace

 - source_labels: [__meta_kubernetes_node_name]
 regex: (.+)
 target_label: __metrics_path__
 replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor

Cloud Container Engine
Best Practices 7 Monitoring

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

 - target_label: cluster
 replacement: xxxx ## (Optional) Enter the cluster information.

Step 4 Enable Prometheus.

After the configuration, enable Prometheus.

./prometheus --config.file=prometheus.yml

Step 5 Log in to Prometheus and view the monitoring information.

----End

7.2 Reporting Prometheus Monitoring Data to a Third-
Party Monitoring Platform

Application Scenarios
The Cloud Native Cluster Monitoring add-on can report Prometheus metrics
collected from clusters to a specified platform, for example, AOM or a third-party
platform that supports Prometheus metrics. This section explains how to configure
settings for Cloud Native Cluster Monitoring to send collected metrics to a third-
party's Prometheus instance.

Step 1: Obtain the Data Reporting Address
Prometheus provides standard Remote Write APIs. You can enter the source
address (Remote Write URL) in the Cloud Native Cluster Monitoring add-on for
storing the locally collected monitoring data in a Prometheus instance remotely.

Cloud Container Engine
Best Practices 7 Monitoring

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

● If the Prometheus instance for receiving data is provided by a third-party
vendor, view the Remote Write URL on the vendor's console.

● If the Prometheus instance for receiving data is an on-premises one, the
Remote Write URL is https:// {prometheus_addr} /api/v1/write, where
{prometheus_addr} indicates the IP address and port number for external
access.

Step 2: Obtain the Authentication Mode
● For the third-party Prometheus instance, go to the vendor's console to view

the token or account password used for authorized access.
● For the on-premises Prometheus instance, perform the following steps to

obtain a token:

a. If this Prometheus instance is deployed in a Kubernetes cluster, view the
token in the corresponding container. If this Prometheus instance is
deployed on a VM, skip this step.
kubectl exec -ti -n monitoring prometheus-server-0 sh

Replace the variables in the command as needed:

▪ monitoring: indicates the namespace where a Prometheus pod is in.

▪ prometheus-server-0: indicates the name of a Prometheus pod.

b. Check the location of the configuration file.
ps -aux | grep prometheus

Information similar to the following is displayed:

c. View and record the token information in prometheus.env.yaml.
cat /etc/prometheus/config_out/prometheus.env.yaml

Step 3: Connect to a Third-Party Monitoring Platform

Step 1 Log in to the CCE console, click the name of a cluster with the Cloud Native
Cluster Monitoring add-on installed to access the cluster console.

Cloud Container Engine
Best Practices 7 Monitoring

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

Step 2 In the navigation pane, choose Settings and click the Monitoring tab.

Step 3 Enable Connect with third-party monitoring platforms so that the data
collected by Cloud Native Cluster Monitoring can be reported to a third-party
monitoring platform.
● Source Address: Remote Write URL obtained in step 1, for example, https://

127.0.0.1:9090/api/v1/write.
● Authentication method: Select the authentication method supported by the

third-party monitoring platform in step 2.
– Basic Auth: Enter the user name and password.
– Bearer Token: Enter the identity credential (token).

Step 4 Click Confirm Configuration.

----End

Step 4: Check the Data Sending and Receiving Statuses
After the preceding configuration is complete, log in to the Prometheus console
supported by the third-party platform and view the Prometheus metrics with
remote write on the Graph page.

Cloud Container Engine
Best Practices 7 Monitoring

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

8 Cluster

8.1 Suggestions on CCE Cluster Selection
When you use CCE to create a Kubernetes cluster, there are multiple configuration
options and terms. This section compares the key configurations for CCE clusters
and provides recommendations to help you create a cluster that better suits your
needs.

Cluster Types
CCE supports CCE Turbo clusters and CCE standard clusters to meet your
requirements. This section describes the differences between these two types of
clusters.

Table 8-1 Cluster types

Categ
ory

Subcate
gory

CCE Turbo Cluster CCE Standard Cluster

Cluste
r

Positioni
ng

Next-gen container cluster
designed for Cloud Native 2.0,
with accelerated computing,
networking, and scheduling

Standard cluster for
common commercial use

Node
type

Deployment of VMs and bare-
metal servers

Deployment of VMs and
bare-metal servers

Netw
orkin
g

Model Cloud Native Network 2.0:
applies to large-scale and
high-performance scenarios.
Max networking scale: 2,000
nodes

Cloud Native Network
1.0: applies to common,
smaller-scale scenarios.
● Tunnel network model
● VPC network model

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

Categ
ory

Subcate
gory

CCE Turbo Cluster CCE Standard Cluster

Performa
nce

Flattens the VPC network and
container network into one,
achieving zero performance
loss.

Overlays the VPC network
with the container network,
causing certain
performance loss.

Containe
r
network
isolation

Associates pods with security
groups. Unifies security
isolation in and out the
cluster via security groups'
network policies.

● Tunnel network model:
supports network
policies for intra-cluster
communications.

● VPC network model:
supports no isolation.

Securi
ty

Isolation ● Physical machine: runs
Kata containers, allowing
VM-level isolation.

● VM: runs common
containers, isolated by
cgroups.

Runs common containers,
isolated by cgroups.

Cluster Versions
Due to the fast iteration, many bugs are fixed and new features are added in the
new Kubernetes versions. The old versions will be gradually eliminated. When
creating a cluster, select the latest commercial version supported by CCE.

Network Models
This section describes the network models supported by CCE clusters. You can
select one model based on your requirements.

NO TICE

After clusters are created, the network models cannot be changed. Exercise
caution when selecting the network models.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

Table 8-2 Network model comparison

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

Applicatio
n
scenarios

● Low
requirements on
performance: As
the container
tunnel network
requires
additional
VXLAN tunnel
encapsulation, it
has about 5%
to 15% of
performance
loss when
compared with
the other two
container
network
models.
Therefore, the
container
tunnel network
applies to the
scenarios that
do not have
high
performance
requirements,
such as web
applications,
and middle-end
and back-end
services with a
small number
of access
requests.

● Large-scale
networking:
Different from
the VPC
network that is
limited by the
VPC route
quota, the
container
tunnel network
does not have
any restriction

● High performance
requirements: As
no tunnel
encapsulation is
required, the VPC
network model
delivers the
performance close
to that of a VPC
network when
compared with
the container
tunnel network
model. Therefore,
the VPC network
model applies to
scenarios that
have high
requirements on
performance, such
as AI computing
and big data
computing.

● Small- and
medium-scale
networks: Due to
the limitation on
VPC routing
tables, it is
recommended
that the number
of nodes in a
cluster be less
than or equal to
1000.

● High performance
requirements:
Cloud Native 2.0
networks use VPC
networks to
construct
container
networks,
eliminating the
need for tunnel
encapsulation or
NAT when
containers
communicate. This
makes Cloud
Native 2.0
networks ideal for
scenarios that
demand high
bandwidth and
low latency, such
as live streaming
and e-commerce
flash sales.

● Large-scale
networking: Cloud
Native 2.0
networks support
a maximum of
2,000 ECS nodes
and 100,000 pods.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

on the
infrastructure.
In addition, the
container
tunnel network
controls the
broadcast
domain to the
node level. The
container
tunnel network
supports a
maximum of
2000 nodes.

Core
technolog
y

OVS IPvlan and VPC route VPC ENI/sub-ENI

Applicable
clusters

CCE standard
cluster

CCE standard cluster CCE Turbo cluster

Container
network
isolation

Kubernetes native
NetworkPolicy for
pods

No Pods support security
group isolation.

Interconne
cting pods
to a load
balancer

Interconnected
through a
NodePort

Interconnected
through a NodePort

Directly
interconnected using
a dedicated load
balancer
Interconnected using
a shared load
balancer through a
NodePort

Managing
container
IP
addresses

● Separate
container CIDR
blocks needed

● Container CIDR
blocks divided
by node and
dynamically
added after
being allocated

● Separate container
CIDR blocks
needed

● Container CIDR
blocks divided by
node and
statically allocated
(the allocated
CIDR blocks
cannot be
changed after a
node is created)

Container CIDR
blocks divided from a
VPC subnet (You do
not need to configure
separate container
CIDR blocks.)

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

Network
performan
ce

Performance loss
due to VXLAN
encapsulation

No tunnel
encapsulation, and
cross-node traffic
forwarded through
VPC routers (The
performance is so
good that is
comparable to that
of the host network,
but there is a loss
caused by NAT.)

Container network
integrated with VPC
network, eliminating
performance loss

Networkin
g scale

A maximum of
2000 nodes are
supported.

Suitable for small-
and medium-scale
networks due to the
limitation on VPC
routing tables. It is
recommended that
the number of nodes
be less than or equal
to 1000.
Each time a node is
added to the cluster,
a route is added to
the VPC routing
tables. Evaluate the
cluster scale that is
limited by the VPC
routing tables before
creating the cluster.

A maximum of 2000
nodes are supported.
In a cloud-native
network 2.0 cluster,
containers' IP
addresses are
assigned from VPC
CIDR blocks, and the
number of containers
supported is
restricted by these
blocks. Evaluate the
cluster's scale
limitations before
creating it.

Cluster CIDR Blocks
There are node CIDR blocks, container CIDR blocks, and Service CIDR blocks in CCE
clusters. When planning network addresses, note that:

● These three types of CIDR blocks cannot overlap with each other. Otherwise, a
conflict will occur. All subnets (including those created from the secondary
CIDR block) in the VPC where the cluster resides cannot conflict with the
container and Service CIDR blocks.

● There are sufficient IP addresses in each CIDR block.
– The IP addresses in a node CIDR block must match the cluster scale.

Otherwise, nodes cannot be created due to insufficient IP addresses.
– The IP addresses in a container CIDR block must match the service scale.

Otherwise, pods cannot be created due to insufficient IP addresses.

In complex scenarios, for example, multiple clusters use the same VPC or clusters
are interconnected across VPCs, determine the number of VPCs, the number of

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

subnets, the container CIDR blocks, and the communication modes of the Service
CIDR blocks. For details, see Planning CIDR Blocks for a Cluster.

Service Forwarding Modes
kube-proxy is a key component of a Kubernetes cluster. It is responsible for load
balancing and forwarding between a Service and its backend pod.

CCE supports the iptables and IPVS forwarding modes.

● IPVS allows higher throughput and faster forwarding. It applies to scenarios
where the cluster scale is large or the number of Services is large.

● iptables is the traditional kube-proxy mode. This mode applies to the scenario
where the number of Services is small or there are a large number of short
concurrent connections on the client.

If high stability is required and the number of Services is less than 2000, the
iptables forwarding mode is recommended. In other scenarios, the IPVS forwarding
mode is recommended.

Node Specifications
The minimum specifications of a node are 2 vCPUs and 4 GiB memory. Evaluate
based on service requirements before configuring the nodes. However, using many
low-specification ECSs is not the optimal choice. The reasons are as follows:
● The upper limit of network resources is low, which may result in a single-point

bottleneck.
● Resources may be wasted. If each container running on a low-specification

node needs a lot of resources, the node cannot run multiple containers and
there may be idle resources in it.

Advantages of using large-specification nodes are as follows:
● The upper limit of the network bandwidth is high. This ensures higher

resource utilization for high-bandwidth applications.
● Multiple containers can run on the same node, and the network latency

between containers is low.
● The efficiency of pulling images is higher. This is because an image can be

used by multiple containers on a node after being pulled once. Low-
specifications ECSs cannot respond promptly because the images are pulled
many times and it takes more time to scale these nodes.

Additionally, select a proper vCPU/memory ratio based on your requirements. For
example, if a service container with large memory but fewer CPUs is used,
configure the specifications with the vCPU/memory ratio of 1:4 for the node where
the container resides to reduce resource waste.

Container Engines
CCE supports the containerd and Docker container engines. containerd is
recommended for its shorter traces, fewer components, higher stability, and
less consumption of node resources. Since Kubernetes 1.24, Dockershim is
removed and Docker is no longer supported by default. For details, see
Kubernetes is Moving on From Dockershim: Commitments and Next Steps.
CCE clusters do not support the Docker container engine.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

https://kubernetes.io/blog/2022/01/07/kubernetes-is-moving-on-from-dockershim/

Use containerd in typical scenarios. The Docker container engine is supported only
in the following scenarios:

● Docker in Docker (usually in CI scenarios)
● Running the Docker commands on the nodes
● Calling Docker APIs

Node OS
Service container runtimes share the kernel and underlying calls of nodes. To
ensure compatibility, select a Linux distribution version that is the same as or close
to that of the final service container image for the node OS.

8.2 Creating a Custom CCE Node Image
Custom CCE node images are created using the open source tool HashiCorp
Packer of v1.7.2 or later and the open source plug-in. The cce-image-builder
template is provided to help you quickly build images.

Packer is used to create custom container images. It offers builders, provisioners,
and post-processors that can be flexibly combined to automatically create image
files concurrently through JSON or HCL template files.

Packer has the following advantages:

1. Automatic build process: You can use Packer configuration files to specify and
automate the build process.

2. High compatibility with cloud platforms: Packer can interconnect with most
cloud platforms and various third-party plug-ins.

3. Easy-to-use configuration files: Packer configuration files are simple and
intuitive to write and read. Parameter definitions are easy to understand.

4. Diverse image build functions: Common functional modules are supported.
For example, the provisioner supports the shell module in remote script
execution, the file module in remote file transfer, and the breakpoint module
for process pauses.

Constraints
● Suggestions on using CCE node images:

– You are advised to use the default node images maintained by CCE.
These images have passed strict tests and updated in a timely manner,
providing better compatibility, stability, and security.

– Use the base images provided by CCE to create custom images. Huawei
Cloud EulerOS 2.0 custom images are not supported.

– The component package on which nodes depend for running is preset in
the base image. The package version varies with the cluster version. For
custom images, CCE does not push component package updates.

● When customizing an image, exercise caution when modifying kernel
parameters. Any improper kernel parameter modification will deteriorate the
system running efficiency.
Modifying the following kernel parameters will affect the system
performance: tcp_keepalive_time, tcp_max_tw_buckets, somaxconn,

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

https://www.packer.io/
https://www.packer.io/
https://github.com/huaweicloud/packer-plugin-huaweicloud

max_user_instances, max_user_watches, netdev_max_backlog,
net.core.wmem_max, and net.core.rmem_max.
To modify node kernel parameters, fully verify the modification in a test
environment before applying the modification to the production environment.

Precautions
● Before you create an image, prepare:

– An ECS executor: An ECS x86 server is used as the Linux executor. You are
advised to select CentOS7 and bind an EIP to it so that it can access the
public network and install Packer.

– Authentication credentials: Obtain the AK/SK of the tenant or user with
required permissions. For details, see How Do I Obtain an Access Key
(AK/SK).

– Security group: Packer creates a temporary ECS and uses a key pair to log
in to the ECS using SSH. Ensure that TCP:22 is enabled in the security
group.

● When you create a custom node image, make sure:
– You follow the instructions in this section to prevent unexpected

problems.
– You have the sudo root or root permissions required to log in to VMs

created from base images.
● When the creation is complete:

– The image creation process uses certain charging resources, including
ECSs, EVS disks, EIPs, bandwidth, and IMS images. These resources are
automatically released when the image is successfully created or fails to
be created. Release the resources in time to ensure no charges are
incurred unexpectedly.

Creating a Node Image

Step 1 Download cce-image-builder.

Log in to the ECS executor, download and decompress cce-image-builder.
wget https://cce-north-4.obs.cn-north-4.myhuaweicloud.com/cce-image-builder/cce-image-builder.tgz

tar zvxf cce-image-builder.tgz
cd cce-image-builder/

NO TE

The cce-image-builder contains:

● turbo-node.pkr.hcl # Packer configuration template used for creating the image. For
details about how to modify the template, see Step 3.

● scripts/* # CCE image creation preset in the template. Do not modify it. Otherwise, the
image might become unavailable.

● user-scripts/* # Custom package script directory preset in the template. Take
example.sh as an example. When you create a custom image, the image is
automatically uploaded to the temporary server and executed.

● user-packages/* # Custom package directory preset in the template. Take
example.package as an example. When you create a custom image, the image is
automatically uploaded to /tmp/example.package in the temporary server.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/eu/iam_faq/iam_01_0618.html

Step 2 Install Packer.

Download and install the HashiCorp Packer. For details, see Install Packer.

NO TE

The Packer version needs to be 1.10.0.

Take the CentOS 7 executor as an example. Run the following command to
automatically install Packer (This example is for reference only. For detailed
operations, see the official guide):
Configure the yum repository and install Packer.
sudo yum install -y yum-utils
sudo yum-config-manager --add-repo https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo
sudo yum -y install packer-1.10.0

Configure an alias to avoid duplicate Packer binary in the OS and check the Packer version.
rpm -q packer
alias packer=$(rpm -ql packer)
packer -v

Step 3 Define Packer template parameters.

The cce-image-builder/turbo-node.pkr.hcl file defines the process of building an
image using Packer. For details, see Packer Documentation.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

https://www.packer.io/
https://learn.hashicorp.com/tutorials/packer/get-started-install-cli
https://www.packer.io/docs

NO TE

● Parameters of variables or variable
turbo-node.pkr.hcl defines the parameters required in the process of building an image.
You can configure the parameters based on the live environment. For details, see Table
1.

● Parameter of packer
required_plugins defines the add-on dependency of Packer, including the add-on source
and version range. When you run packer init, the add-on is automatically downloaded
and initialized.
packer {
 required_plugins {
 huaweicloud = {
 version = ">= 1.0.4"
 source = "github.com/huaweicloud/huaweicloud"
 }
 }
}

● Parameter of source
The preceding defined variables are referred to automatically configure the parameters
required for creating an ECS.

● Parameter of build
The scripts are executed from top to bottom. Common modules such as the file upload
module and script execution shell module are supported. The corresponding scripts and
files are stored in the user-scripts and user-packages directories, respectively, in cce-
image-builder.
Example:
build {
 sources = ["source.huaweicloud-ecs.builder"]

Example:
 provisioner "file" {
 source = "<source file path>"
 destination = "<destination file path>"
 }

 provisioner "shell" {
 scripts = [
 "<source script file: step1.sh>",
 "<source script file: step2.sh>"
]
 }

 provisioner "shell" {
 inline = ["echo foo"]
 }
}

Step 4 Configure environment variables.

Configure the following environment variables on the executor:
export REGION_NAME=xxx
export IAM_ACCESS_KEY=xxx
export IAM_SECRET_KEY=xxx
export ECS_VPC_ID=xxx
export ECS_NETWORK_ID=xxx
export ECS_SECGRP_ID=xxx
export CCE_SOURCE_IMAGE_ID=xxx
export PKR_VAR_ecs_flavor=xxx

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

Table 8-3 Variables configuration

Parameter Description Remarks

REGION_NAME Region to which the
project belongs

To obtain the region information,
go to My Credentials.

IAM_ACCESS_K
EY

Access key for user
authentication

Apply for a temporary AK and
delete it when the image is built
successfully.

IAM_SECRET_K
EY

Secret key for user
authentication

Apply for a temporary SK and
delete it when the image is built
successfully.

ECS_VPC_ID VPC ID Used by the temporary ECS
server, which must be the same
as that of the executor

ECS_NETWORK
_ID

Network ID of the subnet Used by the temporary ECS
server. It is recommended that
the value be the same as that of
the executor. It is not the subnet
ID.

ECS_SECGRP_I
D

Security group ID Used by the temporary ECS. The
public IP address of the executor
must be allowed to pass through
port 22 in the inbound direction
of the security group to ensure
that the executor can log in to
the temporary ECS using SSH.

CCE_SOURCE_I
MAGE_ID

Latest CCE node image ID Submit a service ticket to obtain
the image ID.

PKR_VAR_ecs_fl
avor

Specifications of a
temporary ECS

Enter a node flavor supported by
CCE. The recommended flavor is
2 vCPUs and 4 GiB memory or
higher.

Note: Retain the default values of other parameters. To change the values, refer to
the description in the variable definition in turbo-node.pkr.hcl and configure the
value using environment variables.

Use the ECS flavor variable ecs_az as an example. If no AZ is specified, select a
random AZ. If you want to specify an AZ, configure an environment variable. The
same applies to other parameters.

export PKR_VAR_<variable name>=<variable value>
export PKR_VAR_ecs_az=xxx

Step 5 Customize scripts and files.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

Compile scripts and files by referring to the file and shell modules defined by the
build field in the pkr.hcl file, and store the scripts and files in the user-scripts and
user-packages directories in cce-image-builder.

NO TICE

When customizing an image, exercise caution when modifying kernel parameters.
Any improper kernel parameter modification will deteriorate the system running
efficiency.
Modifying the following kernel parameters will affect the system performance:
tcp_keepalive_time, tcp_max_tw_buckets, somaxconn, max_user_instances,
max_user_watches, netdev_max_backlog, net.core.wmem_max, and
net.core.rmem_max.
To modify node kernel parameters, fully verify the modification in a test
environment before applying the modification to the production environment.

Step 6 Create a custom image.

After custom parameter settings, create an image. The creation will take 3 to 5
minutes.
make image

NO TE

In the encapsulation script packer.sh:

● Automatic access of hashicorp.com by Packer is disabled by default for privacy
protection and security purposes.
export CHECKPOINT_DISABLE=false

● The debugging detailed logs option is enabled by default for better visibility and
traceability. The local Packer build logs packer_{timestamp}.log is specified so that the
logs can be packed to the /var/log/ directory during build. If sensitive information is
involved, remove the related logic.
export PACKER_LOG=1
export PACKER_BUILD_TIMESTAMP=$(date +%Y%m%d%H%M%S)
export PACKER_LOG_PATH="packer_$PACKER_BUILD_TIMESTAMP.log"

For details about Packer configuration, see Configuring Packer.

After the image is created, information similar to the following will display.

Step 7 Clean up build files.

Clear the build files on the executor, mainly the authentication credentials in
turbo-node.pkr.hcl.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

https://www.packer.io/docs/configure

● If the authentication credentials are temporary, directly release the executor.
● If they are built automatically, add post-processor in the configuration file to

execute related operations.

----End

8.3 Connecting to Multiple Clusters Using kubectl

Background
The kubectl command line tool relies on the kubeconfig configuration file to
locate the necessary authentication information to select a cluster and
communicate with its API server. By default, kubectl uses the $HOME/.kube/
config file as the credential for accessing the cluster.

When working with CCE clusters on a daily basis, it is common to manage
multiple clusters simultaneously. However, this can make using the kubectl
command line tool to connect to clusters cumbersome, as it requires frequent
switching of the kubeconfig file during routine O&M. This section introduces how
to connect to multiple clusters using the same kubectl client.

NO TE

The file used to configure cluster access is called the kubeconfig file, but it does not mean
that the file name is kubeconfig.

Solution
When performing O&M on Kubernetes clusters, it is often necessary to switch
between multiple clusters. The following shows some typical solutions for cluster
switchover:

● Solution 1: Specify --kubeconfig of kubectl to select the kubeconfig file used
by each cluster and use aliases to simplify commands.

● Solution 2: Combine clusters, users, and credentials in multiple kubeconfig
files into one configuration file and run kubectl config use-context to switch
clusters.
Compared with solution 1, this solution requires manual configuration of the
kubeconfig file, which is relatively complex.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

Figure 8-1 Using kubectl to connect to multiple clusters

Prerequisites
● You have a Linux VM with the kubectl command line tool installed. The

kubectl version must match the cluster version. For details, see Install Tools.
● The VM where kubectl is installed must be able to access the network of each

cluster.

kubeconfig File Structure
kubeconfig is the configuration file of kubectl. You can download it on the cluster
details page.

The content of the kubeconfig file is as follows:

{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "internalCluster",
 "cluster": {
 "server": "https://192.168.0.85:5443",
 "certificate-authority-data": "LS0tLS1CRUULIE..."
 }
 }, {
 "name": "externalCluster",
 "cluster": {
 "server": "https://xxx.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTiBDRVJ...",
 "client-key-data": "LS0tLS1CRUdJTiBS..."
 }
 }],
 "contexts": [{
 "name": "internal",
 "context": {
 "cluster": "internalCluster",
 "user": "user"

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

https://kubernetes.io/docs/tasks/tools/

 }
 }, {
 "name": "external",
 "context": {
 "cluster": "externalCluster",
 "user": "user"
 }
 }],
 "current-context": "external"
}

It mainly consists of three sections.

● clusters: describes the cluster information, mainly the access address of the
cluster.

● users: describes information about the users who access the cluster. It
includes the client-certificate-data and client-key-data certificate files.

● contexts: describes the configuration contexts. You switch between contexts
to access different clusters. A context is associated with user and cluster, that
is, it defines which user accesses which cluster.

The preceding kubeconfig defines the private network address and public network
address of the cluster as two clusters with two different contexts. You can switch
the context to use different addresses to access the cluster.

Solution 1: Specify Different kubeconfig Files in Commands

Step 1 Log in to the VM where kubectl is installed.

Step 2 Download the kubeconfig files of the two clusters to the /home directory on the
kubectl client. The following names are taken as examples.

Cluster Name kubeconfig File Name

Cluster A kubeconfig-a.json

Cluster B kubeconfig-b.json

Step 3 Make kubectl access cluster A by default and move the kubeconfig-a.json file to
$HOME/.kube/config.
cd /home
mkdir -p $HOME/.kube
mv -f kubeconfig-a.json $HOME/.kube/config

Step 4 Move the kubeconfig-b.json file of cluster B to $HOME/.kube/config-test.
mv -f kubeconfig-b.json $HOME/.kube/config-test

The name of the config-test file can be customized.

Step 5 Add --kubeconfig to specify the credential used by the kubectl commands when
accessing cluster B. (There is no need to add --kubeconfig when running kubectl
commands to access cluster A, because kubectl can access cluster A by default.)
For example, run the following command to check the nodes in cluster B:
kubectl --kubeconfig=$HOME/.kube/config-test get node

If you frequently use a long command, the preceding method can be inconvenient.
To simplify the command, you can use aliases. For example:
alias ka='kubectl --kubeconfig=$HOME/.kube/config'
alias kb='kubectl --kubeconfig=$HOME/.kube/config-test'

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

In the preceding information, ka and kb can be custom aliases. When running the
kubectl command, you can directly enter ka or kb to replace kubectl. The --
kubeconfig parameter is automatically added. For example, the command for
checking nodes in cluster B can be simplified as follows:

kb get node

----End

Solution 2: Combine the kubeconfig Files of the Two Clusters Together
The following steps walk you through the procedure of modifying the kubeconfig
files and accessing multiple clusters.

This example configures only the public network access to the clusters. If you want
to access multiple clusters over private networks, retain the clusters field and
ensure that the clusters can be accessed over private networks. Its configuration is
similar to that described in this example.

Step 1 Download the kubeconfig files of the two clusters and delete the lines related to
private network access, as shown in the following figure.
● Cluster A:

{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "externalCluster",
 "cluster": {
 "server": "https://119.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0tLS1CRUdJTiB...."
 }
 }],
 "contexts": [{
 "name": "external",
 "context": {
 "cluster": "externalCluster",
 "user": "user"
 }
 }],
 "current-context": "external"
}

● Cluster B:
{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "externalCluster",
 "cluster": {
 "server": "https://124.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "user",
 "user": {

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0rTUideUdJTiB...."
 }
 }],
 "contexts": [{
 "name": "external",
 "context": {
 "cluster": "externalCluster",
 "user": "user"
 }
 }],
 "current-context": "external"
}

The preceding files have the same structure except that the client-certificate-
data and client-key-data fields of user and the clusters.cluster.server field
are different.

Step 2 Modify the name field as follows:
● Cluster A:

{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "Cluster-A",
 "cluster": {
 "server": "https://119.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "Cluster-A-user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0tLS1CRUdJTiB...."
 }
 }],
 "contexts": [{
 "name": "Cluster-A-Context",
 "context": {
 "cluster": "Cluster-A",
 "user": "Cluster-A-user"
 }
 }],
 "current-context": "Cluster-A-Context"
}

● Cluster B:
{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "Cluster-B",
 "cluster": {
 "server": "https://124.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "Cluster-B-user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0rTUideUdJTiB...."
 }
 }],
 "contexts": [{
 "name": "Cluster-B-Context",

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

 "context": {
 "cluster": "Cluster-B",
 "user": "Cluster-B-user"
 }
 }],
 "current-context": "Cluster-B-Context"
}

Step 3 Combine these two files.

The file structure remains unchanged. Combine the contents of clusters, users,
and contexts as follows:

{
 "kind": "Config",
 "apiVersion": "v1",
 "preferences": {},
 "clusters": [{
 "name": "Cluster-A",
 "cluster": {
 "server": "https://119.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 },
 {
 "name": "Cluster-B",
 "cluster": {
 "server": "https://124.xxx.xxx.xxx:5443",
 "insecure-skip-tls-verify": true
 }
 }],
 "users": [{
 "name": "Cluster-A-user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0tLS1CRUdJTiB...."
 }
 },
 {
 "name": "Cluster-B-user",
 "user": {
 "client-certificate-data": "LS0tLS1CRUdJTxM...",
 "client-key-data": "LS0rTUideUdJTiB...."
 }
 }],
 "contexts": [{
 "name": "Cluster-A-Context",
 "context": {
 "cluster": "Cluster-A",
 "user": "Cluster-A-user"
 }
 },
 {
 "name": "Cluster-B-Context",
 "context": {
 "cluster": "Cluster-B",
 "user": "Cluster-B-user"
 }
 }],
 "current-context": "Cluster-A-Context"
}

Step 4 Run the following command to copy the combined file to the kubectl
configuration path:

mkdir -p $HOME/.kube

mv -f kubeconfig.json $HOME/.kube/config

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Step 5 Run the kubectl command to check whether the two clusters can be accessed.
kubectl config use-context Cluster-A-Context
Switched to context "Cluster-A-Context".
kubectl cluster-info
Kubernetes control plane is running at https://119.xxx.xxx.xxx:5443
CoreDNS is running at https://119.xxx.xxx.xxx:5443/api/v1/namespaces/kube-system/services/coredns:dns/
proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

kubectl config use-context Cluster-B-Context
Switched to context "Cluster-B-Context".
kubectl cluster-info
Kubernetes control plane is running at https://124.xxx.xxx.xxx:5443
CoreDNS is running at https://124.xxx.xxx.xxx:5443/api/v1/namespaces/kube-system/services/coredns:dns/
proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

If you frequently use a long command, the preceding method can be inconvenient.
To simplify the command, you can use aliases. For example:

alias ka='kubectl config use-context Cluster-A-Context;kubectl'
alias kb='kubectl config use-context Cluster-B-Context;kubectl'

In the preceding information, ka and kb can be custom aliases. When running the
kubectl command, you can directly enter ka or kb to replace kubectl. You need to
switch the context and then run the kubectl command. For example:

ka cluster-info
Switched to context "Cluster-A-Context".
Kubernetes control plane is running at https://119.xxx.xxx.xxx:5443
CoreDNS is running at https://119.xxx.xxx.xxx:5443/api/v1/namespaces/kube-system/services/coredns:dns/
proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

----End

8.4 Selecting a Data Disk for the Node
When a node is created, a data disk is attached by default for a container runtime
and kubelet. The data disk used by the container runtime and kubelet cannot be
detached, and the default capacity is 100 GiB. To cut costs, you can adjust the disk
capacity to the minimum of 20 GiB or reduce the disk capacity attached to a node
to the minimum of 10 GiB.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

NO TICE

Adjusting the size of the data disk used by the container runtime and kubelet may
incur risks. You are advised to evaluate the capacity adjustment and then perform
the operations described in this section.
● If the disk capacity is too small, the image pull may fail. If different images

need to be frequently pulled on the node, you are not advised to reduce the
data disk capacity.

● Before a cluster upgrade, the system checks whether the data disk usage
exceeds 95%. If the usage is high, the cluster upgrade may be affected.

● If Device Mapper is used, the disk capacity may be insufficient. You are advised
to use the OverlayFS or select a large-capacity data disk.

● For dumping logs, application logs must be stored in a separate disk to prevent
insufficient storage capacity of the dockersys volume from affecting service
running.

● After reducing the data disk capacity, you are advised to install the npd add-on
in the cluster to detect disk usage. If the disk usage of a node is high, resolve
this problem by referring to What If the Data Disk Capacity Is Insufficient?

Constraints
● Only clusters of v1.19 or later allow reducing the capacity of the data disk

used by container runtimes and kubelet.
● Only the EVS disk capacity can be adjusted. (Local disks are available only

when the node specification is disk-intensive or Ultra-high I/O.)

Selecting a Data Disk

When selecting a data disk, consider the following factors:

● During image pull, the system downloads the image package (the .tar
package) from the image repository, and decompresses the package. Then it
deletes the package but retain the image file. During the decompression of
the .tar package, the package and the decompressed image file coexist.
Reserve the capacity for the decompressed files.

● Mandatory add-ons (such as everest and coredns) may be deployed on nodes
during cluster creation. When calculating the data disk size, reserve about 2
GiB storage capacity for them.

● Logs are generated during application running. To ensure stable application
running, reserve about 1 GiB storage capacity for each pod.

For details about the calculation formulas, see OverlayFS and Device Mapper.

OverlayFS

By default, the container engine and container image storage capacity of a node
using the OverlayFS storage driver occupies 90% of the data disk capacity (you
are advised to retain this value). All the 90% storage capacity is used for dockersys
partitioning. The calculation methods are as follows:

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

● Capacity for storing container engines and container images requires 90% of
the data disk capacity by default.
– Capacity for dockersys volume (in the /var/lib/docker directory) requires

90% of the data disk capacity. The entire container engine and container
image capacity (need 90% of the data disk capacity by default) are in
the /var/lib/docker directory.

● Capacity for storing temporary kubelet and emptyDir requires 10% of the
data disk capacity.

On a node using the OverlayFS, when an image is pulled, the .tar package is
decompressed after being downloaded. During this process, the .tar package and
the decompressed image file are stored in the dockersys volume, occupying about
twice the actual image storage capacity. After the decompression is complete,
the .tar package is deleted. Therefore, during image pull, after deducting the
storage capacity occupied by the system add-on images, ensure that the
remaining capacity of the dockersys volume is greater than twice the actual image
storage capacity. To ensure that the containers can run stably, reserve certain
capacity in the dockersys volume for container logs and other related files.

When selecting a data disk, consider the following formula:

Capacity of dockersys volume > Actual total image storage capacity x 2 +
Total system add-on image storage capacity (about 2 GiB) + Number of
containers x Available storage capacity for a single container (about 1 GiB log
storage capacity for each container)

NO TE

If container logs are output in the json.log format, they will occupy some capacity in the
dockersys volume. If container logs are stored on persistent storage, they will not occupy
capacity in the dockersys volume. Estimate the capacity of every container as required.

Example:

Assume that the node uses the OverlayFS and the data disk attached to this node
is 20 GiB. According to the preceding methods, the capacity for storing container
engines and images occupies 90% of the data disk capacity, and the capacity for
the dockersys volume is 18 GiB (20 GiB x 90%). Additionally, mandatory add-ons
may occupy about 2 GiB storage capacity during cluster creation. If you deploy
a .tar package of 10 GiB, the package decompression takes 20 GiB of the
dockersys volume's storage capacity. This, coupled with the storage capacity
occupied by mandatory add-ons, exceeds the remaining capacity of the dockersys
volume. As a result, the image pull may fail.

Device Mapper
By default, the capacity for storing container engines and container images of a
node using the Device Mapper storage driver occupies 90% of the data disk
capacity (you are advised to retain this value). The occupied capacity includes the
dockersys volume and thinpool volume. The calculation methods are as follows:

● Capacity for storing container engines and container images requires 90% of
the data disk capacity by default.
– Capacity for the dockersys volume (in the /var/lib/docker directory)

requires 20% of the capacity for storing container engines and container
images.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

– Capacity for the thinpool volume requires 80% of the container engine
and container image storage capacity.

● Capacity for storing temporary kubelet and emptyDir requires 10% of the
data disk capacity.

On a node using the Device Mapper storage driver, when an image is pulled,
the .tar package is temporarily stored in the dockersys volume. After the .tar
package is decompressed, the image file is stored in the thinpool volume, and the
package in the dockersys volume will be deleted. Therefore, during image pull,
ensure that the dockersys partition space and thinpool space are sufficient, and
note that the former is smaller than the latter. To ensure that the containers can
run stably, reserve certain capacity in the dockersys volume for container logs and
other related files.

When selecting a data disk, consider the following formulas:
● Capacity for dockersys volume > Temporary storage capacity of the .tar

package (approximately equal to the actual total image storage capacity)
+ Number of containers x Storage capacity of a single container (about 1
GiB log storage capacity must be reserved for each container)

● Capacity for thinpool volume > Actual total image storage capacity +
Total add-on image storage capacity (about 2 GiB)

NO TE

If container logs are output in the json.log format, they will occupy some capacity in the
dockersys volume. If container logs are stored on persistent storage, they will not occupy
capacity in the dockersys volume. Estimate the capacity of every container as required.

Example:

Assume that the node uses the Device Mapper and the data disk attached to this
node is 20 GiB. According to the preceding methods, the container engine and
image storage capacity occupies 90% of the data disk capacity, and the disk usage
of the dockersys volume is 3.6 GiB. Additionally, the storage capacity of the
mandatory add-ons may occupy about 2 GiB of the dockersys volume during
cluster creation. The remaining storage capacity is about 1.6 GiB. If you deploy
a .tar image package larger than 1.6 GiB, the storage capacity of the dockersys
volume is insufficient for the package to be decompressed. As a result, the image
pull may fail.

What If the Data Disk Capacity Is Insufficient?

Solution 1: Clearing images

Perform the following operations to clear unused images:
● Nodes that use containerd

a. Obtain local images on the node.
crictl images -v

b. Delete the images that are not required by image ID.
crictl rmi Image ID

● Nodes that use Docker

a. Obtain local images on the node.
docker images

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

b. Delete the images that are not required by image ID.
docker rmi Image ID

NO TE

Do not delete system images such as the cce-pause image. Otherwise, pods may fail to be
created.

Solution 2: Expanding the disk capacity

Step 1 Expand the capacity of a data disk on the EVS console.

Only the storage capacity of the EVS disk is expanded. You also need to perform
the following steps to expand the capacity of the logical volume and file system.

Step 2 Log in to the CCE console and click the cluster. In the navigation pane, choose
Nodes. Click More > Sync Server Data in the row containing the target node.

Step 3 Log in to the target node.

Step 4 Run the lsblk command to check the block device information of the node.

A data disk is divided depending on the container storage Rootfs:

Overlayfs: No independent thin pool is allocated. Image data is stored in
dockersys.

1. Check the disk and partition sizes of the device.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 150G 0 disk # The data disk has been expanded to 150 GiB, but 50 GiB
space is not allocated.
├─vgpaas-dockersys 253:0 0 90G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

2. Expand the disk capacity.
Add the new disk capacity to the dockersys logical volume used by the
container engine.

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/sdb specifies the physical volume where dockersys is
located.
pvresize /dev/sdb

Information similar to the following is displayed:
Physical volume "/dev/sdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/
dockersys specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/dockersys

Information similar to the following is displayed:
Size of logical volume vgpaas/dockersys changed from <90.00 GiB (23039 extents) to 140.00
GiB (35840 extents).
Logical volume vgpaas/dockersys successfully resized.

c. Adjust the size of the file system. /dev/vgpaas/dockersys specifies the file
system path of the container engine.
resize2fs /dev/vgpaas/dockersys

Information similar to the following is displayed:

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

Filesystem at /dev/vgpaas/dockersys is mounted on /var/lib/containerd; on-line resizing required
old_desc_blocks = 12, new_desc_blocks = 18
The filesystem on /dev/vgpaas/dockersys is now 36700160 blocks long.

3. Check whether the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 150G 0 disk
├─vgpaas-dockersys 253:0 0 140G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

Devicemapper: A thin pool is allocated to store image data.

1. Check the disk and partition sizes of the device.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 18G 0 lvm /var/lib/docker
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm # Space used by thinpool
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

2. Expand the disk capacity.
Option 1: Add the new disk capacity to the thin pool disk.

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/vdb specifies the physical volume where thinpool is located.
pvresize /dev/vdb

Information similar to the following is displayed:
Physical volume "/dev/vdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/thinpool
specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/thinpool

Information similar to the following is displayed:
Size of logical volume vgpaas/thinpool changed from <67.00 GiB (23039 extents) to <167.00
GiB (48639 extents).
Logical volume vgpaas/thinpool successfully resized.

c. Do not need to adjust the size of the file system, because the thin pool is
not mounted to any devices.

d. Check whether the capacity is expanded. Run the lsblk command to
check the disk and partition sizes of the device. If the new disk capacity
has been added to the thin pool, the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 18G 0 lvm /var/lib/docker
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 167G 0 lvm # Thin pool space after
capacity expansion
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

Option 2: Add the new disk capacity to the dockersys disk.

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/vdb specifies the physical volume where dockersys is
located.
pvresize /dev/vdb

Information similar to the following is displayed:
Physical volume "/dev/vdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/
dockersys specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/dockersys

Information similar to the following is displayed:
Size of logical volume vgpaas/dockersys changed from <18.00 GiB (4607 extents) to <118.00
GiB (30208 extents).
Logical volume vgpaas/dockersys successfully resized.

c. Adjust the size of the file system. /dev/vgpaas/dockersys specifies the file
system path of the container engine.
resize2fs /dev/vgpaas/dockersys

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/dockersys is mounted on /var/lib/docker; on-line resizing required
old_desc_blocks = 3, new_desc_blocks = 15
The filesystem on /dev/vgpaas/dockersys is now 30932992 blocks long.

d. Check whether the capacity is expanded. Run the lsblk command to
check the disk and partition sizes of the device. If the new disk capacity
has been added to the dockersys, the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 118G 0 lvm /var/lib/docker # dockersys after
capacity expansion
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

----End

8.5 Protecting a CCE Cluster Against Overload
As services grow, the Kubernetes cluster scales up, putting more pressure on the
control plane. If the control plane cannot handle the load, clusters may fail to
provide services. This document explains the symptoms, impact, and causes of
cluster overload, as well as how CCE clusters can protect against overload. It also
provides recommended measures for protecting against overload.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

What Is Cluster Overload?
An overloaded cluster can cause delays in Kubernetes API responses and increase
the resource usage on master nodes. In severe cases, the APIs may fail to respond,
master nodes may become unusable, and the entire cluster may malfunction.

When a cluster is overloaded, both the control plane and the services that rely on
it are impacted. The following lists some scenarios that may be affected:

● Kubernetes resource management: Creating, deleting, updating, or obtaining
Kubernetes resources may fail.

● Kubernetes distributed leader selection: In distributed applications based on
Kubernetes Leases, leaders may restart due to lease renewal request timeout.

NO TE

For example, if the lease renewal of the controller component of the NPD add-on fails,
an active/standby switchover is triggered. This means that the active instance will
restart, and the standby instance will take over services, ensuring that there is no
impact on services.

● Cluster management: When a cluster is severely overloaded, it may become
unavailable. In this case, cluster management operations, such as creating or
deleting nodes, cannot be performed.

Common causes of cluster overload are as follows:

● The cluster resource data volume is too large.
etcd and kube-apiserver are two core components of the cluster control plane.
etcd serves as the background database that stores all cluster data, while
kube-apiserver acts as the entry point for processing requests. kube-apiserver
caches cluster data to lessen the burden on etcd, and other core components
in the cluster also cache various resources and monitor changes to these
resources.
However, if the cluster resource data volume is too large, the control plane
resource usage remains high, leading to overload when the resource data
volume exceeds the bearing capability.

● A large amount of data is obtained from a client. For example, a large
number of LIST requests are initiated or a single LIST request is sent to obtain
a large amount of data.
Assume that a client uses field selectors to obtain pod data in a cluster and
needs to obtain data from etcd (although the client can also get data from
the kube-apiserver cache). Data in etcd cannot be obtained by field, so kube-
apiserver must get all pod data from etcd, replicate, and serialize structured
pod data, and then respond to the client request.
When the client sends a LIST request, it may need to be processed by multiple
control plane components, resulting in a larger amount of data to be
processed and a more complex data type. As a result, when the client gets a
large amount of data, resource usages on etcd and API server remain high. If
the bearing capability is exceeded, the cluster becomes overloaded.

CCE Overload Control
● Overload control: CCE clusters have supported overload control since v1.23,

which reduces the number of LIST requests outside the system when the

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

control plane experiences high resource usage pressure. To use this function,
enable overload control for your clusters. For details, see Enabling Overload
Control for a Cluster.

● Optimized processes on LIST requests: Starting from CCE clusters of v1.23.8-
r0 and v1.25.3-r0, processes on LIST requests have been optimized. Even if a
client does not specify the resourceVersion parameter, kube-apiserver
responds to requests based on its cache to avoid additional etcd queries and
ensure that the response data is up to date. Additionally, namespace indexes
are now added to the kube-apiserver cache. This means that when a client
requests a specified resource in a specified namespace, it no longer needs to
obtain resources belonging to the namespace based on full data. This
effectively reduces the response delay and control plane memory overhead.

● Refined traffic limiting policy on the server: The API Priority and Fairness
(APF) feature is used to implement fine-grained control on concurrent
requests. For details, see API Priority and Fairness.

Suggestions
This section describes measures and suggestions you can take to prevent clusters
from being overloaded.

Upgrading the Cluster Version
As the CCE cluster version evolves, new overload protection features and
optimizations are regularly introduced. It is recommended that you promptly
upgrade your clusters to the latest version. For details, see Upgrading a Cluster.

Enabling Overload Control
After overload control is enabled, concurrent LIST requests outside the system will
be dynamically controlled based on the resource demands received by master
nodes to ensure the stable running of the master nodes and the cluster.

For details, see Cluster Overload Control.

Enabling Observability
Observability is crucial for maintaining the reliability and stability of clusters. By
using monitoring, alarms, and logs, administrators can gain a better
understanding of the clusters' performance, promptly identify any issues, and take
corrective action in a timely manner.

Monitoring configurations

● You can check the monitoring information about master nodes on the
Overview page of the CCE cluster console.

Figure 8-2 Viewing master node monitoring information

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0602.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0602.html
https://kubernetes.io/docs/concepts/cluster-administration/flow-control/
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0197.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0602.html

● You can also use Prometheus to monitor the metrics of master node
components, especially the memory usage, resource quantity, QPS, and
request latency of kube-apiserver. For details, see Monitoring Metrics of
Master Node Components Using Prometheus.

Controlling Data Volume of Resources

When the resource data volume in a cluster is too large, it can negatively impact
etcd performance, including data read and write latency. Additionally, if the data
volume of a single type of resource is too large, the control plane consumes a
significant number of resources when a client requests all the resources. To avoid
these issues, it is recommended that you keep both the etcd data volume and the
data volume of a single type of resources under control.

Table 8-4 Recommended maximum etcd data volume for different cluster scales

Cluster Scale 50 Nodes 200 Nodes 1,000 Nodes 2,000 Nodes

Total etcd
data capacity

500Mi 1Gi 4Gi 8Gi

etcd data
volume of a
single type of
resources

50Mi 100Mi 400Mi 800Mi

Clearing Unused Resources

To prevent a large number of pending pods from consuming extra resources on
the control plane, it is recommended that you promptly clear up Kubernetes
resources that are no longer in use, such as ConfigMaps, Secrets, and PVCs.

Optimizing the Client Access Mode
● To avoid frequent LIST queries, it is best to use the client cache mechanism

when retrieving cluster resource data multiple times. It is recommended that
you communicate with clusters using informers and listers. For details, see
client-go documentation.
If a LIST query must be used, you can:
– Obtain needed data from the kube-apiserver cache first and avoid

making additional queries on etcd data. For clusters earlier than v1.23.8-
r0 and v1.25.3-r0, you can set resourceVersion to 0. In clusters of
v1.23.8-r0, v1.25.3-r0, and later versions, CCE has improved the way data
is retrieved and ensured that the cached data is up to date. By default,
you can access the required data from the cache.

– Accurately define the query scope to avoid retrieving irrelevant data and
using unnecessary resources. For example:
client-go Code example for obtaining pods in a specified namespace
k8sClient.CoreV1().Pods("<your-namespace>").List(metav1.ListOptions{})
kubectl Command example for obtaining pods in a specified namespace
kubectl get pods -n <your-namespace>

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0559.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0559.html
https://pkg.go.dev/k8s.io/client-go/tools/cache

● Use the more efficient Protobuf format instead of the JSON format. By
default, Kubernetes returns objects serialized to JSON with content type
application/json. This is the default serialization format for the API. However,
clients may request the more efficient Protobuf representation of these
objects for better performance. For details, see Alternate representations of
resources.

Changing the Cluster Scale
If the resource usage on the master nodes in a cluster remains high for a long
time, for example, the memory usage is greater than 85%, it is recommended that
you promptly increase the cluster management scale. This will prevent the cluster
from becoming overloaded during sudden traffic surges. For details, see Changing
Cluster Scale.

NO TE

● The performance of the master nodes improves and their specifications become higher
as the management scale of a cluster increases.

● The CCE cluster management scale is the maximum number of nodes that a cluster can
manage. It is used as a reference during service deployment planning, and the actual
quantity of nodes in use may not reach the maximum number of nodes selected. The
actual scale depends on various factors, including the type, quantity, and size of
resource objects in the cluster, as well as the number of external accesses to the cluster
control plane.

Splitting the Cluster
The Kubernetes architecture has a performance bottleneck, meaning that the scale
of a single cluster cannot be expanded indefinitely. If your cluster has 2,000
worker nodes, it is necessary to split the services and deploy them across multiple
clusters. If you encounter any issues with splitting a cluster, submit a service ticket
for technical support.

Summary
When running services on Kubernetes clusters, their performance and availability
are influenced by various factors, including the cluster scale, number and size of
resources, and resource access. CCE has optimized cluster performance and
availability based on cloud native practices and has developed measures to protect
against cluster overload. You can use these measures to ensure that your services
run stably and reliably over the long term.

Cloud Container Engine
Best Practices 8 Cluster

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

https://kubernetes.io/docs/reference/using-api/api-concepts/#alternate-representations-of-resources
https://kubernetes.io/docs/reference/using-api/api-concepts/#alternate-representations-of-resources
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0403.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0403.html

9 Networking

9.1 Planning CIDR Blocks for a Cluster
Before creating a cluster on CCE, determine the number of VPCs, number of
subnets, container CIDR blocks, and Services for access based on service
requirements.

This topic describes the addresses in a CCE cluster in a VPC and how to plan CIDR
blocks.

Constraints
To access a CCE cluster through a VPN, ensure that the VPN does not conflict with
the VPC CIDR block where the cluster resides and the container CIDR block.

Basic Concepts
● VPC CIDR Block

Virtual Private Cloud (VPC) enables you to provision logically isolated,
configurable, and manageable virtual networks for cloud servers, cloud
containers, and cloud databases. You have complete control over your virtual
network, including selecting your own CIDR block, creating subnets, and
configuring security groups. You can also assign EIPs and allocate bandwidth
in your VPC for secure and easy access to your business system.

● Subnet CIDR Block
A subnet is a network that manages ECS network planes. It supports IP
address management and DNS. The IP addresses of all ECSs in a subnet
belong to the subnet.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

Figure 9-1 VPC CIDR block architecture

By default, ECSs in all subnets of the same VPC can communicate with one
another, while ECSs in different VPCs cannot communicate with each other.
You can create a peering connection on VPC to enable ECSs in different VPCs
to communicate with each other.

● Container (Pod) CIDR Block
Pod is a Kubernetes concept. Each pod has an IP address.
When creating a cluster on CCE, you can specify the pod (container) CIDR
block, which cannot overlap with the subnet CIDR block. For example, if the
subnet CIDR block is 192.168.0.0/16, the container CIDR block cannot be
192.168.0.0/18 or 192.168.1.0/18, because these addresses are included in
192.168.0.0/16.

● Service CIDR Block
Service is also a Kubernetes concept. Each Service has an address. When
creating a cluster on CCE, you can specify the Service CIDR block. Similarly,
the Service CIDR block cannot overlap with the subnet CIDR block or the
container CIDR block. The Service CIDR block can be used only within a
cluster.

Single-VPC Single-Cluster Scenarios
CCE Clusters: include clusters in VPC network model and container tunnel
network model. Figure 9-2 shows the CIDR block planning of a cluster.
● VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The

size of this CIDR block affects the maximum number of nodes that can be
created in the cluster.

● Subnet CIDR Block: specifies the subnet CIDR block where the node in the
cluster resides. The subnet CIDR block is included in the VPC CIDR block.
Different nodes in the same cluster can be allocated to different subnet CIDR
blocks.

● Container CIDR Block: cannot overlap with the subnet CIDR block.
● Service CIDR Block: cannot overlap with the subnet CIDR block or the

container CIDR block.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

Figure 9-2 Network CIDR block planning in single-VPC single-cluster scenarios
(CCE cluster)

Single-VPC Multi-Cluster Scenarios
VPC network model

Pod packets are forwarded through VPC routes. CCE automatically configures a
routing table on the VPC routes to each container CIDR block. The network scale
is limited by the VPC route table. Figure 9-3 shows the CIDR block planning of the
cluster.
● VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The

size of this CIDR block affects the maximum number of nodes that can be
created in the cluster.

● Subnet CIDR Block: The subnet CIDR block in each cluster cannot overlap with
the container CIDR block.

● Container CIDR Block: If multiple VPC network model clusters exist in a single
VPC, the container CIDR blocks of all clusters cannot overlap because the
clusters use the same routing table. In this case, if the node security group
allows container CIDR block from the peer cluster, pods in one cluster can
directly access pods in another cluster through the pod IP addresses.

● Service CIDR Block: can be used only in clusters. Therefore, the Service CIDR
blocks of different clusters can overlap, but cannot overlap with the subnet
CIDR block and container CIDR block of the cluster.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

Figure 9-3 VPC network - multi-cluster scenario

Tunnel network model

Though at some cost of performance, the tunnel encapsulation enables higher
interoperability and compatibility with advanced features (such as network policy-
based isolation), meeting the requirements of most applications. Figure 9-4 shows
the CIDR block planning of the cluster.

● VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The
size of this CIDR block affects the maximum number of nodes that can be
created in the cluster.

● Subnet CIDR Block: The subnet CIDR block in each cluster cannot overlap with
the container CIDR block.

● Container CIDR Block: The container CIDR blocks of all clusters can overlap. In
this case, pods in different clusters cannot be directly accessed through pod IP
addresses. Services are needed for accessing pods in different clusters. The
LoadBlancer Services are recommended.

● Service CIDR Block: can be used only in clusters. Therefore, the Service CIDR
blocks of different clusters can overlap, but cannot overlap with the subnet
CIDR block and container CIDR block of the cluster.

Figure 9-4 Tunnel network - multi-cluster scenario

Clusters using different networks

When a VPC contains clusters created with different network models, comply with
the following rules when creating a cluster:

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

● VPC CIDR Block: In this scenario, all clusters are located in the same VPC CIDR
block. Ensure that there are sufficient available IP addresses in the VPC.

● Subnet CIDR Block: Ensure that the subnet CIDR block does not overlap with
the container CIDR block.

● Container CIDR Block: Ensure that the container CIDR blocks of clusters in
VPC network model do not overlap.

● Service CIDR Block: The Service CIDR blocks of all clusters can overlap, but
cannot overlap with the subnet CIDR block and container CIDR block of the
cluster.

Cross-VPC Cluster Interconnection

If VPCs cannot communicate with each other, a VPC peering connection is used to
ensure communication between VPCs. When two VPC networks are
interconnected, you can configure the packets to be sent to the peer VPC in the
route table. For details, see VPC Peering Connection Overview.

Clusters using VPC networks

To allow clusters that use VPC networks to access each other across VPCs, add
routes to the two ends of the VPC peering after a VPC peering connection is
created.

Figure 9-5 VPC network - VPC interconnection scenario

When creating a VPC peering connection between containers across VPCs, pay
attention to the following points:

● The VPC to which the clusters belong must not overlap. In each cluster, the
subnet CIDR block cannot overlap with the container CIDR block.

● The container CIDR blocks of clusters at both ends cannot overlap, but the
Service CIDR blocks can.

● If the request end cluster uses the VPC network, check whether the node
security group in the destination cluster allows the container CIDR block of
the request end cluster. If yes, pods in one cluster can directly access pods in
another cluster through the pod IP address. Similarly, if nodes running in the
clusters at the two ends of the VPC peering connection need to access each
other, the node security group must allow the VPC CIDR block of the peer
cluster.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

https://support.huaweicloud.com/eu/usermanual-vpc/en-us_topic_0046655036.html

● You need to add routes for accessing the peer network CIDR block to the VPC
routing tables at both ends. For example, you need to add a route for
accessing the CIDR block of VPC 2 to the route table of VPC 1, and add a
route for accessing VPC 1 to the route table of VPC 2.

– Add the VPC CIDR block of the peer cluster: After the route of the VPC
CIDR block is added, a pod in a cluster can access another cluster node.
For example, the pod can access the port of a NodePort Service.

– Add peer container CIDR block: After the route of the container CIDR
block is added, a pod can directly access pods in another cluster through
the container IP addresses.

Clusters using tunnel networks

To allow clusters that use tunnel networks to access each other across VPCs, add
routes to the two ends of the VPC peering after a VPC peering connection is
created.

Figure 9-6 Tunnel network - VPC interconnection scenario

Pay attention to the following:

● The VPCs of the peer clusters must not overlap.

● The container CIDR blocks of all clusters can overlap, so do the Service CIDR
blocks.

● If the request end cluster uses the tunnel network, check whether the node
security group in the destination cluster allows the VPC CIDR block (including
the node subnets) of the request end cluster. If yes, nodes in one cluster can
access nodes in another cluster. However, pods in different clusters cannot be
directly accessed using pod IP addresses. Access between pods in different
clusters requires Services. The LoadBlancer Services are recommended.

● The VPC CIDR block route of the peer cluster must be added to the VPC
routing tables of both ends. For example, you need to add a route for
accessing the CIDR block of VPC 2 to the route table of VPC 1, and add a
route for accessing VPC 1 to the route table of VPC 2. After the route of the
VPC CIDR block is added, the pod can access another cluster node, for
example, accessing the port of a NodePort Service.

Clusters using different networks

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

If clusters using different networks need to communicate with each other across
VPCs, every one of them may serve as the request end or destination end. Pay
attention to the following:

● The VPC CIDR block to which the cluster belongs cannot overlap with the VPC
CIDR block of the peer cluster.

● Cluster subnet CIDR blocks cannot overlap with the container CIDR blocks.
● Container CIDR blocks in different clusters cannot overlap with each other.
● If pods or nodes in different clusters need to access each other, the security

groups of the clusters on both ends must allow the corresponding CIDR blocks
based on the following rules:
– If the request end cluster uses the VPC network, the node security group

of the destination cluster must allow the VPC CIDR block (including the
node subnets and container CIDR block) of the request end cluster.

– If the request end cluster uses the tunnel network, the node security
group of the destination cluster must allow the VPC CIDR block
(including the node subnets) of the request end cluster.

● The VPC CIDR block route of the peer cluster must be added to the VPC
routing tables of both ends. For example, you need to add a route for
accessing the CIDR block of VPC 2 to the route table of VPC 1, and add a
route for accessing VPC 1 to the route table of VPC 2. After the route of the
VPC CIDR block is added, the pod can access another cluster node, for
example, accessing the port of a NodePort Service.
If a cluster uses the VPC network, the VPC routing tables at both ends must
contain its container CIDR block. After the container CIDR block route is
added, the pod can directly access pods in another cluster through the
container IP addresses.

VPC-IDC Scenarios
Similar to the VPC interconnection scenario, some CIDR blocks in the VPC are
routed to the IDC. The pod IP addresses of CCE clusters cannot overlap with the
addresses within these CIDR blocks. To access the pod IP addresses in the cluster in
the IDC, configure the route table to the private line VBR on the IDC.

9.2 Selecting a Network Model
CCE uses proprietary, high-performance container networking add-ons to support
the tunnel network and VPC network models.

CA UTION

After a cluster is created, the network model cannot be changed. Exercise caution
when selecting a network model.

● Tunnel network: The container network is an overlay tunnel network on top
of a VPC network and uses the VXLAN technology. This network model is
applicable when there is no high requirements on performance. VXLAN
encapsulates Ethernet packets as UDP packets for tunnel transmission.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Though at some cost of performance, the tunnel encapsulation enables
higher interoperability and compatibility with advanced features (such as
network policy-based isolation), meeting the requirements of most
applications.

Figure 9-7 Container tunnel network

● VPC network: The container network uses VPC routing to integrate with the
underlying network. This network model is applicable to performance-
intensive scenarios. The maximum number of nodes allowed in a cluster
depends on the route quota in a VPC network. Each node is assigned a CIDR
block of a fixed size. VPC networks are free from tunnel encapsulation
overhead and outperform container tunnel networks. In addition, as VPC
routing includes routes to node IP addresses and container network segment,
container pods in the cluster can be directly accessed from outside the cluster.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

Figure 9-8 VPC network

The following table lists the differences between the network models.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

Table 9-1 Network model comparison

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

Applicatio
n
scenarios

● Low
requirements on
performance: As
the container
tunnel network
requires
additional
VXLAN tunnel
encapsulation, it
has about 5%
to 15% of
performance
loss when
compared with
the other two
container
network
models.
Therefore, the
container
tunnel network
applies to the
scenarios that
do not have
high
performance
requirements,
such as web
applications,
and middle-end
and back-end
services with a
small number
of access
requests.

● Large-scale
networking:
Different from
the VPC
network that is
limited by the
VPC route
quota, the
container
tunnel network
does not have
any restriction

● High performance
requirements: As
no tunnel
encapsulation is
required, the VPC
network model
delivers the
performance close
to that of a VPC
network when
compared with
the container
tunnel network
model. Therefore,
the VPC network
model applies to
scenarios that
have high
requirements on
performance, such
as AI computing
and big data
computing.

● Small- and
medium-scale
networks: Due to
the limitation on
VPC routing
tables, it is
recommended
that the number
of nodes in a
cluster be less
than or equal to
1000.

● High performance
requirements:
Cloud Native 2.0
networks use VPC
networks to
construct
container
networks,
eliminating the
need for tunnel
encapsulation or
NAT when
containers
communicate. This
makes Cloud
Native 2.0
networks ideal for
scenarios that
demand high
bandwidth and
low latency, such
as live streaming
and e-commerce
flash sales.

● Large-scale
networking: Cloud
Native 2.0
networks support
a maximum of
2,000 ECS nodes
and 100,000 pods.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

on the
infrastructure.
In addition, the
container
tunnel network
controls the
broadcast
domain to the
node level. The
container
tunnel network
supports a
maximum of
2000 nodes.

Core
technolog
y

OVS IPvlan and VPC route VPC ENI/sub-ENI

Applicable
clusters

CCE standard
cluster

CCE standard cluster CCE Turbo cluster

Container
network
isolation

Kubernetes native
NetworkPolicy for
pods

No Pods support security
group isolation.

Interconne
cting pods
to a load
balancer

Interconnected
through a
NodePort

Interconnected
through a NodePort

Directly
interconnected using
a dedicated load
balancer
Interconnected using
a shared load
balancer through a
NodePort

Managing
container
IP
addresses

● Separate
container CIDR
blocks needed

● Container CIDR
blocks divided
by node and
dynamically
added after
being allocated

● Separate container
CIDR blocks
needed

● Container CIDR
blocks divided by
node and
statically allocated
(the allocated
CIDR blocks
cannot be
changed after a
node is created)

Container CIDR
blocks divided from a
VPC subnet (You do
not need to configure
separate container
CIDR blocks.)

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

Dimensio
n

Tunnel Network VPC Network Cloud Native
Network 2.0

Network
performan
ce

Performance loss
due to VXLAN
encapsulation

No tunnel
encapsulation, and
cross-node traffic
forwarded through
VPC routers (The
performance is so
good that is
comparable to that
of the host network,
but there is a loss
caused by NAT.)

Container network
integrated with VPC
network, eliminating
performance loss

Networkin
g scale

A maximum of
2000 nodes are
supported.

Suitable for small-
and medium-scale
networks due to the
limitation on VPC
routing tables. It is
recommended that
the number of nodes
be less than or equal
to 1000.
Each time a node is
added to the cluster,
a route is added to
the VPC routing
tables. Evaluate the
cluster scale that is
limited by the VPC
routing tables before
creating the cluster.

A maximum of 2000
nodes are supported.
In a cloud-native
network 2.0 cluster,
containers' IP
addresses are
assigned from VPC
CIDR blocks, and the
number of containers
supported is
restricted by these
blocks. Evaluate the
cluster's scale
limitations before
creating it.

NO TICE

1. The scale of a cluster that uses the VPC network model is limited by the
custom routes of the VPC. Therefore, you need to estimate the number of
required nodes before creating a cluster.

2. By default, VPC routing network supports direct communication between
containers and hosts in the same VPC. If a peering connection policy is
configured between the VPC and another VPC, the containers can directly
communicate with hosts on the peer VPC. In addition, in hybrid networking
scenarios such as Direct Connect and VPN, communication between containers
and hosts on the peer end can also be achieved with proper planning.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

9.3 Implementing Sticky Session Through Load
Balancing

Concepts
Sticky sessions ensure continuity and consistency when you access applications. If
a load balancer is deployed between a client and backend servers, connections
may be forwarded to different servers for processing. Sticky sessions can resolve
this issue. After sticky session is enabled, requests from the same client will be
continuously distributed to the same backend server through load balancing.

For example, in most online systems that require user identity authentication, a
user needs to interact with the server for multiple times to complete a session.
These interactions require continuity. If sticky session is not configured, the load
balancer may allocate certain requests to different backend servers. Since user
identity has not been authenticated on other backend servers, interaction
exceptions such as a user login failure may occur.

Therefore, select a proper sticky session type based on the application
environment.

Table 9-2 Sticky session types

OSI Layer Listener
Protocol and
Networking

Sticky Session Type Scenarios Where
Sticky Sessions
Become Invalid

Layer 4 TCP- or UDP-
compliant
Services

Source IP address: The
source IP address of each
request is calculated using
the consistent hashing
algorithm to obtain a
unique hashing key, and all
backend servers are
numbered. The system
allocates the client to a
particular server based on
the generated key. This
allows requests from the
same IP address are
forwarded to the same
backend server.

● Source IP
addresses of
the clients
have changed.

● Requests from
the clients
exceed the
session
stickiness
duration.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

OSI Layer Listener
Protocol and
Networking

Sticky Session Type Scenarios Where
Sticky Sessions
Become Invalid

Layer 7 HTTP- or
HTTPS-
compliant
ingresses

● Load balancer cookie:
The load balancer
generates a cookie after
receiving a request from
the client. All subsequent
requests with the cookie
will be routed to the
same backend server.

● Application cookie: The
application deployed on
the backend server
generates a cookie after
receiving the first request
from the client. All
subsequent requests with
the same cookie will be
routed to the same
backend server.

● If requests sent
by the clients
do not contain
a cookie, sticky
sessions will
not take effect.

● Requests from
the clients
exceed the
session
stickiness
duration.

NO TE

When creating a load balancer, configure sticky sessions by setting kubernetes.io/elb.lb-
algorithm to ROUND_ROBIN or kubernetes.io/elb.lb-algorithm to
LEAST_CONNECTIONS. If you set kubernetes.io/elb.lb-algorithm is to SOURCE_IP, source
IP address-based sticky sessions are supported. In this case, you do not need to configure
sticky sessions again.

Layer 4 Sticky Sessions for Services
In Layer 4 mode, source IP address-based sticky sessions can be enabled, where
hash routing is performed based on the client IP address.

Enabling Layer 4 Sticky Session in a CCE Standard Cluster
In a CCE standard cluster, to enable source IP address-based sticky session for a
Service, ensure the following conditions are met:

1. Service Affinity of the Service must be set to Node-level, where the
externalTrafficPolicy value of the Service must be Local.

2. Anti-affinity has been enabled on the backend applications of the Service to
prevent all pods from being deployed on the same node.

Procedure

Step 1 Create an Nginx workload.

Set the number of pods to 3 and configure podAntiAffinity.
kind: Deployment
apiVersion: apps/v1

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

metadata:
 name: nginx
 namespace: default
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: container-0
 image: 'nginx:perl'
 resources:
 limits:
 cpu: 250m
 memory: 512Mi
 requests:
 cpu: 250m
 memory: 512Mi
 imagePullSecrets:
 - name: default-secret
 affinity:
 podAntiAffinity: # Pod anti-affinity
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - nginx
 topologyKey: kubernetes.io/hostname

Step 2 Create a LoadBalancer Service, for example, using an existing load balancer. The
following shows an example YAML file for configuring source IP address-based
sticky sessions:
apiVersion: v1
kind: Service
metadata:
 name: svc-example
 namespace: default
 annotations:
 kubernetes.io/elb.class: union
 kubernetes.io/elb.id: *****
 kubernetes.io/elb.lb-algorithm: ROUND_ROBIN # Weighted round robin allocation policy
 kubernetes.io/elb.session-affinity-mode: SOURCE_IP # Enable source IP address-based sticky session.
spec:
 selector:
 app: nginx
 externalTrafficPolicy: Local # Node level Service affinity
 ports:
 - name: cce-service-0
 targetPort: 80
 nodePort: 32633
 port: 80
 protocol: TCP
 type: LoadBalancer

Step 3 Check whether the Layer 4 sticky session function is enabled.

1. Log in to the ELB console, locate the row containing the target load balancer,
and click the listener name.

2. Check whether the sticky session function is enabled in the backend server
group.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

----End

Enabling Layer 4 Sticky Session in a CCE Turbo Cluster
In a CCE Turbo cluster, enabling source IP address-based sticky session for a
Service relies on the load balancer type.

● When a dedicated load balancer is used, passthrough networking is allowed
between the load balancer and pods, and pods function as the backend server
group of the load balancer. Therefore, you do not need to configure Service
affinity or application anti-affinity when enabling source IP address-based
sticky session for the Service.

● If a shared load balancer is used, sticky session cannot be enabled.

Procedure

● For dedicated load balancers
The following shows an example YAML file for configuring source IP address-
based sticky sessions for a Service that uses an existing load balancer:
apiVersion: v1
kind: Service
metadata:
 name: svc-example
 namespace: default
 annotations:
 kubernetes.io/elb.class: performance
 kubernetes.io/elb.id: *****
 kubernetes.io/elb.lb-algorithm: ROUND_ROBIN # Weighted round robin allocation policy
 kubernetes.io/elb.session-affinity-mode: SOURCE_IP # Enable source IP address-based sticky
session.
spec:
 selector:
 app: nginx
 externalTrafficPolicy: Cluster # In CCE Turbo clusters, Service affinity does not need to be
configured if a dedicated load balancer is used.
 ports:
 - name: cce-service-0
 targetPort: 80
 nodePort: 32633
 port: 80
 protocol: TCP
 type: LoadBalancer

Verify that the Layer 4 sticky session function is enabled.

a. Log in to the ELB console, locate the row containing the target load
balancer, and click the listener name.

b. Check whether the sticky session function is enabled in the backend
server group.

Layer 7 Sticky Sessions for Ingresses
In Layer 7 mode, sticky sessions can be enabled using HTTP cookies or application
cookies.

Enabling Layer 7 Sticky Session in a CCE Standard Cluster
To enable cookie-based sticky session on an ingress, ensure the following
conditions are met:

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

1. Service Affinity of the ingress must be set to Node-level, where the
externalTrafficPolicy value of the Service must be Local.

2. Anti-affinity must be enabled for the ingress workload to prevent all pods
from being deployed on the same node.

Procedure

Step 1 Create an Nginx workload.

Set the number of pods to 3 and configure podAntiAffinity.
kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
 namespace: default
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: container-0
 image: 'nginx:perl'
 resources:
 limits:
 cpu: 250m
 memory: 512Mi
 requests:
 cpu: 250m
 memory: 512Mi
 imagePullSecrets:
 - name: default-secret
 affinity:
 podAntiAffinity: # Pod anti-affinity
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - nginx
 topologyKey: kubernetes.io/hostname

Step 2 Create a Service for the workload. This section uses a NodePort Service as an
example.

Configure sticky sessions during the creation of a Service. An ingress can access
multiple Services, and each Service can have different sticky sessions.
apiVersion: v1
kind: Service
metadata:
 name: nginx
 namespace: default
 annotations:
 kubernetes.io/elb.lb-algorithm: ROUND_ROBIN # Weighted round robin allocation policy
 kubernetes.io/elb.session-affinity-mode: HTTP_COOKIE # HTTP cookie
 kubernetes.io/elb.session-affinity-option: '{"persistence_timeout":"1440"}' # Session stickiness duration,
in minutes. The value ranges from 1 to 1440.
spec:
 selector:
 app: nginx
 ports:

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

 - name: cce-service-0
 protocol: TCP
 port: 80
 targetPort: 80
 nodePort: 32633 # Custom node port
 type: NodePort
 externalTrafficPolicy: Local # Node level Service affinity

You can also select APP_COOKIE.

NO TICE

Only shared load balancers support application cookie-based sticky sessions.

apiVersion: v1
kind: Service
metadata:
 name: nginx
 namespace: default
 annotations:
 kubernetes.io/elb.lb-algorithm: ROUND_ROBIN # Weighted round robin allocation policy
 kubernetes.io/elb.session-affinity-mode: APP_COOKIE # Select APP_COOKIE.
 kubernetes.io/elb.session-affinity-option: '{"app_cookie_name":"test"}' # Application cookie name
spec:
 selector:
 app: nginx
 ports:
 - name: cce-service-0
 protocol: TCP
 port: 80
 targetPort: 80
 nodePort: 32633 # Custom node port
 type: NodePort
 externalTrafficPolicy: Local # Node level Service affinity

Step 3 Create an ingress and associate it with the Service.
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-test
 namespace: default
 annotations:
 kubernetes.io/elb.class: union
 kubernetes.io/elb.port: '80'
 kubernetes.io/elb.id: *****
spec:
 rules:
 - host: 'www.example.com'
 http:
 paths:
 - path: '/'
 backend:
 service:
 name: nginx # Service name
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: cce

Step 4 Verify that the Layer 7 sticky session function is enabled.

1. Log in to the ELB console, locate the row containing the target load balancer,
and click the listener name.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

2. Click the Forwarding Policies tab, click the backend server group name, and
check whether sticky session is enabled for it.

----End

Enabling Layer 7 Sticky Session in a CCE Turbo Cluster
Enable cookie-based sticky session on the ingress.

● When a dedicated load balancer is used, passthrough networking is allowed
between the load balancer and pods, and pods function as the backend server
group of the load balancer. Therefore, you do not need to configure Service
affinity or application anti-affinity when enabling cookie-based sticky session
for the ingress.

● If a shared load balancer is used, sticky session cannot be enabled.

Procedure

● For dedicated load balancers

a. Create a Service for the workload. In a CCE Turbo cluster, the ingresses
that use a dedicated load balancer must interconnect with ClusterIP
Services.
Configure sticky sessions during the creation of a Service. An ingress can
access multiple Services, and each Service can have different sticky
sessions.
apiVersion: v1
kind: Service
metadata:
 name: nginx
 namespace: default
 annotations:
 kubernetes.io/elb.lb-algorithm: ROUND_ROBIN # Weighted round robin allocation policy
 kubernetes.io/elb.session-affinity-mode: HTTP_COOKIE # HTTP cookie
 kubernetes.io/elb.session-affinity-option: '{"persistence_timeout":"1440"}' # Session
stickiness duration, in minutes. The value ranges from 1 to 1440.
spec:
 selector:
 app: nginx
 ports:
 - name: cce-service-0
 protocol: TCP
 port: 80
 targetPort: 80
 nodePort: 0
 type: ClusterIP

b. Create an ingress and associate it with the Service.
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-test
 namespace: default
 annotations:
 kubernetes.io/elb.class: performance
 kubernetes.io/elb.port: '80'
 kubernetes.io/elb.id: *****
spec:
 rules:
 - host: 'www.example.com'
 http:
 paths:
 - path: '/'

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

 backend:
 service:
 name: nginx # Service name
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: cce

c. Verify that the Layer 7 sticky session function is enabled.

i. Log in to the ELB console, locate the row containing the target load
balancer, and click the listener name.

ii. Click the Forwarding Policies tab, click the backend server group
name, and check whether sticky session is enabled for it.

9.4 Pre-Binding Container ENI for CCE Turbo Clusters
In the Cloud Native 2.0 network model, each pod is allocated an ENI or a sub-ENI
(called container ENI). The speed of ENI creation and binding is slower than that
of pod scaling, severely affecting the container startup speed in large-scale batch
creation. Therefore, the Cloud Native Network 2.0 model provides the dynamic
pre-binding of container ENIs to accelerate pod startup while improving IP
resource utilization.

Constraints
● CCE Turbo clusters of 1.23.5-r0, 1.25.1-r0, or later support ENI pre-binding,

global configuration at the cluster level, and custom settings at the node pool
level. Custom settings of nodes out of a node pool is not supported.

● Modify the dynamic pre-binding parameters using the console or API instead
of the node annotations in the background. Otherwise, the modified
annotations will be overwritten by the original values after the cluster is
upgraded.

How It Works
CCE Turbo provides four dynamic pre-binding parameters for container ENIs. You
can properly configure the parameters based on your service requirements. (The
node pool-level dynamic ENI pre-binding parameters take priority over the cluster-
level dynamic ENI pre-binding parameters.)

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

Table 9-3 Parameters of the dynamic ENI pre-binding policy

Parameter Defa
ult
Valu
e

Description Suggestion

nic-minimum-
target

10 Minimum number of container ENIs
bound to a node.
The parameter value must be a
positive integer. The value 10
indicates that there are at least 10
container ENIs bound to a node. If the
number you entered exceeds the
container ENI quota of the node, the
ENI quota will be used.

Configure
these
parameters
based on the
number of
pods.

nic-maximum-
target

0 If the number of ENIs bound to a
node exceeds the value of nic-
maximum-target, the system does
not proactively pre-bind ENIs.
If the value of this parameter is
greater than or equal to the value of
nic-minimum-target, the check on
the maximum number of the pre-
bound ENIs is enabled. Otherwise, the
check is disabled.
The parameter value must be a
positive integer. The value 0 indicates
that the check on the upper limit of
pre-bound container ENIs is disabled.
If the number you entered exceeds
the container ENI quota of the node,
the ENI quota will be used.

Configure
these
parameters
based on the
number of
pods.

nic-warm-target 2 Minimum number of pre-bound ENIs
on a node. The value must be a
number.
When the value of nic-warm-target +
the number of bound ENIs is greater
than the value of nic-maximum-
target, the system will pre-bind ENIs
based on the difference between the
value of nic-maximum-target and
the number of bound ENIs.

Set this
parameter
to the
number of
pods that
can be
scaled out
instantaneo
usly within
10 seconds.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

Parameter Defa
ult
Valu
e

Description Suggestion

nic-max-above-
warm-target

2 Only when the number of idle ENIs on
a node minus the value of nic-warm-
target is greater than the threshold,
the pre-bound ENIs will be unbound
and reclaimed. The value can only be
a number.
● Setting a larger value of this

parameter slows down the
recycling of idle ENIs and
accelerates pod startup. However,
the IP address usage decreases,
especially when IP addresses are
insufficient. Therefore, exercise
caution when increasing the
value of this parameter.

● Setting a smaller value of this
parameter accelerates the recycling
of idle ENIs and improves the IP
address usage. However, when a
large number of pods increase
instantaneously, the startup of
some pods slows down.

Set this
parameter
based on the
difference
between the
number of
pods that
are
frequently
scaled on
most nodes
within
minutes and
the number
of pods that
are instantly
scaled out
on most
nodes within
10 seconds.

Configuration Example
Lev
el

Service Scenario Configuration Example

Clus
ter

All nodes use the c7.4xlarge.2 model (sub-
ENI quota: 128).
Most nodes run about 20 pods.
Most nodes can run a maximum of 60
pods.
Most nodes can scale out 10 pods within
10 seconds.
Most nodes frequently scale in or out 15
pods within minutes.

Cluster-level global
configuration:
● nic-minimum-target: 20
● nic-maximum-target: 60
● nic-warm-target: 10
● nic-max-above-warm-

target: 5

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

Lev
el

Service Scenario Configuration Example

Nod
e
pool

A node pool that uses the c7.8xlarge.2
high-specification model is created in the
cluster. (sub-ENI quota: 256)
Most nodes run about 100 pods.
Most nodes can run a maximum of 128
pods.
Most nodes can scale out 10 pods within
10 seconds.
Most nodes frequently scale in or out 12
pods within minutes.

Custom settings at the node
pool level:
● nic-minimum-target: 100
● nic-maximum-target: 120
● nic-warm-target: 10
● nic-max-above-warm-

target: 2

NO TE

Pods using HostNetwork are excluded.

Cluster-level Global Configuration

Step 1 Log in to the CCE console. In the navigation pane, choose Clusters.

Step 2 Click next to the target cluster and choose Manage.

Step 3 In the window that slides out from the right, click Networking Components. For
details about the parameter configurations, see Configuration Example.

Step 4 After the configuration is complete, click OK. Wait for about 10 seconds for the
configuration to take effect.

----End

Custom Settings at the Node Pool Level

Step 1 Log in to the CCE console.

Step 2 Click the cluster name to access the cluster console, choose Nodes in the
navigation pane, and click the Node Pools tab.

Step 3 Locate the row containing the target node pool and click Manage.

Step 4 In the window that slides out from the right, click Networking Components and
enable node pool container ENI pre-binding. For details about the parameter
configurations, see Configuration Example.

Step 5 After the configuration is complete, click OK. Wait for about 10 seconds for the
configuration to take effect.

----End

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

9.5 Accessing an IP Address Outside a Cluster That
Uses a VPC Network Using Source Pod IP Addresses in
the Cluster

In a CCE cluster that uses a VPC network, when pods try to communicate with
external systems, CCE automatically translates the source IP addresses of the pods
into the IP addresses of the nodes that are running them. This allows pods to
communicate with external systems using the node IP addresses. This process is
known as pod IP address masquerading or Source Network Address Translation
(SNAT).

You are allowed to configure private CIDR blocks for your clusters using the
nonMasqueradeCIDRs parameter. If a pod tries to access a private CIDR block,
the source node will not perform NAT on the pod IP address. Instead, the VPC
route table can directly send the pod data packet to the destination, which means,
the pod IP address is directly used to communicate with the private CIDR block in
the cluster.

Figure 9-9 Pod IP address translation

Prerequisites

You have a cluster that uses the VPC network and whose version is v1.23.14-r0,
v1.25.9-r0, v1.27.6-r0, v1.28.4-r0, or later.

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

Default Non-Masqueraded CIDR Block Settings in a CCE Cluster
By default, CCE uses the following well-known private CIDR blocks as non-
masqueraded CIDR blocks in each cluster:

● 10.0.0.0/8
● 172.16.0.0/12
● 192.168.0.0/16

Additionally, in a CCE cluster that uses a secondary VPC CIDR block, adding or
resetting a node will automatically include the secondary CIDR block in the non-
masqueraded CIDR blocks.

This means that when a pod communicates with external resources and accesses
these CIDR blocks, the source IP address of the data packet remains unchanged
and is not translated into the node IP address.

Scenarios Where the Default Non-Masqueraded CIDR Blocks Do Not Fit
The default non-masqueraded CIDR block settings in CCE clusters apply to typical
scenarios, but in certain specific scenarios, these default settings may not be
sufficient to meet user requirements. The following shows typical examples:

● Cross-node access to pods in a cluster
When a node in a Kubernetes cluster needs to access a pod on another node,
the response data packet sent from the pod is automatically subject to SNAT.
This changes the source IP address from the pod IP address to the IP address
of the node that runs the pod. However, this automatic IP address translation
can sometimes lead to communication issues, making cross-node access
impossible.
To enable a node to access pods on other nodes, you can add the CIDR block
of the subnet where the node is located to the nonMasqueradeCIDRs
parameter. This will skip SNAT and allow the original IP addresses of pods on
these nodes to be retained.

● Access from other resources in the same VPC as a cluster to pods in the
cluster
In certain scenarios, it may be necessary to access the original IP addresses of
pods on different nodes in a CCE cluster directly from other resources (such as
ECSs) in the same VPC as the cluster. However, with SNAT enabled by default,
the source IP addresses of the data packets are replaced with the IP addresses
of the nodes that run these pods when the data packets pass through the
nodes. This makes it difficult for these resources to access pods directly.
To enable direct access from resources in the same VPC as the cluster to pods,
you can add the CIDR blocks of the subnets where these resources are located
to the nonMasqueradeCIDRs parameter. This will skip SNAT and ensure that
the source IP addresses of the data packets remain the same as the original IP
addresses of pods.

Precautions
If a security group or ACL is configured for a cloud service and only the IP address
of the node where the pod runs is allowed to access the service, SNAT is required
to translate the pod IP address into the node IP address for successful access. As a

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

result, the CIDR block of the subnet where the server is located cannot be added
to the nonMasqueradeCIDRs configuration.

The default setting of pod IP address masquerading (SNAT) is usually sufficient.
However, if you need to retain the original IP addresses of pods in specific
scenarios, you can configure the nonMasqueradeCIDRs parameter.

Before doing so, make sure you have evaluated your application scenario and
understood the potential risks of improper configuration, because it may block
access within clusters. If you are unsure whether to configure this parameter, it is
recommended that you keep the default settings and adjust the configuration
later once the requirement is clarified.

Procedure
To reserve the source IP address of a pod when the pod accesses a CIDR block, you
can configure nonMasqueradeCIDRs to specify the CIDR block that does not need
to be masqueraded.

Step 1 Log in to the CCE console and click the name of the target cluster to access the
cluster console.

Step 2 In the navigation pane, choose Settings and click the Network tab.

Step 3 Modify the range of the CIDR block for non-masquerading access to preserve the
source pod IP address when accessing a specified CIDR block. Make sure the
parameter configuration complies with the following rules:
● Each CIDR block must comply with the CIDR format and must be a valid IPv4

CIDR block.
Example of a correct CIDR block: 192.168.1.0/24
Example of an incorrect CIDR block: 192.168.1.1/24 (incompliant with the
CIDR format)

● The CIDR blocks you configured do not overlap with each other.
Example of correct CIDR blocks: 192.168.1.0/24 and 192.168.2.0/24
Example of incorrect CIDR blocks: 192.168.1.0/24 and 192.168.1.128/25 (The
two CIDR blocks overlap.)

● The nonMasqueradeCIDRs parameter must contain all destination CIDR
blocks that you want them to use the original pod IP addresses for
communications.

Step 4 After the modification, click Confirm configuration. The setting takes effect
within 1 minute.

----End

Cloud Container Engine
Best Practices 9 Networking

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

10 Storage

10.1 Expanding the Storage Space
The storage classes that can be expanded for CCE nodes are as follows:

Table 10-1 Capacity expansion methods

Type Name Purpose Capacity Expansion
Method

Node
disk

System
disk

A disk attached to a node
for installing the operating
system

Expanding System Disk
Capacity

Data
disk

The first data disk attached
to a node for container
engine and kubelet

● Expanding the
Container Engine
Capacity

● Expanding the kubelet
Capacity

● Expanding Capacity of
the Disk Shared by
Container Engine and
kubelet

Contain
er
storage

Pod
containe
r space

The base size of a container,
which is, the upper limit of
the disk space occupied by
each pod (including the
storage space occupied by
container images)

Expanding the Capacity
of a Data Disk Used by
Pod (basesize)

PVC Storage resources mounted
to the containers

Expanding a PVC

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

Expanding System Disk Capacity
EulerOS 2.9 is used as the sample OS. There is only one partition (/dev/vda1) with
a capacity of 50 GiB in the system disk /dev/vda, and then 50 GiB is added to the
system disk. In this example, the additional 50 GiB is allocated to the
existing /dev/vda1 partition.

Step 1 Expand the system disk capacity on the EVS console.

Only the storage capacity of the EVS disk is expanded. You also need to perform
the following steps to expand the partition and file system.

Step 2 Log in to the node and run the growpart command to check whether growpart
has been installed.

If the tool operation guide is displayed, the growpart has been installed.
Otherwise, run the following command to install growpart:

yum install cloud-utils-growpart

Step 3 Run the following command to view the total capacity of the system disk /dev/
vda:
fdisk -l

If the following information is displayed, the total capacity of /dev/vda is 100 GiB.

[root@test-48162 ~]# fdisk -l
Disk /dev/vda: 100 GiB, 107374182400 bytes, 209715200 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x78d88f0b

Device Boot Start End Sectors Size Id Type
/dev/vda1 * 2048 104857566 104855519 50G 83 Linux

Disk /dev/vdb: 100 GiB, 107374182400 bytes, 209715200 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/vgpaas-dockersys: 90 GiB, 96632569856 bytes, 188735488 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/vgpaas-kubernetes: 10 GiB, 10733223936 bytes, 20963328 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Step 4 Run the following command to check the capacity of the system disk
partition /dev/vda1:
df -TH

Information similar to the following is displayed:

[root@test-48162 ~]# df -TH
Filesystem Type Size Used Avail Use% Mounted on
devtmpfs devtmpfs 1.8G 0 1.8G 0% /dev
tmpfs tmpfs 1.8G 0 1.8G 0% /dev/shm
tmpfs tmpfs 1.8G 13M 1.8G 1% /run
tmpfs tmpfs 1.8G 0 1.8G 0% /sys/fs/cgroup
/dev/vda1 ext4 53G 3.3G 47G 7% /

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

tmpfs tmpfs 1.8G 75M 1.8G 5% /tmp
/dev/mapper/vgpaas-dockersys ext4 95G 1.3G 89G 2% /var/lib/docker
/dev/mapper/vgpaas-kubernetes ext4 11G 39M 10G 1% /mnt/paas/kubernetes/kubelet
...

Step 5 Run the following command to extend the partition using growpart:
growpart System disk Partition number

The partition number is 1 because there is only one /dev/vda1 partition in the
system disk, as shown in the following command:

growpart /dev/vda 1

Information similar to the following is displayed:

CHANGED: partition=1 start=2048 old: size=104855519 end=104857567 new: size=209713119
end=209715167

Step 6 Run the following command to extend the file system:
resize2fs Disk partition

An example command is as follows:

resize2fs /dev/vda1

Information similar to the following is displayed:

resize2fs 1.45.6 (20-Mar-2020)
Filesystem at /dev/vda1 is mounted on /; on-line resizing required
old_desc_blocks = 7, new_desc_blocks = 13
The filesystem on /dev/vda1 is now 26214139 (4k) blocks long.

Step 7 Run the following command to view the new capacity of the /dev/vda1 partition:
df -TH

Information similar to the following is displayed:

[root@test-48162 ~]# df -TH
Filesystem Type Size Used Avail Use% Mounted on
devtmpfs devtmpfs 1.8G 0 1.8G 0% /dev
tmpfs tmpfs 1.8G 0 1.8G 0% /dev/shm
tmpfs tmpfs 1.8G 13M 1.8G 1% /run
tmpfs tmpfs 1.8G 0 1.8G 0% /sys/fs/cgroup
/dev/vda1 ext4 106G 3.3G 98G 4% /
tmpfs tmpfs 1.8G 75M 1.8G 5% /tmp
/dev/mapper/vgpaas-dockersys ext4 95G 1.3G 89G 2% /var/lib/docker
/dev/mapper/vgpaas-kubernetes ext4 11G 39M 10G 1% /mnt/paas/kubernetes/kubelet
...

Step 8 Log in to the CCE console and click the cluster. In the navigation pane, choose
Nodes. Click More > Sync Server Data in the row containing the target node.

----End

Expanding Data Disk Capacity

The first data disk of a CCE node is composed of container engine and kubelet
space by default. If either of them reaches full capacity, you can expand the disk
space as needed.

In clusters of v1.21.10-r0, v1.23.8-r0, v1.25.3-r0, and later, CCE enables container
engine (Docker/containerd) and kubelet to share the space of the first data disk. If
the shared disk space is insufficient, you can expand it.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

Expanding the Container Engine Capacity

The available container engine space affects image pulls and container startup
and running. This section uses containerd as an example to describe how to
expand the container engine capacity.

Step 1 Expand the capacity of a data disk on the EVS console.

Only the storage capacity of the EVS disk is expanded. You also need to perform
the following steps to expand the capacity of the logical volume and file system.

Step 2 Log in to the CCE console and click the cluster. In the navigation pane, choose
Nodes. Click More > Sync Server Data in the row containing the target node.

Step 3 Log in to the target node.

Step 4 Run the lsblk command to check the block device information of the node.

A data disk is divided depending on the container storage Rootfs:

Overlayfs: No independent thin pool is allocated. Image data is stored in
dockersys.

1. Check the disk and partition sizes of the device.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 150G 0 disk # The data disk has been expanded to 150 GiB, but 50 GiB
space is not allocated.
├─vgpaas-dockersys 253:0 0 90G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

2. Expand the disk capacity.
Add the new disk capacity to the dockersys logical volume used by the
container engine.

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/sdb specifies the physical volume where dockersys is
located.
pvresize /dev/sdb

Information similar to the following is displayed:
Physical volume "/dev/sdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/
dockersys specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/dockersys

Information similar to the following is displayed:
Size of logical volume vgpaas/dockersys changed from <90.00 GiB (23039 extents) to 140.00
GiB (35840 extents).
Logical volume vgpaas/dockersys successfully resized.

c. Adjust the size of the file system. /dev/vgpaas/dockersys specifies the file
system path of the container engine.
resize2fs /dev/vgpaas/dockersys

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/dockersys is mounted on /var/lib/containerd; on-line resizing required
old_desc_blocks = 12, new_desc_blocks = 18
The filesystem on /dev/vgpaas/dockersys is now 36700160 blocks long.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

3. Check whether the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 150G 0 disk
├─vgpaas-dockersys 253:0 0 140G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

Devicemapper: A thin pool is allocated to store image data.

1. Check the disk and partition sizes of the device.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 18G 0 lvm /var/lib/docker
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm # Space used by thinpool
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

2. Expand the disk capacity.
Option 1: Add the new disk capacity to the thin pool disk.

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/vdb specifies the physical volume where thinpool is located.
pvresize /dev/vdb

Information similar to the following is displayed:
Physical volume "/dev/vdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/thinpool
specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/thinpool

Information similar to the following is displayed:
Size of logical volume vgpaas/thinpool changed from <67.00 GiB (23039 extents) to <167.00
GiB (48639 extents).
Logical volume vgpaas/thinpool successfully resized.

c. Do not need to adjust the size of the file system, because the thin pool is
not mounted to any devices.

d. Check whether the capacity is expanded. Run the lsblk command to
check the disk and partition sizes of the device. If the new disk capacity
has been added to the thin pool, the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 18G 0 lvm /var/lib/docker
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 167G 0 lvm # Thin pool space after
capacity expansion
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

Option 2: Add the new disk capacity to the dockersys disk.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

a. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/vdb specifies the physical volume where dockersys is
located.
pvresize /dev/vdb

Information similar to the following is displayed:
Physical volume "/dev/vdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

b. Expand 100% of the free capacity to the logical volume. vgpaas/
dockersys specifies the logical volume used by the container engine.
lvextend -l+100%FREE -n vgpaas/dockersys

Information similar to the following is displayed:
Size of logical volume vgpaas/dockersys changed from <18.00 GiB (4607 extents) to <118.00
GiB (30208 extents).
Logical volume vgpaas/dockersys successfully resized.

c. Adjust the size of the file system. /dev/vgpaas/dockersys specifies the file
system path of the container engine.
resize2fs /dev/vgpaas/dockersys

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/dockersys is mounted on /var/lib/docker; on-line resizing required
old_desc_blocks = 3, new_desc_blocks = 15
The filesystem on /dev/vgpaas/dockersys is now 30932992 blocks long.

d. Check whether the capacity is expanded. Run the lsblk command to
check the disk and partition sizes of the device. If the new disk capacity
has been added to the dockersys, the capacity is expanded.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 8:0 0 50G 0 disk
└─vda1 8:1 0 50G 0 part /
vdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 118G 0 lvm /var/lib/docker # dockersys after
capacity expansion
├─vgpaas-thinpool_tmeta 253:1 0 3G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
├─vgpaas-thinpool_tdata 253:2 0 67G 0 lvm
│ └─vgpaas-thinpool 253:3 0 67G 0 lvm
│ ...
└─vgpaas-kubernetes 253:4 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

----End

Expanding the kubelet Capacity
The kubelet space serves as a temporary storage location for kubelet components
and EmptyDir. You can follow the following steps to increase the kubelet capacity:

Step 1 Expand the capacity of a data disk on the EVS console.

Only the storage capacity of the EVS disk is expanded. You also need to perform
the following steps to expand the capacity of the logical volume and file system.

Step 2 Log in to the CCE console and click the cluster. In the navigation pane, choose
Nodes. Click More > Sync Server Data in the row containing the target node.

Step 3 Log in to the target node.

Step 4 Run lsblk to view the block device information of the node.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 200G 0 disk #The data disk has been expanded to 200 GiB, but 50 GiB space
is not allocated.
├─vgpaas-dockersys 253:0 0 140G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 10G 0 lvm /mnt/paas/kubernetes/kubelet

Step 5 Perform the following operations on the node to add the new disk capacity to the
kubelet space:

1. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/sdb specifies the physical volume where kubelet is located.
pvresize /dev/sdb

Information similar to the following is displayed:
Physical volume "/dev/sdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

2. Expand 100% of the free capacity to the logical volume. vgpaas/kubernetes
specifies the logical volume used by kubelet.
lvextend -l+100%FREE -n vgpaas/kubernetes

Information similar to the following is displayed:
Size of logical volume vgpaas/kubernetes changed from <10.00 GiB (2559 extents) to <60.00 GiB
(15359 extents).
Logical volume vgpaas/kubernetes successfully resized.

3. Adjust the size of the file system. /dev/vgpaas/kubernetes specifies the file
system path of the container engine.
resize2fs /dev/vgpaas/kubernetes

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/kubernetes is mounted on /mnt/paas/kubernetes/kubelet; on-line resizing
required
old_desc_blocks = 2, new_desc_blocks = 8
The filesystem on /dev/vgpaas/kubernetes is now 15727616 blocks long.

Step 6 Run lsblk to view the block device information of the node.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 200G 0 disk
├─vgpaas-dockersys 253:0 0 140G 0 lvm /var/lib/containerd
└─vgpaas-kubernetes 253:1 0 60G 0 lvm /mnt/paas/kubernetes/kubelet # Allocate the new disk to
the kubelet space.

----End

Expanding Capacity of the Disk Shared by Container Engine and kubelet

To expand the capacity of the disk shared by container engine and kubelet,
perform the following steps:

Step 1 Expand the capacity of a data disk on the EVS console.

Only the storage capacity of the EVS disk is expanded. You also need to perform
the following steps to expand the capacity of the logical volume and file system.

Step 2 Log in to the CCE console and click the cluster. In the navigation pane, choose
Nodes. Click More > Sync Server Data in the row containing the target node.

Step 3 Log in to the target node.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

Step 4 Run lsblk to view the block device information of the node.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 120G 0 disk # The data disk has been expanded to 120 GiB, but 20 GiB space is not
allocated.
└─vgpaas-share 253:0 0 100G 0 lvm /mnt/paas # Space used by the container engine and the kubelet
component

Step 5 Run the following commands on the node to add the new disk capacity to the
shared disk:

1. Expand the PV capacity so that LVM can identify the new EVS
capacity. /dev/sdb specifies the physical volume where the shared disk is
located.
pvresize /dev/sdb

Information similar to the following is displayed:
Physical volume "/dev/sdb" changed
1 physical volume(s) resized or updated / 0 physical volume(s) not resized

2. Expand 100% of the free capacity to the logical volume. vgpaas/share
specifies the logical volume shared by the container engine and the kubelet
component.
lvextend -l+100%FREE -n vgpaas/share

Information similar to the following is displayed:
Size of logical volume vgpaas/share changed from <100.00 GiB (25599 extents) to <120.00 GiB
(30719 extents).
Logical volume vgpaas/share successfully resized.

3. Adjust the size of the file system. /dev/vgpaas/share specifies the file system
path of the shared disk.
resize2fs /dev/vgpaas/share

Information similar to the following is displayed:
Filesystem at /dev/vgpaas/share is mounted on /mnt/paas; on-line resizing required
old_desc_blocks = 13, new_desc_blocks = 15
The filesystem on /dev/vgpaas/share is now 31456256 blocks long.

Step 6 Run lsblk to view the block device information of the node.
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 50G 0 disk
└─sda1 8:1 0 50G 0 part /
sdb 8:16 0 120G 0 disk
└─vgpaas-share 253:0 0 120G 0 lvm /mnt/paas # Space of the new disk used by the container engine
and the kubelet component

----End

Expanding the Capacity of a Data Disk Used by Pod (basesize)

Step 1 Log in to the CCE console and click the cluster name to access the cluster console.

Step 2 Choose Nodes from the navigation pane.

Step 3 Click the Nodes tab, locate the row containing the target node, and choose More
> Reset Node in the Operation column.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

NO TICE

Resetting a node may make the node-specific resources (such as local storage and
workloads scheduled to this node) unavailable. Exercise caution when performing
this operation to avoid impact on running services.

Step 4 Reconfigure node parameters.

If you need to adjust the container storage space, pay attention to the following
configurations:

Storage Settings: Click Expand next to the data disk to set the following
parameter:

Space Allocation for Pods: indicates the base size of a pod. It is the maximum
size that a workload's pods (including the container images) can grow to in the
disk space. Proper settings can prevent pods from taking all the disk space
available and avoid service exceptions. It is recommended that the value is less
than or equal to 80% of the container engine space. This parameter is related to
the node OS and container storage rootfs and is not supported in some scenarios.

Step 5 After the node is reset, log in to the node and check whether the container
capacity has been expanded. The command output varies with the container
storage rootfs.
● Overlayfs: No independent thin pool is allocated. Image data is stored in

dockersys. Run the following command to check whether the container
capacity has been expanded:
docker exec -it container_id /bin/sh or kubectl exec -it container_id /bin/sh
df -h
If the information similar to the following is displayed, the overlay capacity
has been expanded from 10 GiB to 15 GiB.
Filesystem Size Used Avail Use% Mounted on
overlay 15G 104K 15G 1% /
tmpfs 64M 0 64M 0% /dev
tmpfs 3.6G 0 3.6G 0% /sys/fs/cgroup
/dev/mapper/vgpaas-share 98G 4.0G 89G 5% /etc/hosts
...

● Devicemapper: A thin pool is allocated to store image data. Run the following
command to check whether the container capacity has been expanded:
docker exec -it container_id /bin/sh or kubectl exec -it container_id /bin/sh
df -h
If the information similar to the following is displayed, the thin pool capacity
has been expanded from 10 GiB to 15 GiB.
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vgpaas-thinpool-snap-84 15G 232M 15G 2% /
tmpfs 64M 0 64M 0% /dev
tmpfs 3.6G 0 3.6G 0% /sys/fs/cgroup
/dev/mapper/vgpaas-kubernetes 11G 41M 11G 1% /etc/hosts
/dev/mapper/vgpaas-dockersys 20G 1.1G 18G 6% /etc/hostname
...

----End

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

Expanding a PVC
Cloud storage:

● OBS and SFS: There is no storage restriction and capacity expansion is not
required.

● EVS:
– You can expand the capacity of automatically created pay-per-use

volumes on the console. The procedure is as follows:

i. Choose Storage in the navigation pane. In the right pane, click the
PVCs tab. Click More in the Operation column of the target PVC and
select Scale-out.

ii. Enter the capacity to be added and click OK.
● SFS Turbo: You can expand the capacity on the SFS console and then change

the capacity in the PVC.

10.2 Mounting Object Storage Across Accounts

Application Scenarios
● Cross-account data sharing. For example, multiple teams within a company

need to share data, but each team uses a different account.
● Cross-account data migration and backup. When account A is about to be

disabled, all data stored in the account needs to be transferred to a new
account (account B).

● Data processing and analysis. For example, account B is an external data
processor and needs to access raw data from account A to perform tasks such
as big data analysis and machine learning.

By linking object storage across accounts, you can share data, lower storage and
transmission expenses, and guarantee data security and consistency. This enables
various teams or organizations to securely and conveniently access each other's
data resources, eliminating the need for repeated storage and redundant
transmission. Additionally, data is kept current and compliant, enhancing overall
service efficiency and security.

Procedure
Assume that account B needs to access and use an OBS bucket of account A. For
details, see Figure 10-1 and Table 10-2.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

Figure 10-1 Mounting an OBS bucket across accounts

Table 10-2 Process description

Procedure Description

Step 1: Create an
OBS Bucket Policy
and ACL

Configure an OBS bucket policy and ACL using account
A and grant account B required permissions like the
read and write permissions.

Step 2: Create a
Workload with an
OBS Volume
Mounted

Create a PV and a PVC based on the OBS bucket of
account A using account B and mount the PVC to the
required workload.

Step 3: Check the
Pod Actions on the
OBS Bucket

Check whether the pod created by account B has the
required permissions based on the bucket policy.

Step 4: Clear
Resources

Once you have studied this example, delete any
associated resources to prevent incurring settlement
fees.

Prerequisites
● The involved accounts are in the same region.
● You have created a cluster where the CCE Container Storage (Everest) add-on

is installed. The add version must be 1.1.11 or later, and the cluster version
must be 1.15 or later. If no cluster is available, create one by referring to
Buying a CCE Standard/Turbo Cluster.

● An ECS with an EIP bound has been created in the same VPC as the cluster,
and the ECS has been connected to the cluster through kubectl. For details

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0028.html

about how to connect an ECS to a cluster, see Connecting to a Cluster Using
kubectl.

Step 1: Create an OBS Bucket Policy and ACL
Configure an OBS bucket policy and ACL using account A and grant account B
required permissions like the read and write permissions.

Step 1 Log in to the OBS console. In the navigation pane, choose Object Storage.

Step 2 Click the name of the target bucket to go to the Objects page.

Step 3 In the navigation pane, choose Permissions > Bucket Policies. On the page
displayed, click Create.

Step 4 Configure the parameters. In this example, only some mandatory parameters are
described. You can keep the default values for other parameters. For details about
the parameters, see Bucket Policies.

Table 10-3 Bucket policy parameters

Parameter Description Example

Policy Name Enter a name. example01

Effect Specify the behavior of a policy.
● Allow: The actions defined in the policy

are allowed.
● Deny: The actions defined in the policy

are denied.

Allow

Principal Specify authorized accounts. (Multiple
accounts can be selected.) For different
types of authorized accounts, the OBS
console provides different templates for
authorizations. For details, see Creating a
Bucket Policy with a Template.
● All accounts: Any account can execute

the current bucket policy without
identity authentication, which may pose
data security risks.

● Current account: Grant permissions to
a specific IAM account under the
current account.

● Other accounts: Grant permissions to a
specific IAM account under another
account.

Other accounts
XXX(account
ID)/XXX (IAM ID)

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/eu/perms-cfg-obs/obs_40_0004.html
https://support.huaweicloud.com/eu/usermanual-obs/obs_03_0142.html
https://support.huaweicloud.com/eu/usermanual-obs/obs_03_0142.html

Parameter Description Example

Resources Specify the authorized resources.
● Entire bucket (including the objects

in it): Allow authorized accounts to
perform certain actions on a bucket and
the objects in it.

● Current bucket: Allow authorized
accounts to perform certain actions on
the current bucket.

● Specific objects: Allow authorized
accounts to perform certain actions on
the specified objects in a bucket.

Entire bucket
(including the
objects in it)

Actions Specify actions.
● Use a template: Use a permission

template preset on the OBS console. If
you selected Bucket Read/Write, the
Specified actions option will be
selected by default in the Advanced
Settings area.

● Customize: Customize the actions.

Use a template >
Bucket Read/
Write

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

Figure 10-2 Creating a bucket policy

Step 5 In the navigation pane, choose Permissions > Bucket ACL. In the right pane, click
Add under User Access. Enter the account ID of the authorized user, select Read
and Write for Access to Bucket, select Read for Access to Objects, select Read
and Write for Access to ACL, and click OK.

----End

Step 2: Create a Workload with an OBS Volume Mounted
Create a PV and a PVC based on the OBS bucket of account A using account B and
mount the PVC to the required workload.

Step 1 Create a ConfigMap named paas-obs-endpoint and configure the region and
endpoint of OBS.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

vim config.yaml

The content is as follows: (For details about the parameters, see Table 10-4.)

apiVersion: v1
kind: ConfigMap
metadata:
 name: paas-obs-endpoint # The value must be paas-obs-endpoint.
 namespace: kube-system # The value must be kube-system.
data:
 obs-endpoint: |
 {"<region_name>": "<endpoint_address>"}

Create the ConfigMap using config.yaml.

kubectl create -f config.yaml

Table 10-4 ConfigMap parameters

ConfigMap Description

metadata.name ConfigMap name, which is fixed at paas-obs-endpoint and cannot be
changed

metadata.namespac
e

Namespace, which is fixed at kube-system and cannot be changed

data.obs-endpoint Region names and endpoints are in key-value pairs. Replace
<region_name> and <endpoint_address> with specific values. If multiple
values are needed, use commas (,) to separate them.

Step 2 Create a secret named test-user. (This secret is used to provide access credentials
when volumes are mounted to CSI, and its name can be customized.)

1. Obtain the AK. Go back to the management console, hover the cursor over
the username in the upper right corner and choose My Credentials from the
drop-down list.
In the navigation pane, choose Access Keys. On the page displayed, click
Create Access Key.
Click OK and download the AK.

2. Encode the AK using Base64 and save the encoded AK and SK. If the AK
obtained is xxx and the SK is yyy, run the following commands:
echo -n xxx|base64
echo -n yyy|base64

3. Create a secret YAML file, for example, test_user.yaml.
vim test_user.yaml

The content is as follows: (For details about the parameters, see Table 10-5.)
apiVersion: v1
data:
 access.key: QUxPQUlJU******
 secret.key: aVMwZkduQ******
kind: Secret
metadata:
 name: test-user
 namespace: default
type: cfe/secure-opaque

Create a secret using test_user.yaml.
kubectl create -f test_user.yaml

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

Table 10-5 Secret parameters

Parameter Description Example

access.key A Base64-encoded AK QUxPQUlJU******

secret.key A Base64-encoded SK aVMwZkduQ******

type Key type, which is fixed at cfe/
secure-opaque and cannot be
changed
When this type is used, the data
entered by users will be
automatically encrypted.

cfe/secure-opaque

Step 3 Create a PV named testing_abc and mount the secret named test_user to the PV.
vim testing_abc.yaml

The content is as follows: (For details about the parameters, see Table 10-6.)

kind: PersistentVolume
apiVersion: v1
metadata:
 name: testing-abc
 annotations:
 pv.kubernetes.io/bound-by-controller: 'yes'
 pv.kubernetes.io/provisioned-by: everest-csi-provisioner
spec:
 capacity:
 storage: 1Gi
 mountOptions:
 - default_acl=bucket-owner-full-control #New OBS mounting parameters
 csi:
 driver: obs.csi.everest.io
 volumeHandle: obs-cce-test # Name of the OBS bucket to be mounted
 fsType: s3fs # obsfs indicates a parallel file system, and s3fs indicates an OBS bucket.
 volumeAttributes:
 everest.io/obs-volume-type: STANDARD # Bucket type, which can be STANDARD or WARM when an
OBS bucket is used
 everest.io/region: <region_name> # Region where the OBS bucket is located (Replace it with the
actual value.)
 storage.kubernetes.io/csiProvisionerIdentity: everest-csi-provisioner
 nodePublishSecretRef: # AK/SK used for mounting the OBS bucket
 name: test-user
 namespace: default
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Retain # PV reclaim policy
 storageClassName: csi-obs # csi-obs specifies an OBS storage class that is automatically
created. You can customize it as required.
 volumeMode: Filesystem

Create the PV using testing_abc.yaml.

kubectl create -f testing_abc.yaml

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

Table 10-6 PV parameters

Paramet
er

Description Example

mountOp
tions.defa
ult_acl

Specify access control policies for a bucket
and objects in the bucket. In this example,
account A owns the bucket, and both account
A and account B have the ability to upload
data.
● private: The bucket or objects can only be

fully accessed by the owner of the bucket.
● public-read: The owner of the bucket has

complete control over both the bucket and
its objects. While other users can read data
from the bucket, they are unable to
modify, delete, or upload any data within
it.

● public-read-write: The owner of the
bucket has complete control over the
bucket and its objects. Other users can
read and write data from and to the
bucket.

● bucket-owner-read: Users who have
uploaded objects to the bucket has
complete control over the objects, while
the bucket owner is only granted read
permissions for said objects. This mode is
usually used in cross-account sharing
scenarios.

● bucket-owner-full-control: Users who
have uploaded objects to the bucket are
granted write permissions for those specific
objects, but not read permissions by
default. The bucket owner has complete
control over all objects within the bucket.
This mode is usually used in cross-
account sharing scenarios.

bucket-owner-full-
control
NOTE

Due to the bucket
policy that was
configured using
account A, account
B has been granted
read and write
permissions for the
entire bucket,
including objects
uploaded by both
account A and B.

csi.nodeP
ublishSec
retRef

Specify the secret to be mounted.
● name: name of a secret
● namespace: namespace where the secret is

in

test-user
default

csi.volum
eHandle

Specify the name of the OBS bucket to be
mounted.

obs-cce-test (OBS
bucket name
authorized by
account A)

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

Paramet
er

Description Example

csi.fsType Specify the file type.
● obsfs: Create an OBS parallel file system.
● s3fs: Create an OBS bucket.

s3fs
NOTICE

The file type
specified by the PV
and the PVC must
match in order for
the PV to be bound
to the corresponding
PVC. If they do not
match, the binding
cannot occur.

accessMo
des

Specify the access mode of the storage
volume. OBS supports only ReadWriteMany.
● ReadWriteOnce: A storage volume can be

mounted to a single node in read-write
mode.

● ReadWriteMany: A storage volume can be
mounted to multiple nodes in read-write
mode.

ReadWriteMany

persistent
VolumeR
eclaimPol
icy

Specify the reclaim policy for the PV.
● Delete: When a PVC is deleted, both the

PV and underlying storage resources will
be deleted. If the everest.io/reclaim-
policy: retain-volume-only annotation is
added to the YAML file, the underlying
storage resources will be retained.

● Retain: When a PVC is deleted, both the
PV and underlying storage resources will
be retained. You need to manually delete
them. After the PVC is deleted, the PV is in
the Released state and cannot be bound
to a PVC again.

Retain
NOTE

If multiple PVs use
the same OBS
volume, use Retain
to prevent the
underlying volume
from being deleted
with one of the PV.

Step 4 Create a PVC named pvc-test-abc and bind the new PV testing_abc to it.
vim pvc_test_abc.yaml

The file content is as follows:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-test-abc
 namespace: default
 annotations:
 csi.storage.k8s.io/node-publish-secret-name: test-user # Mount a secret.
 csi.storage.k8s.io/node-publish-secret-namespace: default # Namespace of the secret
 everest.io/obs-volume-type: STANDARD # Bucket type, which can be STANDARD or WARM when an
OBS bucket is used
 csi.storage.k8s.io/fstype: s3fs # File type. obsfs indicates a parallel file system, and s3fs indicates
an OBS bucket.
 volume.beta.kubernetes.io/storage-provisioner: everest-csi-provisioner
spec:

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

 accessModes:
 - ReadWriteMany # The value must be ReadWriteMany for object storage.
 resources:
 requests:
 storage: 1Gi # Storage capacity of a PVC. This parameter is valid only for verification (fixed to 1,
cannot be empty or 0). The value setting does not take effect for OBS buckets.
 storageClassName: csi-obs # csi-obs specifies an OBS storage class that is automatically created. You can
customize it as required.
 volumeName: testing-abc # PV name

Create the PVC using pvc_test_abc.yaml.

kubectl create -f pvc_test_abc.yaml

Step 5 Create a workload and mount the PVC to it. The following uses an Nginx
Deployment as an example.
vim obs_deployment_example.yaml

The file content is as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: obs-deployment-example # Workload name, which can be customized
 namespace: default
spec:
 replicas: 1
 selector:
 matchLabels:
 app: obs-deployment-example # Label, which can be customized
 template:
 metadata:
 labels:
 app: obs-deployment-example
 spec:
 containers:
 - image: nginx
 name: container-0
 volumeMounts:
 - mountPath: /tmp # PVC mount path, which can be customized as required
 name: pvc-obs-example
 restartPolicy: Always
 imagePullSecrets:
 - name: default-secret
 volumes:
 - name: pvc-obs-example
 persistentVolumeClaim:
 claimName: pvc-test-abc # PVC name

Create the workload named obs-deployment-example using
obs_deployment_example.yaml.

kubectl create -f obs_deployment_example.yaml

Check whether the workload has been created.

kubectl get pod

If information similar to the following is displayed and the workload is in the
Running state, the workload has been created.

NAME READY STATUS RESTARTS AGE
obs-deployment-example-6b4dfd7b57-frfxv 1/1 Running 0 22h

----End

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

Step 3: Check the Pod Actions on the OBS Bucket

Check whether the pod created by account B has the required permissions based
on the bucket policy.

Step 1 Check whether the pod can read and write objects in the OBS bucket created by
account A and assume that a test.txt file is present in the OBS bucket.

Run the following command to access the created workload. (You can press Ctrl
+D to exit the current workload.)
kubectl -n default exec -it obs-deployment-example-6b4dfd7b57-frfxv -c container-0 /bin/bash

Run the following command to check the pod actions on test.txt. /tmp specifies
the PVC mount path.

ls -l /tmp/test.txt

If information similar to the following is displayed, the pod has the read and write
permissions on the test.txt file, which is related to the bucket policy set by
account A.

-rwxrwxrwx 1 root root 4 Sep 5 09:09 /tmp/test.txt

Step 2 Check whether the pod can read and write data from and to the objects uploaded
by itself in the OBS bucket.

Create a test01.txt file in /tmp and write test\n into the file.
echo -e "test\n" > /tmp/test01.txt

Run the following command to check the test01.txt content and check whether
the pod can read and write new objects uploaded by itself: (Account A can check
the new objects in the OBS bucket.)

cat /tmp/test01.txt

If information similar the following is displayed, the pod has the read and write
permissions on the objects uploaded by itself.

test

----End

Step 4: Clear Resources

Once you have studied this example, delete any associated resources to prevent
incurring settlement fees. If you plan to learn other examples, wait until they are
finished before doing any clean-up.

Step 1 Run the following command to delete the workload:
kubectl delete -f obs_deployment_example.yaml

Information similar to the following is displayed:

deployment.apps "obs-deployment-example" deleted

Step 2 Run the following command to delete the PVC:
kubectl delete -f pvc_test_abc.yaml

Information similar to the following is displayed:

persistentvolumeclaim "pvc-test-abc" deleted

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

Step 3 Run the following command to delete the PV:
kubectl delete -f testing_abc.yaml

Information similar to the following is displayed:

persistentvolume "testing-abc" deleted

Step 4 Run the following command to delete the secret:
kubectl delete -f test_user.yaml

Information similar to the following is displayed:

secret "test-user" deleted

Step 5 Run the following command to delete the ConfigMap:
kubectl delete -f config.yaml

Information similar to the following is displayed:

configmap "paas-obs-endpoint" deleted

----End

Common Issues

If a workload fails to be created, locate the fault based on the error information in
the pod events. For details, see Table 10-7.

Table 10-7 Locating the fault

Error Possible
Cause

Fault Locating

0/4 nodes are
available: pod
has unbound
immediate
PersistentVolum
eClaims.
preemption: 0/4
nodes are
available: 4
Preemption is
not helpful for
scheduling.

The PVC
is not
bound
to any
PV.

1. Run the following command to check the PVC
status:
kubectl get pv
If the PVC is in the Pending state, it is not
bound to any PV.

2. Check the PVC details and locate the cause of
the binding failure.
kubectl describe pv <pv_name>

3. Modify the YAML file to rectify the fault if the
fault is caused by any of the following reasons:
● The PVC is not bound to the proper PV.
● The PVC and PV parameters do not match.

This includes fsType, StorageClass,
accessModes, and storage. The
StorageClass must be object storage, and
accessModes must be set to
ReadWriteMany because OBS buckets only
support this mode. Additionally, the storage
value requested by the PVC must be equal
to or less than the storage value provided
by the PV.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

Error Possible
Cause

Fault Locating

MountVolume.S
etUp failed for
volume "obs-
cce-example":
rpc error: code =
Unknown desc =
failed to get
secret(paas.long
aksk), err: get
secret(paas.long
aksk) failed: get
secret
paas.longaksk
from namespace
kube-system
failed: secrets
"paas.longaksk"
not found

The
required
secret
cannot
be
found
when
the
storage
volume
is
mounte
d to the
workloa
d.

1. Check whether the mounted secret is present.
kubectl get secret
If it is present, the secret may be incorrectly
configured. If it is not present, you can create
one by referring to Step 2.

2. Check the secret parameter configurations. The
following shows the common issues:
● The access.key and secret.key parameters

are not set to the AK and SK encoded using
Base64.

● The type parameter is not set to cfe/
secure-opaque.

MountVolume.S
etUp failed for
volume "pv-obs-
example": rpc
error: code =
Internal desc =
[8032c354-4e1b
-41b0-81ce-9d4
b3f8c49c9] get
obsUrl failed
before mount
bucket obs-cce-
example, get
configMap paas-
obs-endpoint
from namespace
kube-system
failed:
configmaps
"paas-obs-
endpoint" not
found

The
ConfigM
ap that
stores
the OBS
endpoin
t is not
present
or is
incorrect
ly
configur
ed.

1. Check whether the ConfigMap is present.
kubectl get configmap
If it is present, the ConfigMap may be
incorrectly configured. If it is not present, you
can create one by referring to Step 1.

2. Check the ConfigMap parameter
configurations. The following shows the
common issues:
● The name parameter is not set to paas-

obs-endpoint.
● The namespace parameter is not set to

kube-system.
● The region name is not set to the region

where the OBS bucket is located.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

10.3 Dynamically Creating an SFS Turbo Subdirectory
Using StorageClass

Background
The minimum capacity of an SFS Turbo file system is 500 GiB, and the SFS Turbo
file system cannot be billed by usage. By default, the root directory of an SFS
Turbo file system is mounted to a container which, in most case, does not require
such a large capacity.

The everest add-on allows you to dynamically create subdirectories in an SFS
Turbo file system and mount these subdirectories to containers. In this way, an SFS
Turbo file system can be shared by multiple containers to increase storage
efficiency.

Constraints
● Only clusters of v1.15 or later are supported.
● The cluster must use the everest add-on of version 1.1.13 or later.
● Kata containers are not supported.
● When the everest add-on earlier than 1.2.69 or 2.1.11 is used, a maximum of

10 PVCs can be created concurrently at a time by using the subdirectory
function. everest of 1.2.69 or later or of 2.1.11 or later is recommended.

● A subPath volume is a subdirectory of an SFS Turbo file system. Increasing the
capacity of a PVC of this type only changes the resource range specified by
the PVC, but does not change the total capacity of the SFS Turbo file system.
If the SFS Turbo file system's total resource capacity is not enough, the
available capacity of the subPath volume will be restricted. To fix this, you
must increase the resource capacity of the SFS Turbo file system on the SFS
Turbo console.
Deleting the subPath volume does not result in the deletion of the resources
of the SFS Turbo file system.

Creating an SFS Turbo Volume of the subPath Type

Step 1 Create an SFS Turbo file system in the same VPC and subnet as the cluster.

Step 2 Create a YAML file of StorageClass, for example, sfsturbo-subpath-sc.yaml.

The following is an example:

apiVersion: storage.k8s.io/v1
allowVolumeExpansion: true
kind: StorageClass
metadata:
 name: sfsturbo-subpath-sc
mountOptions:
- lock
parameters:
 csi.storage.k8s.io/csi-driver-name: sfsturbo.csi.everest.io
 csi.storage.k8s.io/fstype: nfs
 everest.io/archive-on-delete: "true"
 everest.io/share-access-to: 7ca2dba2-1234-1234-1234-626371a8fb3a

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

 everest.io/share-expand-type: bandwidth
 everest.io/share-export-location: 192.168.1.1:/sfsturbo/
 everest.io/share-source: sfs-turbo
 everest.io/share-volume-type: STANDARD
 everest.io/volume-as: subpath
 everest.io/volume-id: 0d773f2e-1234-1234-1234-de6a35074696
provisioner: everest-csi-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate

In this example:

● name: indicates the name of the StorageClass.
● mountOptions: indicates the mount options. This field is optional.

– In versions later than everest 1.1.13 and earlier than everest 1.2.8, only
the nolock parameter can be configured. By default, the nolock
parameter is used for the mount operation and does not need to be
configured. If nolock is set to false, the lock field is used.

– Starting from everest 1.2.8, more mount options are supported. For
details, see Configuring SFS Volume Mount Options. Do not set nolock
to true. Otherwise, the mount operation will fail.
mountOptions:
- vers=3
- timeo=600
- nolock
- hard

● everest.io/volume-as: This parameter is set to subpath to use the subPath
volume.

● everest.io/share-access-to: This parameter is optional. In a subPath volume,
set this parameter to the ID of the VPC where the SFS Turbo file system is
located.

● everest.io/share-expand-type: This parameter is optional. If the type of the
SFS Turbo file system is SFS Turbo Standard – Enhanced or SFS Turbo
Performance – Enhanced, set this parameter to bandwidth.

● everest.io/share-export-location: This parameter indicates the mount
directory. It consists of the SFS Turbo shared path and sub-directory. The
shared path can be obtained on the SFS Turbo console. The sub-directory is
user-defined. The PVCs created using the StorageClass are located in this sub-
directory.

● everest.io/share-volume-type: This parameter is optional. It specifies the SFS
Turbo file system type. The value can be STANDARD or PERFORMANCE. For
enhanced types, this parameter must be used together with everest.io/share-
expand-type (whose value should be bandwidth).

● everest.io/zone: This parameter is optional. Set it to the AZ where the SFS
Turbo file system is located.

● everest.io/volume-id: This parameter indicates the ID of the SFS Turbo
volume. You can obtain the volume ID on the SFS Turbo page.

● everest.io/archive-on-delete: If this parameter is set to true and Delete is
selected for Reclaim Policy, the original documents of the PV will be archived
to the directory named archived-{$PV name.timestamp} before the PVC is
deleted. If this parameter is set to false, the SFS Turbo subdirectory of the
corresponding PV will be deleted. The default value is true, indicating that the
original documents of the PV will be archived to the directory named
archived-{$PV name.timestamp} before the PVC is deleted.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0337.html

Step 3 Run kubectl create -f sfsturbo-subpath-sc.yaml.

Step 4 Create a PVC YAML file named sfs-turbo-test.yaml.

The following is an example:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: sfs-turbo-test
 namespace: default
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 50Gi
 storageClassName: sfsturbo-subpath-sc
 volumeMode: Filesystem

In this example:

● name: indicates the name of the PVC.
● storageClassName: specifies the name of the StorageClass.
● storage: In a subPath volume, modifying the value of this parameter does not

impact the resource capacity of the SFS Turbo file system. A subPath volume
is essentially a file path within an SFS Turbo file system. As a result, increasing
the capacity of the subPath volume in a PVC does not lead to an increase in
the resources of the SFS Turbo file system.

NO TE

The capacity of a subPath volume is restricted by the overall resource capacity of the
corresponding SFS Turbo file system. If the resources of the SFS Turbo file system are
inadequate, you can adjust the resource capacity via the SFS Turbo console.

Step 5 Run kubectl create -f sfs-turbo-test.yaml.

----End

Creating a Deployment and Mounting an Existing Volume

Step 1 Create a YAML file for the Deployment, for example, deployment-test.yaml.

The following is an example:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: test-turbo-subpath-example
 namespace: default
 generation: 1
 labels:
 appgroup: ''
spec:
 replicas: 1
 selector:
 matchLabels:
 app: test-turbo-subpath-example
 template:
 metadata:
 labels:
 app: test-turbo-subpath-example
 spec:
 containers:

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

 - image: nginx:latest
 name: container-0
 volumeMounts:
 - mountPath: /tmp
 name: pvc-sfs-turbo-example
 restartPolicy: Always
 imagePullSecrets:
 - name: default-secret
 volumes:
 - name: pvc-sfs-turbo-example
 persistentVolumeClaim:
 claimName: sfs-turbo-test

In this example:

● name: indicates the name of the created workload.
● image: specifies the image used by the workload.
● mountPath: indicates the mount path of the container. In this example, the

volume is mounted to the /tmp directory.
● claimName: indicates the name of an existing PVC.

Step 2 Create the Deployment.

kubectl create -f deployment-test.yaml

----End

Dynamically Creating a subPath Volume for a StatefulSet

Step 1 Create a YAML file for a StatefulSet, for example, statefulset-test.yaml.

The following is an example:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: test-turbo-subpath
 namespace: default
 generation: 1
 labels:
 appgroup: ''
spec:
 replicas: 2
 selector:
 matchLabels:
 app: test-turbo-subpath
 template:
 metadata:
 labels:
 app: test-turbo-subpath
 annotations:
 metrics.alpha.kubernetes.io/custom-endpoints: '[{"api":"","path":"","port":"","names":""}]'
 pod.alpha.kubernetes.io/initialized: 'true'
 spec:
 containers:
 - name: container-0
 image: 'nginx:latest'
 resources: {}
 volumeMounts:
 - name: sfs-turbo-160024548582479676
 mountPath: /tmp
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 imagePullPolicy: IfNotPresent
 restartPolicy: Always

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

 terminationGracePeriodSeconds: 30
 dnsPolicy: ClusterFirst
 securityContext: {}
 imagePullSecrets:
 - name: default-secret
 affinity: {}
 schedulerName: default-scheduler
 volumeClaimTemplates:
 - metadata:
 name: sfs-turbo-160024548582479676
 namespace: default
 annotations: {}
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: sfsturbo-subpath-sc
 serviceName: wwww
 podManagementPolicy: OrderedReady
 updateStrategy:
 type: RollingUpdate
 revisionHistoryLimit: 10

In this example:

● name: indicates the name of the created workload.
● image: specifies the image used by the workload.
● mountPath: indicates the mount path of the container. In this example, the

volume is mounted to the /tmp directory.
● spec.template.spec.containers.volumeMounts.name and

spec.volumeClaimTemplates.metadata.name: must be consistent because
they have a mapping relationship.

● storageClassName: specifies the name of an on-premises StorageClass.

Step 2 Create the StatefulSet.

kubectl create -f statefulset-test.yaml

----End

10.4 Using Custom Storage Classes

Background
When using storage resources in CCE, the most common method is to specify
storageClassName to define the type of storage resources to be created when
creating a PVC. The following configuration shows how to use a PVC to apply for
an SAS (high I/O) EVS disk (block storage).

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-evs-example
 namespace: default
 annotations:
 everest.io/disk-volume-type: SAS
spec:
 accessModes:
 - ReadWriteOnce

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk

To specify the EVS disk type, you can configure the everest.io/disk-volume-type
field. The value SAS is used as an example here, indicating the high I/O EVS disk
type. Or you can choose SSD (ultra-high I/O).

This configuration method may not work if you want to:

● Set storageClassName only, which is simpler than specifying the EVS disk
type by using everest.io/disk-volume-type.

● Avoid modifying YAML files or Helm charts. Some users switch from self-built
or other Kubernetes services to CCE and have written YAML files of many
applications. In these YAML files, different types of storage resources are
specified by different StorageClassNames. When using CCE, they need to
modify a large number of YAML files or Helm charts to use storage resources,
which is labor-consuming and error-prone.

● Set the default storageClassName for all applications to use the default
storage class. In this way, you can create storage resources of the default type
without needing to specify storageClassName in the YAML file.

Solution
This section describes how to set a custom storage class in CCE and how to set the
default storage class. You can specify different types of storage resources by
setting storageClassName.

● For the first scenario, you can define custom storageClassNames for SAS and
SSD EVS disks. For example, define a storage class named csi-disk-sas for
creating SAS disks. The following figure shows the differences before and
after you use a custom storage class.

● For the second scenario, you can define a storage class with the same name
as that in the existing YAML file without needing to modify
storageClassName in the YAML file.

● For the third scenario, you can set the default storage class as described
below to create storage resources without specifying storageClassName in
YAML files.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-evs-example

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

 namespace: default
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

Creating a StorageClass Using a YAML File
As of now, CCE provides StorageClasses such as csi-disk, csi-nas, and csi-obs by
default. When defining a PVC, you can use a StorageClassName to automatically
create a PV of the corresponding type and automatically create underlying storage
resources.

Run the following kubectl command to obtain the StorageClasses that CCE
supports. Use the CSI add-on provided by CCE to create a StorageClass.

kubectl get sc
NAME PROVISIONER AGE
csi-disk everest-csi-provisioner 17d # EVS disk
csi-disk-topology everest-csi-provisioner 17d # EVS disks created with delay
csi-nas everest-csi-provisioner 17d # SFS 1.0
csi-obs everest-csi-provisioner 17d # OBS
csi-sfsturbo everest-csi-provisioner 17d # SFS Turbo

Each StorageClass contains the default parameters used for dynamically creating a
PV. The following is an example of StorageClass for EVS disks:
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: csi-disk
provisioner: everest-csi-provisioner
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SAS
 everest.io/passthrough: 'true'
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: Immediate

Table 10-8 Key parameters

Parameter Description

provisioner Specifies the storage resource provider, which is the Everest add-
on for CCE. Set this parameter to everest-csi-provisioner.

parameters Specifies the storage parameters, which vary with storage types.
For details, see Table 10-9.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

Parameter Description

reclaimPolicy Specifies the value of persistentVolumeReclaimPolicy for
creating a PV. The value can be Delete or Retain. If
reclaimPolicy is not specified when a StorageClass object is
created, the value defaults to Delete.
● Delete: When a PVC is deleted, its associated underlying

storage resources will be deleted and the PV resources will be
removed. Exercise caution if you select this option.

● Retain: When a PVC is deleted, both of the PV and its
associated underlying storage resources will be retained and
the PV is marked as released. If you manually delete the PV
afterwards, the underlying storage resources will not be
deleted. To bind the PV to a new PVC, you need to remove
the original binding information from the PV.

allowVolume
Expansion

Specifies whether the PV of this StorageClass supports dynamic
capacity expansion. The default value is false. Dynamic capacity
expansion is implemented by the underlying storage add-on.
This is only a switch.

volumeBindi
ngMode

Specifies the volume binding mode, that is, the time when a PV
is dynamically created. The value can be Immediate or
WaitForFirstConsumer.
● Immediate: After a PVC is created, the storage resources and

PV will be created and associated with the PVC without delay.
● WaitForFirstConsumer: After a PVC is created, it will not be

immediately bound to a PV. Instead, the storage resources
and PV will be generated and bound to the PVC only after
the pod that requires the PVC is scheduled.

mountOptio
ns

This field must be supported by the underlying storage. If this
field is not supported but is specified, the PV creation will fail.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

Table 10-9 Parameters

V
ol
u
m
e
T
y
p
e

Param
eter

Ma
nd
ato
ry

Description

E
V
S

csi.stor
age.k8s
.io/csi-
driver-
name

Yes Driver type. If an
EVS disk is used,
the parameter
value is fixed at
disk.csi.everest.io.

csi.stor
age.k8s
.io/
fstype

Yes If an EVS disk is
used, the
parameter value
can be ext4.

everest.
io/disk-
volume
-type

Yes EVS disk type. All
letters are in
uppercase.
● SAS: high I/O
● SSD: ultra-high

I/O

everest.
io/
passthr
ough

Yes The parameter
value is fixed at
true, which
indicates that the
EVS device type is
SCSI. Other
parameter values
are not allowed.

SFS
Turbo

csi.
sto
rag
e.k
8s.i
o/
csi-
dri
ver
-
na
me

Yes Driver type. If SFS Turbo is used, the
parameter value is fixed at
sfsturbo.csi.everest.io.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

V
ol
u
m
e
T
y
p
e

Param
eter

Ma
nd
ato
ry

Description

csi.
sto
rag
e.k
8s.i
o/
fst
ype

Yes If SFS Turbo is used, the value can be
nfs.

ev
er
es
t.i
o/
sh
ar
e-
ac
ce
ss
-
to

Yes VPC ID of the
cluster.

ev
er
es
t.i
o/
sh
ar
e-
ex
p
a
n
d-
ty
p
e

No Extension type.
The default value
is bandwidth,
indicating an
enhanced file
system. This
parameter does
not take effect.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

V
ol
u
m
e
T
y
p
e

Param
eter

Ma
nd
ato
ry

Description

ev
er
es
t.i
o/
sh
ar
e-
so
ur
ce

Yes The parameter
value is fixed at
sfs-turbo.

ev
er
es
t.i
o/
sh
ar
e-
v
ol
u
m
e-
ty
p
e

No SFS Turbo
StorageClass. The
default value is
STANDARD,
indicating
standard and
standard
enhanced editions.
This parameter
does not take
effect.

O
B
S

csi.stor
age.k8s
.io/csi-
driver-
name

Yes Driver type. If OBS
is used, the
parameter value is
fixed at
obs.csi.everest.io.

csi.stor
age.k8s
.io/
fstype

Yes Instance type,
which can be
obsfs or s3fs.
● obsfs: a

parallel file
system

● s3fs: object
bucket

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

V
ol
u
m
e
T
y
p
e

Param
eter

Ma
nd
ato
ry

Description

everest.
io/obs-
volume
-type

Yes OBS StorageClass.
● If fsType is set

to s3fs,
STANDARD
(standard
bucket) and
WARM
(infrequent
access bucket)
are supported.

● This parameter
is invalid when
fsType is set to
obsfs.

Custom Storage Classes
You can customize a high I/O storage class in a YAML file. For example, the name
csi-disk-sas indicates that the disk type is SAS (high I/O).

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: csi-disk-sas # Name of the high I/O storage class, which can be customized.
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SAS # High I/O EVS disk type, which cannot be customized.
 everest.io/passthrough: "true"
provisioner: everest-csi-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate
allowVolumeExpansion: true # true indicates that capacity expansion is allowed.

For an ultra-high I/O storage class, you can set the class name to csi-disk-ssd to
create SSD EVS disk (ultra-high I/O).

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: csi-disk-ssd # Name of the ultra-high I/O storage class, which can be customized.
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SSD # Ultra-high I/O EVS disk type, which cannot be customized.
 everest.io/passthrough: "true"
provisioner: everest-csi-provisioner

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

reclaimPolicy: Delete
volumeBindingMode: Immediate
allowVolumeExpansion: true

reclaimPolicy: indicates the recycling policies of the underlying cloud storage. The
value can be Delete or Retain.

● Delete: When a PVC is deleted, both the PV and the EVS disk are deleted.
● Retain: When a PVC is deleted, the PV and underlying storage resources are

not deleted. Instead, you must manually delete these resources. After that,
the PV resource is in the Released state and cannot be bound to the PVC
again.

If high data security is required, you are advised to select Retain to prevent data
from being deleted by mistake.

After the definition is complete, run the kubectl create commands to create
storage resources.

kubectl create -f sas.yaml
storageclass.storage.k8s.io/csi-disk-sas created
kubectl create -f ssd.yaml
storageclass.storage.k8s.io/csi-disk-ssd created

Query the storage class again. Two more types of storage classes are displayed in
the command output, as shown below.

kubectl get sc
NAME PROVISIONER AGE
csi-disk everest-csi-provisioner 17d
csi-disk-sas everest-csi-provisioner 2m28s
csi-disk-ssd everest-csi-provisioner 16s
csi-disk-topology everest-csi-provisioner 17d
csi-nas everest-csi-provisioner 17d
csi-obs everest-csi-provisioner 17d
csi-sfsturbo everest-csi-provisioner 17d

Other types of storage resources can be defined in the similar way. You can use
kubectl to obtain the YAML file and modify it as required.

● File storage
kubectl get sc csi-nas -oyaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: csi-nas
provisioner: everest-csi-provisioner
parameters:
 csi.storage.k8s.io/csi-driver-name: nas.csi.everest.io
 csi.storage.k8s.io/fstype: nfs
 everest.io/share-access-level: rw
 everest.io/share-access-to: 5e3864c6-e78d-4d00-b6fd-de09d432c632 # ID of the VPC to which the
cluster belongs
 everest.io/share-is-public: 'false'
 everest.io/zone: xxxxx # AZ
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: Immediate

● Object storage
kubectl get sc csi-obs -oyaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: csi-obs
provisioner: everest-csi-provisioner

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

parameters:
 csi.storage.k8s.io/csi-driver-name: obs.csi.everest.io
 csi.storage.k8s.io/fstype: s3fs # Object storage type. s3fs indicates an object bucket, and obsfs
indicates a parallel file system.
 everest.io/obs-volume-type: STANDARD # Storage class of the OBS bucket
reclaimPolicy: Delete
volumeBindingMode: Immediate

Specifying an Enterprise Project for Storage Classes
CCE allows you to specify an enterprise project when creating EVS disks and OBS
PVCs. The created storage resources (EVS disks and OBS) belong to the specified
enterprise project. The enterprise project can be the enterprise project to
which the cluster belongs or the default enterprise project.

If you do not specify any enterprise project, the enterprise project in StorageClass
is used by default. The created storage resources by using the csi-disk and csi-obs
storage classes of CCE belong to the default enterprise project.

If you want the storage resources created from the storage classes to be in the
same enterprise project as the cluster, you can customize a storage class and
specify the enterprise project ID, as shown below.

NO TE

To use this function, the everest add-on must be upgraded to 1.2.33 or later.
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: csi-disk-epid #Customize a storage class name.
provisioner: everest-csi-provisioner
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SAS
 everest.io/enterprise-project-id: 86bfc701-9d9e-4871-a318-6385aa368183 #Specify the enterprise project
ID.
 everest.io/passthrough: 'true'
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: Immediate

Specifying a Default Storage Class
You can specify a storage class as the default class. In this way, if you do not
specify storageClassName when creating a PVC, the PVC is created using the
default storage class.

For example, to specify csi-disk-ssd as the default storage class, edit your YAML
file as follows:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: csi-disk-ssd
 annotations:
 storageclass.kubernetes.io/is-default-class: "true" # Specifies the default storage class in a cluster. A
cluster can have only one default storage class.
parameters:
 csi.storage.k8s.io/csi-driver-name: disk.csi.everest.io
 csi.storage.k8s.io/fstype: ext4
 everest.io/disk-volume-type: SSD
 everest.io/passthrough: "true"

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

provisioner: everest-csi-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate
allowVolumeExpansion: true

Delete the created csi-disk-ssd disk, run the kubectl create command to create a
csi-disk-ssd disk again, and then query the storage class. The following
information is displayed.
kubectl delete sc csi-disk-ssd
storageclass.storage.k8s.io "csi-disk-ssd" deleted
kubectl create -f ssd.yaml
storageclass.storage.k8s.io/csi-disk-ssd created
kubectl get sc
NAME PROVISIONER AGE
csi-disk everest-csi-provisioner 17d
csi-disk-sas everest-csi-provisioner 114m
csi-disk-ssd (default) everest-csi-provisioner 9s
csi-disk-topology everest-csi-provisioner 17d
csi-nas everest-csi-provisioner 17d
csi-obs everest-csi-provisioner 17d
csi-sfsturbo everest-csi-provisioner 17d

Verification
● Use csi-disk-sas to create a PVC.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: sas-disk
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk-sas

Create a storage class and view its details. As shown below, the object can be
created and the value of STORAGECLASS is csi-disk-sas.
kubectl create -f sas-disk.yaml
persistentvolumeclaim/sas-disk created
kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
sas-disk Bound pvc-6e2f37f9-7346-4419-82f7-b42e79f7964c 10Gi RWO csi-disk-sas
24s
kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
pvc-6e2f37f9-7346-4419-82f7-b42e79f7964c 10Gi RWO Delete Bound default/
sas-disk csi-disk-sas 30s

View the PVC details on the CCE console. On the PV details page, you can see
that the disk type is high I/O.

● If storageClassName is not specified, the default configuration is used, as
shown below.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: ssd-disk
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

Create and view the storage resource. You can see that the storage class of
PVC ssd-disk is csi-disk-ssd, indicating that csi-disk-ssd is used by default.
kubectl create -f ssd-disk.yaml
persistentvolumeclaim/ssd-disk created
kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
sas-disk Bound pvc-6e2f37f9-7346-4419-82f7-b42e79f7964c 10Gi RWO csi-disk-sas
16m
ssd-disk Bound pvc-4d2b059c-0d6c-44af-9994-f74d01c78731 10Gi RWO csi-disk-ssd
10s
kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
pvc-4d2b059c-0d6c-44af-9994-f74d01c78731 10Gi RWO Delete Bound
default/ssd-disk csi-disk-ssd 15s
pvc-6e2f37f9-7346-4419-82f7-b42e79f7964c 10Gi RWO Delete Bound default/
sas-disk csi-disk-sas 17m

View the PVC details on the CCE console. On the PV details page, you can see
that the disk type is ultra-high I/O.

10.5 Scheduling EVS Disks Across AZs Using csi-disk-
topology

Background

EVS disks cannot be attached to a node deployed in another AZ. For example, the
EVS disks in AZ 1 cannot be attached to a node in AZ 2. If the storage class csi-
disk is used for StatefulSets, when a StatefulSet is scheduled, a PVC and a PV are
created immediately (an EVS disk is created along with the PV), and then the PVC
is bound to the PV. However, when the cluster nodes are located in multiple AZs,
the EVS disk created by the PVC and the node to which the pods are scheduled
may be in different AZs. As a result, the pods fail to be scheduled.

Solution

CCE provides a storage class named csi-disk-topology, which is a late-binding EVS
disk type. When you use this storage class to create a PVC, no PV will be created
in pace with the PVC. Instead, the PV is created in the AZ of the node where the
pod will be scheduled. An EVS disk is then created in the same AZ to ensure that
the EVS disk can be attached and the pod can be successfully scheduled.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

Failed Pod Scheduling Due to csi-disk Used in Cross-AZ Node Deployment

Create a cluster with three nodes in different AZs.

Use the csi-disk storage class to create a StatefulSet and check whether the
workload is successfully created.

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: nginx
spec:
 serviceName: nginx # Name of the headless Service
 replicas: 4
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: container-0
 image: nginx:alpine
 resources:
 limits:
 cpu: 600m
 memory: 200Mi
 requests:
 cpu: 600m
 memory: 200Mi
 volumeMounts: # Storage mounted to the pod
 - name: data
 mountPath: /usr/share/nginx/html # Mount the storage to /usr/share/nginx/html.
 imagePullSecrets:
 - name: default-secret
 volumeClaimTemplates:
 - metadata:
 name: data
 annotations:
 everest.io/disk-volume-type: SAS
 spec:
 accessModes:
 - ReadWriteOnce
 resources:

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

 requests:
 storage: 1Gi
 storageClassName: csi-disk

The StatefulSet uses the following headless Service.

apiVersion: v1
kind: Service # Object type (Service)
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 ports:
 - name: nginx # Name of the port for communication between pods
 port: 80 # Port number for communication between pods
 selector:
 app: nginx # Select the pod whose label is app:nginx.
 clusterIP: None # Set this parameter to None, indicating the headless Service.

After the creation, check the PVC and pod status. In the following output, the PVC
has been created and bound successfully, and a pod is in the Pending state.

kubectl get pvc -owide
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE VOLUMEMODE
data-nginx-0 Bound pvc-04e25985-fc93-4254-92a1-1085ce19d31e 1Gi RWO csi-disk
64s Filesystem
data-nginx-1 Bound pvc-0ae6336b-a2ea-4ddc-8f63-cfc5f9efe189 1Gi RWO csi-disk
47s Filesystem
data-nginx-2 Bound pvc-aa46f452-cc5b-4dbd-825a-da68c858720d 1Gi RWO csi-disk
30s Filesystem
data-nginx-3 Bound pvc-3d60e532-ff31-42df-9e78-015cacb18a0b 1Gi RWO csi-disk
14s Filesystem

kubectl get pod -owide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
nginx-0 1/1 Running 0 2m25s 172.16.0.12 192.168.0.121 <none> <none>
nginx-1 1/1 Running 0 2m8s 172.16.0.136 192.168.0.211 <none> <none>
nginx-2 1/1 Running 0 111s 172.16.1.7 192.168.0.240 <none> <none>
nginx-3 0/1 Pending 0 95s <none> <none> <none> <none>

The event information of the pod shows that the scheduling fails due to no
available node. Two nodes (in AZ 1 and AZ 2) do not have sufficient CPUs, and the
created EVS disk is not in the AZ where the third node (in AZ 3) is located. As a
result, the pod cannot use the EVS disk.

kubectl describe pod nginx-3
Name: nginx-3
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 111s default-scheduler 0/3 nodes are available: 3 pod has unbound
immediate PersistentVolumeClaims.
 Warning FailedScheduling 111s default-scheduler 0/3 nodes are available: 3 pod has unbound
immediate PersistentVolumeClaims.
 Warning FailedScheduling 28s default-scheduler 0/3 nodes are available: 1 node(s) had volume node
affinity conflict, 2 Insufficient cpu.

Check the AZ where the EVS disk created from the PVC is located. It is found that
data-nginx-3 is in AZ 1. In this case, the node in AZ 1 has no resources, and only
the node in AZ 3 has CPU resources. As a result, the scheduling fails. Therefore,
there should be a delay between creating the PVC and binding the PV.

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

Storage Class for Delayed Binding

If you check the cluster storage class, you can see that the binding mode of csi-
disk-topology is WaitForFirstConsumer, indicating that a PV is created and bound
when a pod uses the PVC. That is, the PV and the underlying storage resources are
created based on the pod information.

kubectl get storageclass
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
csi-disk everest-csi-provisioner Delete Immediate true 156m
csi-disk-topology everest-csi-provisioner Delete WaitForFirstConsumer true
156m
csi-nas everest-csi-provisioner Delete Immediate true 156m
csi-obs everest-csi-provisioner Delete Immediate false 156m

VOLUMEBINDINGMODE is displayed if your cluster is v1.19. It is not displayed in
clusters of v1.17 or v1.15.

You can also view the binding mode in the csi-disk-topology details.

kubectl describe sc csi-disk-topology
Name: csi-disk-topology
IsDefaultClass: No
Annotations: <none>
Provisioner: everest-csi-provisioner
Parameters: csi.storage.k8s.io/csi-driver-name=disk.csi.everest.io,csi.storage.k8s.io/
fstype=ext4,everest.io/disk-volume-type=SAS,everest.io/passthrough=true
AllowVolumeExpansion: True
MountOptions: <none>
ReclaimPolicy: Delete
VolumeBindingMode: WaitForFirstConsumer
Events: <none>

Create PVCs of the csi-disk and csi-disk-topology classes. Observe the differences
between these two types of PVCs.

● csi-disk
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: disk
 annotations:
 everest.io/disk-volume-type: SAS
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk # StorageClass

● csi-disk-topology
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: topology
 annotations:
 everest.io/disk-volume-type: SAS
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-disk-topology # StorageClass

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

View the PVC details. As shown below, the csi-disk PVC is in Bound state and the
csi-disk-topology PVC is in Pending state.
kubectl create -f pvc1.yaml
persistentvolumeclaim/disk created
kubectl create -f pvc2.yaml
persistentvolumeclaim/topology created
kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
disk Bound pvc-88d96508-d246-422e-91f0-8caf414001fc 10Gi RWO csi-disk
18s
topology Pending csi-disk-topology 2s

View details about the csi-disk-topology PVC. You can see that "waiting for first
consumer to be created before binding" is displayed in the event, indicating that
the PVC is bound after the consumer (pod) is created.
kubectl describe pvc topology
Name: topology
Namespace: default
StorageClass: csi-disk-topology
Status: Pending
Volume:
Labels: <none>
Annotations: everest.io/disk-volume-type: SAS
Finalizers: [kubernetes.io/pvc-protection]
Capacity:
Access Modes:
VolumeMode: Filesystem
Used By: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal WaitForFirstConsumer 5s (x3 over 30s) persistentvolume-controller waiting for first
consumer to be created before binding

Create a workload that uses the PVC. Set the PVC name to topology.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: container-0
 volumeMounts:
 - mountPath: /tmp # Mount path
 name: topology-example
 restartPolicy: Always
 volumes:
 - name: topology-example
 persistentVolumeClaim:
 claimName: topology # PVC name

After the PVC is created, check the PVC details. You can see that the PVC is bound
successfully.
kubectl describe pvc topology
Name: topology

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

Namespace: default
StorageClass: csi-disk-topology
Status: Bound
....
Used By: nginx-deployment-fcd9fd98b-x6tbs
Events:
 Type Reason Age
From Message
 ---- ------ ----
---- -------
 Normal WaitForFirstConsumer 84s (x26 over 7m34s) persistentvolume-
controller waiting for first consumer to be created before
binding
 Normal Provisioning 54s everest-csi-provisioner_everest-csi-
controller-7965dc48c4-5k799_2a6b513e-f01f-4e77-af21-6d7f8d4dbc98 External provisioner is provisioning
volume for claim "default/topology"
 Normal ProvisioningSucceeded 52s everest-csi-provisioner_everest-csi-
controller-7965dc48c4-5k799_2a6b513e-f01f-4e77-af21-6d7f8d4dbc98 Successfully provisioned volume
pvc-9a89ea12-4708-4c71-8ec5-97981da032c9

Using csi-disk-topology in Cross-AZ Node Deployment
The following uses csi-disk-topology to create a StatefulSet with the same
configurations used in the preceding example.

 volumeClaimTemplates:
 - metadata:
 name: data
 annotations:
 everest.io/disk-volume-type: SAS
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: csi-disk-topology

After the creation, check the PVC and pod status. As shown in the following
output, the PVC and pod can be created successfully. The nginx-3 pod is created
on the node in AZ 3.

kubectl get pvc -owide
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE VOLUMEMODE
data-nginx-0 Bound pvc-43802cec-cf78-4876-bcca-e041618f2470 1Gi RWO csi-disk-
topology 55s Filesystem
data-nginx-1 Bound pvc-fc942a73-45d3-476b-95d4-1eb94bf19f1f 1Gi RWO csi-disk-
topology 39s Filesystem
data-nginx-2 Bound pvc-d219f4b7-e7cb-4832-a3ae-01ad689e364e 1Gi RWO csi-disk-
topology 22s Filesystem
data-nginx-3 Bound pvc-b54a61e1-1c0f-42b1-9951-410ebd326a4d 1Gi RWO csi-disk-
topology 9s Filesystem

kubectl get pod -owide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
nginx-0 1/1 Running 0 65s 172.16.1.8 192.168.0.240 <none> <none>
nginx-1 1/1 Running 0 49s 172.16.0.13 192.168.0.121 <none> <none>
nginx-2 1/1 Running 0 32s 172.16.0.137 192.168.0.211 <none> <none>
nginx-3 1/1 Running 0 19s 172.16.1.9 192.168.0.240 <none> <none>

Cloud Container Engine
Best Practices 10 Storage

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

11 Container

11.1 Properly Allocating Container Computing
Resources

If a node has sufficient memory resources, a container on this node can use more
memory resources than requested, but no more than limited. If the memory
allocated to a container exceeds the upper limit, the container is stopped first. If
the container continuously uses memory resources more than limited, the
container is terminated. If a stopped container is allowed to be restarted, kubelet
will restart it, but other types of run errors will occur.

Scenario 1
The node's memory has reached the memory limit reserved for the node. As a
result, OOM killer is triggered.

Solution

You can either scale up the node or migrate the pods on the node to other nodes.

Scenario 2
The upper limit of resources configured for the pod is too small. When the actual
usage exceeds the limit, OOM killer is triggered.

Solution

Set a higher upper limit for the workload.

Example
A pod will be created and allocated memory that exceeds the limit. As shown in
the following configuration file of the pod, the pod requests 50 MiB memory and
the memory limit is set to 100 MiB.

Example YAML file (memory-request-limit-2.yaml):

apiVersion: v1
kind: Pod

Cloud Container Engine
Best Practices 11 Container

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

metadata:
 name: memory-demo-2
spec:
 containers:
 - name: memory-demo-2-ctr
 image: vish/stress
 resources:
 requests:
 memory: 50Mi
 limits:
 memory: "100Mi"
 args:
 - -mem-total
 - 250Mi
 - -mem-alloc-size
 - 10Mi
 - -mem-alloc-sleep
 - 1s

The args parameters indicate that the container attempts to request 250 MiB
memory, which exceeds the pod's upper limit (100 MiB).

Creating a pod:

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-2.yaml --
namespace=mem-example

Viewing the details about the pod:

kubectl get pod memory-demo-2 --namespace=mem-example

In this stage, the container may be running or be killed. If the container is not
killed, repeat the previous command until the container is killed.

NAME READY STATUS RESTARTS AGE
memory-demo-2 0/1 OOMKilled 1 24s

Viewing detailed information about the container:

kubectl get pod memory-demo-2 --output=yaml --namespace=mem-example

This output indicates that the container is killed because the memory limit is
exceeded.

lastState:
 terminated:
 containerID: docker://7aae52677a4542917c23b10fb56fcb2434c2e8427bc956065183c1879cc0dbd2
 exitCode: 137
 finishedAt: 2020-02-20T17:35:12Z
 reason: OOMKilled
 startedAt: null

In this example, the container can be automatically restarted. Therefore, kubelet
will start it again. You can run the following command several times to see how
the container is killed and started:

kubectl get pod memory-demo-2 --namespace=mem-example

The preceding command output indicates how the container is killed and started
back and forth:

$ kubectl get pod memory-demo-2 --namespace=mem-example
NAME READY STATUS RESTARTS AGE
memory-demo-2 0/1 OOMKilled 1 37s
$ kubectl get pod memory-demo-2 --namespace=mem-example
NAME READY STATUS RESTARTS AGE
memory-demo-2 1/1 Running 2 40s

Viewing the historical information of the pod:

Cloud Container Engine
Best Practices 11 Container

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

kubectl describe pod memory-demo-2 --namespace=mem-example

The following command output indicates that the pod is repeatedly killed and
started.

... Normal Created Created container with id
66a3a20aa7980e61be4922780bf9d24d1a1d8b7395c09861225b0eba1b1f8511
... Warning BackOff Back-off restarting failed container

11.2 Modifying Kernel Parameters Using a Privileged
Container

Prerequisites
To access a Kubernetes cluster from a client, you can use the Kubernetes
command line tool kubectl. For details, see Connecting to a Cluster Using
kubectl.

Procedure

Step 1 Create a DaemonSet in the background, select the Nginx image, enable the
Privileged Container, configure the lifecycle, and add the hostNetwork field
(value: true).

1. Create a daemonSet file.
vi daemonSet.yaml
An example YAML file is provided as follows:

NO TICE

The spec.spec.containers.lifecycle field indicates the command that will be
run after the container is started.

kind: DaemonSet
apiVersion: apps/v1
metadata:
 name: daemonset-test
 labels:
 name: daemonset-test
spec:
 selector:
 matchLabels:
 name: daemonset-test
 template:
 metadata:
 labels:
 name: daemonset-test
 spec:
 hostNetwork: true
 containers:
 - name: daemonset-test
 image: nginx:alpine-perl
 command:
 - "/bin/sh"
 args:
 - "-c"
 - while :; do time=$(date);done

Cloud Container Engine
Best Practices 11 Container

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/eu/usermanual-cce/cce_10_0107.html

 imagePullPolicy: IfNotPresent
 lifecycle:
 postStart:
 exec:
 command:
 - sysctl
 - "-w"
 - net.ipv4.tcp_tw_reuse=1
 securityContext:
 privileged: true
 imagePullSecrets:
 - name: default-secret

2. Create a DaemonSet.

kubectl create –f daemonSet.yaml

Step 2 Check whether the DaemonSet is successfully created.

kubectl get daemonset DaemonSet name

In this example, run the following command:

kubectl get daemonset daemonset-test

Information similar to the following is displayed:

NAME DESIRED CURRENT READY UP-T0-DATE AVAILABLE NODE SELECTOR AGE
daemonset-test 2 2 2 2 2 <node> 2h

Step 3 Query the container ID of DaemonSet on the node.

docker ps -a|grep DaemonSet name

In this example, run the following command:

docker ps -a|grep daemonset-test

Information similar to the following is displayed:

897b99faa9ce 3e094d5696c1 "/bin/sh -c while..." 31 minutes ago Up 30
minutes ault_fa7cc313-4ac1-11e9-a716-fa163e0aalba_0

Step 4 Access the container.

docker exec -it containerid /bin/sh

In this example, run the following command:

docker exec -it 897b99faa9ce /bin/sh

Step 5 Check whether the configured command is executed after the container is started.

sysctl -a |grep net.ipv4.tcp_tw_reuse

If the following information is displayed, the system parameters are modified
successfully:

net.ipv4.tcp_tw_reuse=1

----End

Cloud Container Engine
Best Practices 11 Container

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

11.3 Using Init Containers to Initialize an Application

Concepts
An init container is a type of container that starts and exits before the application
containers start. If there are multiple init containers, they will be started in the
defined sequence. The data generated in the init containers can be used by the
application containers because storage volumes in a pod are shared.

Init containers can be used in multiple Kubernetes resources, such as
Deployments, DaemonSets, and jobs. They perform initialization before application
containers are started.

Application Scenarios
Before deploying a service, you can use an init container to make preparations
before the service pod is deployed. After the preparations are complete, the init
container runs to completion and exits, and the container to be deployed will be
started.

● Scenario 1: Wait for other modules to be ready. For example, an application
contains two containerized services: web server and database. The web server
service needs to access the database service. However, when the application is
started, the database service may have not been started. Therefore, web
server may fail to access database. To solve this problem, you can use an init
container in the pod where web server is running to check whether database
is ready. The init container runs to completion only when database is
accessible. Then, web server is started and initiates a formal access request to
database.

● Scenario 2: Initialize the configuration. For example, the init container can
check all existing member nodes in the cluster and prepare the cluster
configuration information for the application container. After the application
container is started, it can be added to the cluster using the configuration
information.

● Other scenarios: For example, a pod is registered with a central database and
application dependencies are downloaded.

For details, see Init Containers.

Procedure

Step 1 Edit the YAML file of the init container workload.

vi deployment.yaml

An example YAML file is provided as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mysql
spec:
 replicas: 1
 selector:

Cloud Container Engine
Best Practices 11 Container

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

 matchLabels:
 name: mysql
 template:
 metadata:
 labels:
 name: mysql
 spec:
 initContainers:
 - name: getresource
 image: busybox
 command: ['sleep 20']
 containers:
 - name: mysql
 image: percona:5.7.22
 imagePullPolicy: Always
 ports:
 - containerPort: 3306
 resources:
 limits:
 memory: "500Mi"
 cpu: "500m"
 requests:
 memory: "500Mi"
 cpu: "250m"
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: "mysql"

Step 2 Create an init container workload.

kubectl create -f deployment.yaml

Information similar to the following is displayed:

deployment.apps/mysql created

Step 3 Query the created Docker container on the node where the workload is running.

docker ps -a|grep mysql

The init container will exit after it runs to completion. The query result Exited (0)
shows the exit status of the init container.

----End

11.4 Configuring the /etc/hosts File of a Pod Using
hostAliases

Application Scenarios
If DNS or other related settings are inappropriate, you can use hostAliases to
overwrite the resolution of the hostname at the pod level when adding entries to
the /etc/hosts file of the pod.

Cloud Container Engine
Best Practices 11 Container

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

Procedure

Step 1 Use kubectl to connect to the cluster.

Step 2 Create the hostaliases-pod.yaml file.

vi hostaliases-pod.yaml

The field in bold in the YAML file indicates the image name and tag. You can
replace the example value as required.

apiVersion: v1
kind: Pod
metadata:
 name: hostaliases-pod
spec:
 hostAliases:
 - ip: 127.0.0.1
 hostnames:
 - foo.local
 - bar.local
 - ip: 10.1.2.3
 hostnames:
 - foo.remote
 - bar.remote
 containers:
 - name: cat-hosts
 image: tomcat:9-jre11-slim
 lifecycle:
 postStart:
 exec:
 command:
 - cat
 - /etc/hosts
 imagePullSecrets:
 - name: default-secret

Table 11-1 pod field description

Parameter Mandatory Description

apiVersion Yes API version number

kind Yes Type of the object to be created

metadata Yes Metadata definition of a resource
object

name Yes Name of a pod

spec Yes Detailed description of the pod. For
details, see Table 11-2.

Table 11-2 spec field description

Parameter Mandatory Description

hostAliases Yes Host alias

containers Yes For details, see Table 11-3.

Cloud Container Engine
Best Practices 11 Container

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

Table 11-3 containers field description

Parameter Mandatory Description

name Yes Container name

image Yes Container image name

lifecycle No Lifecycle

Step 3 Create a pod.

kubectl create -f hostaliases-pod.yaml

If information similar to the following is displayed, the pod is created.

pod/hostaliases-pod created

Step 4 Query the pod status.

kubectl get pod hostaliases-pod

If the pod is in the Running state, the pod is successfully created.

NAME READY STATUS RESTARTS AGE
hostaliases-pod 1/1 Running 0 16m

Step 5 Check whether the hostAliases functions properly.

docker ps |grep hostaliases-pod

docker exec -ti Container ID /bin/sh

----End

Cloud Container Engine
Best Practices 11 Container

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

11.5 Locating Container Faults Using the Core Dump
File

Application Scenarios
Linux allows you to create a core dump file if an application crashes, which
contains the data the application had in memory at the time of the crash. You can
analyze the file to locate the fault.

Generally, when a service application crashes, its container exits and is reclaimed
and destroyed. Therefore, container core files need to be permanently stored on
the host or cloud storage. This topic describes how to configure container core
dumps.

Constraints
When a container core dump is persistently stored to OBS (parallel file system or
object bucket), the default mount option umask=0 is used. As a result, although
the core dump file is generated, the core dump information cannot be written to
the core file.

Enabling Core Dump on a Node
Log in to the node, run the following command to enable core dump, and set the
path and format for storing core files:

echo "/tmp/cores/core.%h.%e.%p.%t" > /proc/sys/kernel/core_pattern

%h, %e, %p, and %t are placeholders, which are described as follows:

● %h: hostname (or pod name). You are advised to configure this parameter.
● %e: program file name. You are advised to configure this parameter.
● %p: (optional) process ID.
● %t: (optional) time of the core dump.

After the core dump function is enabled by running the preceding command, the
generated core file is named in the format of core.{Host name}.{Program file
name}.{Process ID}.{Time}.

You can also configure a pre-installation or post-installation script to
automatically run this command when creating a node.

Permanently Storing Core Dumps
A core file can be stored in your host (using a hostPath volume) or cloud storage
(using a PVC). The following is an example YAML file for using a hostPath volume.
apiVersion: v1
kind: Pod
metadata:
 name: coredump
spec:
 volumes:
 - name: coredump-path

Cloud Container Engine
Best Practices 11 Container

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

 hostPath:
 path: /home/coredump
 containers:
 - name: ubuntu
 image: ubuntu:12.04
 command: ["/bin/sleep","3600"]
 volumeMounts:
 - mountPath: /tmp/cores
 name: coredump-path

Create a pod using kubectl.

kubectl create -f pod.yaml

Verification
After the pod is created, access the container and trigger a segmentation fault of
the current shell terminal.

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
coredump 1/1 Running 0 56s
$ kubectl exec -it coredump -- /bin/bash
root@coredump:/# kill -s SIGSEGV $$
command terminated with exit code 139

Log in to the node and check whether a core file is generated in the /home/
coredump directory. The following example indicates that a core file is generated.

ls /home/coredump
core.coredump.bash.18.1650438992

Cloud Container Engine
Best Practices 11 Container

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

12 Permission

12.1 Configuring kubeconfig for Fine-Grained
Management on Cluster Resources

Application Scenarios
By default, the kubeconfig file provided by CCE for users has permissions bound to
the cluster-admin role, which are equivalent to the permissions of user root. It is
difficult to implement refined management on users with such permissions.

Purpose
Cluster resources are managed in a refined manner so that specific users have
only certain permissions (such as adding, querying, and modifying resources).

Precautions
Ensure that kubectl is available on your host. If not, download it from here
(corresponding to the cluster version or the latest version).

Configuration Method
NO TE

In the following example, only pods and Deployments in the test space can be viewed and
added, and they cannot be deleted.

Step 1 Set the service account name to my-sa and namespace to test.
kubectl create sa my-sa -n test

Step 2 Configure the role table and assign operation permissions to different resources.
vi role-test.yaml

Cloud Container Engine
Best Practices 12 Permission

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/README.md

The content is as follows:

NO TE

In this example, the permission rules include the read-only permission (get/list/watch) of
pods in the test namespace, and the read (get/list/watch) and create permissions of
deployments.

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 labels:
 kubernetes.io/bootstrapping: rbac-defaults
 name: myrole
 namespace: test
rules:
- apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - apps
 resources:
 - pods
 - deployments
 verbs:
 - get
 - list
 - watch
 - create

Create a Role.

kubectl create -f role-test.yaml

Step 3 Create a RoleBinding and bind the service account to the role so that the user can
obtain the corresponding permissions.
vi myrolebinding.yaml

The content is as follows:
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: myrolebinding
 namespace: test
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: myrole
subjects:
- kind: ServiceAccount
 name: my-sa
 namespace: test

Create a RoleBinding.

kubectl create -f myrolebinding.yaml

Cloud Container Engine
Best Practices 12 Permission

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

The user information is configured. Now perform Step 5 to Step 7 to write the
user information to the configuration file.

Step 4 Manually create a token that is valid for a long time for ServiceAccount.
vi my-sa-token.yaml

The content is as follows:
apiVersion: v1
kind: Secret
metadata:
 name: my-sa-token-secret
 namespace: test
 annotations:
 kubernetes.io/service-account.name: my-sa
type: kubernetes.io/service-account-token

Create a token:

kubectl create -f my-sa-token.yaml

Step 5 Configure the cluster information.

1. Decrypt the ca.crt file in the secret and export it.
kubectl get secret my-sa-token-secret -n test -oyaml |grep ca.crt: | awk '{print $2}' |base64 -d > /home/
ca.crt

2. Set a cluster access mode. test-arm specifies the cluster to be accessed.
https://192.168.0.110:5443 specifies the apiserver IP address of the cluster. /
home/test.config specifies the path for storing the configuration file.
– If the internal API server address is used, run the following command:

kubectl config set-cluster test-arm --server=https://192.168.0.110:5443 --certificate-authority=/
home/ca.crt --embed-certs=true --kubeconfig=/home/test.config

– If the public API server address is used, run the following command:
kubectl config set-cluster test-arm --server=https://192.168.0.110:5443 --kubeconfig=/home/
test.config --insecure-skip-tls-verify=true

NO TE

If you perform operations on a node in the cluster or the node that uses the
configuration is a cluster node, do not set the path of kubeconfig to /root/.kube/config.

By default, the apiserver IP address of the cluster is a private IP address. After an
EIP is bound, you can use the public network IP address to access the apiserver.

Step 6 Configure the cluster authentication information.

1. Obtain the cluster token. (If the token is obtained in GET mode, run based64
-d to decode the token.)

token=$(kubectl describe secret my-sa-token-secret -n test | awk '/token:/{print $2}')

2. Set the cluster user ui-admin.
kubectl config set-credentials ui-admin --token=$token --kubeconfig=/home/test.config

Cloud Container Engine
Best Practices 12 Permission

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

Step 7 Configure the context information for cluster authentication access. ui-
admin@test specifies the context name.
kubectl config set-context ui-admin@test --cluster=test-arm --user=ui-admin --kubeconfig=/home/
test.config

Step 8 Configure the context. For details about how to use the context, see Verification.
kubectl config use-context ui-admin@test --kubeconfig=/home/test.config

NO TE

If you want to assign other users the above permissions to perform operations on the
cluster, provide the generated configuration file /home/test.config to the user after
performing step Step 7. The user must ensure that the host can access the API server
address of the cluster. When performing step Step 8 on the host and using kubectl, the user
must set the kubeconfig parameter to the path of the configuration file.

----End

Verification
1. Pods in the test namespace cannot access pods in other namespaces.

kubectl get pod -n test --kubeconfig=/home/test.config

2. Pods in the test namespace cannot be deleted.

Further Readings
For more information about users and identity authentication in Kubernetes, see
Authenticating.

Cloud Container Engine
Best Practices 12 Permission

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

https://kubernetes.io/docs/reference/access-authn-authz/authentication/

13 Release

13.1 Overview

Background
When switching between old and new services, you may be challenged in ensuring
the system service continuity. If a new service version is directly released to all
users at a time, it can be risky because once an online accident or bug occurs, the
impact on users is great. It could take a long time to fix the issue. Sometimes, the
version has to be rolled back, which severely affects user experience.

Solution
Several release policies are developed for service upgrade: grayscale release, blue-
green deployment, A/B testing, rolling upgrade, and batch suspension of release.
Traffic loss or service unavailability caused by releases can be avoided as much as
possible.

This document describes the principles and practices of grayscale release and
blue-green deployment.

● Grayscale release, also called canary release, is a smooth iteration mode for
version upgrade. During the upgrade, some users use the new version, while
other users continue to use the old version. After the new version is stable
and ready, it gradually takes over all the live traffic. In this way, service risks
brought by the release of the new version can be minimized, the impact of
faults can be reduced, and quick rollback is supported.
The following figure shows the general process of grayscale release. First,
divide 20% of all service traffic to the new version. If the service version runs
normally, gradually increase the traffic proportion and continue to test the
performance of the new version. If the new version is stable, switch all traffic
to it and bring the old version offline.

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

If an exception occurs in the new version when 20% of the traffic goes to the
new version, you can quickly switch back to the old version.

● Blue-green deployment provides a zero-downtime, predictable manner for
releasing applications to reduce service interruption during the release. A new
version is deployed while the old version is retained. The two versions are
online at the same time. The new and old versions work in hot backup mode.
The route weight is switched (0 or 100) to enable different versions to go
online or offline. If a problem occurs, the version can be quickly rolled back.

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

13.2 Using Services to Implement Simple Grayscale
Release and Blue-Green Deployment

To implement grayscale release for a CCE cluster, deploy other open-source tools,
such as Nginx Ingress, to the cluster or deploy services to a service mesh. These
solutions are difficult to implement. If your grayscale release requirements are
simple and you do not want to introduce too many plug-ins or complex
configurations, you can refer to this section to implement simple grayscale release
and blue-green deployment based on native Kubernetes features.

Principles
Users usually use Kubernetes objects such as Deployments and StatefulSets to
deploy services. Each workload manages a group of pods. The following figure
uses Deployment as an example.

Generally, a Service is created for each workload. The Service uses the selector to
match the backend pod. Other Services or objects outside the cluster can access
the pods backing the Service. If a pod needs to be exposed, set the Service type to
LoadBalancer. The ELB load balancer functions as the traffic entrance.

● Grayscale release principles

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

Take a Deployment as an example. A Service, in most cases, will be created
for each Deployment. However, Kubernetes does not require that Services and
Deployments correspond to each other. A Service uses a selector to match
backend pods. If pods of different Deployments are selected by the same
selector, a Service corresponds to multiple versions of Deployments. You can
adjust the number of replicas of Deployments of different versions to adjust
the weights of services of different versions to achieve grayscale release. The
following figure shows the process:

● Blue-green deployment principles
Take a Deployment as an example. Two Deployments of different versions
have been deployed in the cluster, and their pods are labeled with the same
key but different values to distinguish versions. A Service uses the selector to
select the pod of a Deployment of a version. In this case, you can change the
value of the label that determines the version in the Service selector to
change the pod backing the Service. In this way, you can directly switch the
service traffic from one version to another. The following figure shows the
process:

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

Prerequisites
The Nginx image has been uploaded to SWR. The Nginx images have two
versions: v1 and v2. The welcome pages are Nginx-v1 and Nginx-v2.

Resource Creation
You can use YAML to deploy Deployments and Services in either of the following
ways:

● On the Create Deployment page, click Create YAML on the right and edit
the YAML file in the window.

● Save the sample YAML file in this section as a file and use kubectl to specify
the YAML file. For example, run the kubectl create -f xxx.yaml command.

Step 1: Deploy Services of Two Versions
Two versions of Nginx services are deployed in the cluster to provide external
access through ELB.

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

Step 1 Create a Deployment of the first version. The following uses nginx-v1 as an
example. Example YAML:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-v1
spec:
 replicas: 2 # Number of replicas of the Deployment, that is, the number of pods
 selector: # Label selector
 matchLabels:
 app: nginx
 version: v1
 template:
 metadata:
 labels: # Pod label
 app: nginx
 version: v1
 spec:
 containers:
 - image: {your_repository}/nginx:v1 # The image used by the container is nginx:v1.
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Step 2 Create a Deployment of the second version. The following uses nginx-v2 as an
example. Example YAML:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-v2
spec:
 replicas: 2 # Number of replicas of the Deployment, that is, the number of pods
 selector: # Label selector
 matchLabels:
 app: nginx
 version: v2
 template:
 metadata:
 labels: # Pod label
 app: nginx
 version: v2
 spec:
 containers:
 - image: {your_repository}/nginx:v2 # The image used by the container is nginx:v2.
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

You can log in to the CCE console to view the deployment status.

----End

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

Step 2: Implement Grayscale Release

Step 1 Create a LoadBalancer Service for the Deployment. Do not specify the version in
the selector. Enable the Service to select the pods of the Deployments of two
versions. Example YAML:
apiVersion: v1
kind: Service
metadata:
 annotations:
 kubernetes.io/elb.id: 586c97da-a47c-467c-a615-bd25a20de39c # ID of the ELB load balancer. Replace it
with the actual value.
 name: nginx
spec:
 ports:
 - name: service0
 port: 80
 protocol: TCP
 targetPort: 80
 selector: # The selector does not contain version information.
 app: nginx
 type: LoadBalancer # Service type (LoadBalancer)

Step 2 Run the following command to test the access:

for i in {1..10}; do curl <EXTERNAL_IP>; done;

<EXTERNAL_IP> indicates the IP address of the ELB load balancer.

The command output is as follows (Half of the responses are from the
Deployment of version v1, and the other half are from version v2):

Nginx-v2
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v2
Nginx-v1
Nginx-v2
Nginx-v1
Nginx-v2
Nginx-v2

Step 3 Use the console or kubectl to adjust the number of replicas of the Deployments.
Change the number of replicas to 4 for v1 and 1 for v2.

kubectl scale deployment/nginx-v1 --replicas=4

kubectl scale deployment/nginx-v2 --replicas=1

Step 4 Run the following command to test the access again:

for i in {1..10}; do curl <EXTERNAL_IP>; done;

<EXTERNAL_IP> indicates the IP address of the ELB load balancer.

In the command output, among the 10 access requests, only two responses are
from the v2 version. The response ratio of the v1 and v2 versions is the same as
the ratio of the number of replicas of the v1 and v2 versions, that is, 4:1. Grayscale
release is implemented by controlling the number of replicas of services of
different versions.

Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

Nginx-v2
Nginx-v1
Nginx-v2
Nginx-v1
Nginx-v1
Nginx-v1

NO TE

If the ratio of v1 to v2 is not 4:1, you can set the number of access times to a larger value,
for example, 20. Theoretically, the more the times, the closer the response ratio between v1
and v2 is to 4:1.

----End

Step 3: Implement Blue-Green Deployment

Step 1 Create a LoadBalancer Service for a deployed Deployment and specify that the v1
version is used. Example YAML:
apiVersion: v1
kind: Service
metadata:
 annotations:
 kubernetes.io/elb.id: 586c97da-a47c-467c-a615-bd25a20de39c # ID of the ELB load balancer. Replace it
with the actual value.
 name: nginx
spec:
 ports:
 - name: service0
 port: 80
 protocol: TCP
 targetPort: 80
 selector: # Set the version to v1 in the selector.
 app: nginx
 version: v1
 type: LoadBalancer # Service type (LoadBalancer)

Step 2 Run the following command to test the access:

for i in {1..10}; do curl <EXTERNAL_IP>; done;

<EXTERNAL_IP> indicates the IP address of the ELB load balancer.

The command output is as follows (all responses are from the v1 version):

Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1
Nginx-v1

Step 3 Use the console or kubectl to modify the selector of the Service so that the v2
version is selected.

kubectl patch service nginx -p '{"spec":{"selector":{"version":"v2"}}}'

Step 4 Run the following command to test the access again:

for i in {1..10}; do curl <EXTERNAL_IP>; done;

<EXTERNAL_IP> indicates the IP address of the ELB load balancer.

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

The returned results show that are all responses are from the v2 version. The blue-
green deployment is successfully implemented.

Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2
Nginx-v2

----End

13.3 Using Nginx Ingress to Implement Grayscale
Release and Blue-Green Deployment

This section describes the scenarios and practices of using Nginx Ingress to
implement grayscale release and blue-green deployment.

Application Scenarios
Nginx Ingress supports three traffic division policies based on the header, cookie,
and service weight. Based on these policies, the following two release scenarios
can be implemented:

● Scenario 1: Split some user traffic to the new version.
Assume that Service A that provides layer-7 networking is running. A new
version is ready to go online, but you do not want to replace the original
Service A. You want to forward the user requests whose header or cookie
contains foo=bar to the new version of Service A. After the new version runs
stably for a period of time, you can gradually bring the new version online
and smoothly bring the old version offline. The following figure shows the
process:

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

● Scenario 2: Split a certain proportion of traffic to the new version.
Assume that Service B that provides layer-7 services is running. After some
problems are resolved, a new version of Service B needs to be released.
However, you do not want to replace the original Service B. Instead, you want
to switch 20% traffic to the new version of Service B. After the new version
runs stably for a period of time, you can switch all traffic from the old version
to the new version and smoothly bring the old version offline.

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

Annotations
Nginx Ingress supports release and testing in different scenarios by configuring
annotations for grayscale release, blue-green deployment, and A/B testing. The
implementation process is as follows: Create two ingresses for the service. One is a
common ingress, and the other is an ingress with the annotation
nginx.ingress.kubernetes.io/canary: "true", which is called a canary ingress.
Configure a traffic division policy for the canary ingress. The two ingresses
cooperate with each other to implement release and testing in multiple scenarios.
The annotation of Nginx Ingress supports the following rules:

● nginx.ingress.kubernetes.io/canary-by-header
Header-based traffic division, which is applicable to grayscale release. If the
request header contains the specified header name and the value is always,
the request is forwarded to the backend service defined by the canary ingress.
If the value is never, the request is not forwarded and a rollback to the source
version can be performed. If other values are used, the annotation is ignored
and the request traffic is allocated according to other rules based on the
priority.

● nginx.ingress.kubernetes.io/canary-by-header-value
This rule must be used together with canary-by-header. You can customize
the value of the request header, including but not limited to always or never.
If the value of the request header matches the specified custom value, the
request is forwarded to the corresponding backend service defined by the
canary ingress. If the values do not match, the annotation is ignored and the
request traffic is allocated according to other rules based on the priority.

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

● nginx.ingress.kubernetes.io/canary-by-header-pattern
This rule is similar to canary-by-header-value. The only difference is that this
annotation uses a regular expression, not a fixed value, to match the value of
the request header. If this annotation and canary-by-header-value exist at the
same time, this one will be ignored.

● nginx.ingress.kubernetes.io/canary-by-cookie
Cookie-based traffic division, which is applicable to grayscale release. Similar
to canary-by-header, this annotation is used for cookies. Only always and
never are supported, and the value cannot be customized.

● nginx.ingress.kubernetes.io/canary-weight
Traffic is divided based on service weights, which is applicable to blue-green
deployment. This annotation indicates the percentage of traffic allocated by
the canary ingress. The value ranges from 0 to 100. For example, if the value
is set to 100, all traffic is forwarded to the backend service backing the canary
ingress.

NO TE

● The preceding annotation rules are evaluated based on the priority. The priority is as
follows: canary-by-header -> canary-by-cookie -> canary-weight.

● When an ingress is marked as a canary ingress, all non-canary annotations except
nginx.ingress.kubernetes.io/load-balance and nginx.ingress.kubernetes.io/
upstream-hash-by are ignored.

● For more information, see Annotations.

Prerequisites
● To use Nginx Ingress to implement grayscale release of a cluster, install the

nginx-ingress add-on as the Ingress Controller and expose a unified traffic
entrance externally.

● The Nginx image has been uploaded to SWR. The Nginx images have two
versions. The welcome pages are Old Nginx and New Nginx.

Resource Creation
You can use YAML to deploy Deployments and Services in either of the following
ways:

● On the Create Deployment page, click Create YAML on the right and edit
the YAML file in the window.

● Save the sample YAML file in this section as a file and use kubectl to specify
the YAML file. For example, run the kubectl create -f xxx.yaml command.

Step 1: Deploy Services of Two Versions
Two versions of Nginx are deployed in the cluster, and Nginx Ingress is used to
provide layer-7 domain name access for external systems.

Step 1 Create a Deployment and Service for the first version. This section uses old-nginx
as an example. Example YAML:
apiVersion: apps/v1
kind: Deployment
metadata:

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/

 name: old-nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 app: old-nginx
 template:
 metadata:
 labels:
 app: old-nginx
 spec:
 containers:
 - image: {your_repository}/nginx:old # The image used by the container is nginx:old.
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

apiVersion: v1
kind: Service
metadata:
 name: old-nginx
spec:
 selector:
 app: old-nginx
 ports:
 - name: service0
 targetPort: 80
 port: 8080
 protocol: TCP
 type: NodePort

Step 2 Create a Deployment and Service for the second version. This section uses new-
nginx as an example. Example YAML:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: new-nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 app: new-nginx
 template:
 metadata:
 labels:
 app: new-nginx
 spec:
 containers:
 - image: {your_repository}/nginx:new # The image used by the container is nginx:new.
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

apiVersion: v1
kind: Service
metadata:
 name: new-nginx
spec:
 selector:
 app: new-nginx
 ports:
 - name: service0
 targetPort: 80
 port: 8080
 protocol: TCP
 type: NodePort

You can log in to the CCE console to view the deployment status.

Step 3 Create an ingress to expose the service and point to the service of the old version.
Example YAML:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: gray-release
 namespace: default
 annotations:
 kubernetes.io/elb.port: '80'
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 backend:
 service:
 name: old-nginx # Set the back-end service to old-nginx.
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: nginx # Nginx ingress is used.

Step 4 Run the following command to verify the access:
curl -H "Host: www.example.com" http://<EXTERNAL_IP>

In the preceding command, <EXTERNAL_IP> indicates the external IP address of
the Nginx ingress.

Expected outputs:

Old Nginx

----End

Step 2: Launch the New Version of the Service in Grayscale Release Mode
Set the traffic division policy for the service of the new version. CCE supports the
following policies for grayscale release and blue-green deployment:

Header-based, cookie-based, and weight-based traffic division rules

Grayscale release can be implemented based on all these policies. Blue-green
deployment can be implemented by adjusting the new service weight to 100%.
For details, see the following examples.

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

CA UTION

Pay attention to the following:
● Only one canary ingress can be defined for the same service so that the

backend service supports a maximum of two versions.
● Even if the traffic is completely switched to the canary ingress, the old version

service must still exist. Otherwise, an error is reported.

● Header-based rules
In the following example, only the request whose header contains Region set
to bj or gz can be forwarded to the service of the new version.

a. Create a canary ingress, set the backend service to the one of the new
versions, and add annotations.
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: canary-ingress
 namespace: default
 annotations:
 nginx.ingress.kubernetes.io/canary: "true" # Enable canary.
 nginx.ingress.kubernetes.io/canary-by-header: "Region"
 nginx.ingress.kubernetes.io/canary-by-header-pattern: "bj|gz" # Requests whose header
contains Region with the value bj or gz are forwarded to the canary ingress.
 kubernetes.io/elb.port: '80'
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 backend:
 service:
 name: new-nginx # Set the back-end service to new-nginx.
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: nginx # Nginx ingress is used.

b. Run the following command to test the access:
$ curl -H "Host: www.example.com" -H "Region: bj" http://<EXTERNAL_IP>
New Nginx
$ curl -H "Host: www.example.com" -H "Region: sh" http://<EXTERNAL_IP>
Old Nginx
$ curl -H "Host: www.example.com" -H "Region: gz" http://<EXTERNAL_IP>
New Nginx
$ curl -H "Host: www.example.com" http://<EXTERNAL_IP>
Old Nginx

In the preceding command, <EXTERNAL_IP> indicates the external IP
address of the Nginx ingress.
Only requests whose header contains Region with the value bj or gz are
responded by the service of the new version.

● Cookie-based rules
In the following example, only the request whose cookie contains
user_from_bj can be forwarded to the service of the new version.

a. Create a canary ingress, set the backend service to the one of the new
versions, and add annotations.

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

NO TE

If you have created a canary ingress in the preceding steps, delete it and then
perform this step to create a canary ingress.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: canary-ingress
 namespace: default
 annotations:
 nginx.ingress.kubernetes.io/canary: "true" # Enable canary.
 nginx.ingress.kubernetes.io/canary-by-cookie: "user_from_bj" # Requests whose cookie
contains user_from_bj are forwarded to the canary ingress.
 kubernetes.io/elb.port: '80'
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 backend:
 service:
 name: new-nginx # Set the back-end service to new-nginx.
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: nginx # Nginx ingress is used.

b. Run the following command to test the access:
$ curl -s -H "Host: www.example.com" --cookie "user_from_bj=always" http://
<EXTERNAL_IP>
New Nginx
$ curl -s -H "Host: www.example.com" --cookie "user_from_gz=always" http://
<EXTERNAL_IP>
Old Nginx
$ curl -s -H "Host: www.example.com" http://<EXTERNAL_IP>
Old Nginx

In the preceding command, <EXTERNAL_IP> indicates the external IP
address of the Nginx ingress.
Only requests whose cookie contains user_from_bj with the value always
are responded by the service of the new version.

● Service weight-based rules
Example 1: Only 20% of the traffic is allowed to be forwarded to the service
of the new version to implement grayscale release.

a. Create a canary ingress and add annotations to import 20% of the traffic
to the backend service of the new version.

NO TE

If you have created a canary ingress in the preceding steps, delete it and then
perform this step to create a canary ingress.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: canary-ingress
 namespace: default
 annotations:
 nginx.ingress.kubernetes.io/canary: "true" # Enable canary.
 nginx.ingress.kubernetes.io/canary-weight: "20" # Forward 20% of the traffic to the canary
ingress.
 kubernetes.io/elb.port: '80'

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 backend:
 service:
 name: new-nginx # Set the back-end service to new-nginx.
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: nginx # Nginx ingress is used.

b. Run the following command to test the access:
$ for i in {1..20}; do curl -H "Host: www.example.com" http://<EXTERNAL_IP>; done;
Old Nginx
Old Nginx
Old Nginx
New Nginx
Old Nginx
New Nginx
Old Nginx
New Nginx
Old Nginx
Old Nginx
Old Nginx
Old Nginx
Old Nginx
New Nginx
Old Nginx
Old Nginx
Old Nginx
Old Nginx
Old Nginx
Old Nginx

In the preceding command, <EXTERNAL_IP> indicates the external IP
address of the Nginx ingress.
It can be seen that there is a 4/20 probability that the service of the new
version responds, which complies with the setting of the service weight of
20%.

NO TE

After traffic is divided based on the weight (20%), the probability of accessing
the new version is close to 20%. The traffic ratio may fluctuate within a small
range, which is normal.

Example 2: Allow all traffic to be forwarded to the service of the new version
to implement blue-green deployment.

a. Create a canary ingress and add annotations to import 100% of the
traffic to the backend service of the new version.

NO TE

If you have created a canary ingress in the preceding steps, delete it and then
perform this step to create a canary ingress.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: canary-ingress
 namespace: default
 annotations:

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

 nginx.ingress.kubernetes.io/canary: "true" # Enable canary.
 nginx.ingress.kubernetes.io/canary-weight: "100" # All traffic is forwarded to the canary
ingress.
 kubernetes.io/elb.port: '80'
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 backend:
 service:
 name: new-nginx # Set the back-end service to new-nginx.
 port:
 number: 80
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: nginx # Nginx ingress is used.

b. Run the following command to test the access:
$ for i in {1..10}; do curl -H "Host: www.example.com" http://<EXTERNAL_IP>; done;
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx
New Nginx

In the preceding command, <EXTERNAL_IP> indicates the external IP
address of the Nginx ingress.
All access requests are responded by the service of the new version, and
the blue-green deployment is successfully implemented.

Cloud Container Engine
Best Practices 13 Release

Issue 01 (2024-11-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

	Contents
	1 Checklist for Deploying Containerized Applications in the Cloud
	2 Containerization
	2.1 Containerizing an Enterprise Application (ERP)
	2.1.1 Solution Overview
	2.1.2 Procedure
	2.1.2.1 Containerizing an Entire Application
	2.1.2.2 Containerization Process
	2.1.2.3 Analyzing the Application
	2.1.2.4 Preparing the Application Runtime
	2.1.2.5 Compiling a Startup Script
	2.1.2.6 Compiling the Dockerfile
	2.1.2.7 Building and Uploading an Image
	2.1.2.8 Creating a Container Workload

	3 Migration
	3.1 Migrating Kubernetes Clusters to CCE
	3.1.1 Solution Overview
	3.1.2 Planning Resources for the Target Cluster
	3.1.3 Procedure
	3.1.3.1 Migrating Resources Outside a Cluster
	3.1.3.2 Installing the Migration Tool
	3.1.3.3 Migrating Resources in a Cluster
	3.1.3.4 Updating Resources Accordingly
	3.1.3.5 Performing Additional Tasks
	3.1.3.6 Troubleshooting

	4 Disaster Recovery
	4.1 Recommended Configurations for HA CCE Clusters
	4.2 Implementing High Availability for Applications in CCE
	4.3 Implementing High Availability for Add-ons in CCE

	5 Security
	5.1 Configuration Suggestions on CCE Cluster Security
	5.2 Configuration Suggestions on CCE Node Security
	5.3 Configuration Suggestions on CCE Container Runtime Security
	5.4 Configuration Suggestions on CCE Container Security
	5.5 Configuration Suggestions on CCE Container Image Security
	5.6 Configuration Suggestions on CCE Secret Security

	6 Auto Scaling
	6.1 Using HPA and CA for Auto Scaling of Workloads and Nodes

	7 Monitoring
	7.1 Monitoring Multiple Clusters Using Prometheus
	7.2 Reporting Prometheus Monitoring Data to a Third-Party Monitoring Platform

	8 Cluster
	8.1 Suggestions on CCE Cluster Selection
	8.2 Creating a Custom CCE Node Image
	8.3 Connecting to Multiple Clusters Using kubectl
	8.4 Selecting a Data Disk for the Node
	8.5 Protecting a CCE Cluster Against Overload

	9 Networking
	9.1 Planning CIDR Blocks for a Cluster
	9.2 Selecting a Network Model
	9.3 Implementing Sticky Session Through Load Balancing
	9.4 Pre-Binding Container ENI for CCE Turbo Clusters
	9.5 Accessing an IP Address Outside a Cluster That Uses a VPC Network Using Source Pod IP Addresses in the Cluster

	10 Storage
	10.1 Expanding the Storage Space
	10.2 Mounting Object Storage Across Accounts
	10.3 Dynamically Creating an SFS Turbo Subdirectory Using StorageClass
	10.4 Using Custom Storage Classes
	10.5 Scheduling EVS Disks Across AZs Using csi-disk-topology

	11 Container
	11.1 Properly Allocating Container Computing Resources
	11.2 Modifying Kernel Parameters Using a Privileged Container
	11.3 Using Init Containers to Initialize an Application
	11.4 Configuring the /etc/hosts File of a Pod Using hostAliases
	11.5 Locating Container Faults Using the Core Dump File

	12 Permission
	12.1 Configuring kubeconfig for Fine-Grained Management on Cluster Resources

	13 Release
	13.1 Overview
	13.2 Using Services to Implement Simple Grayscale Release and Blue-Green Deployment
	13.3 Using Nginx Ingress to Implement Grayscale Release and Blue-Green Deployment

