
Cloud Container Engine

Kubernetes Basics

Issue 01

Date 2022-09-08

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2022. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Contents

1 Overview..1

2 Container and Kubernetes...3
2.1 Container.. 3
2.2 Kubernetes... 7

3 Pod, Label, and Namespace.. 14
3.1 Pod: the Smallest Scheduling Unit in Kubernetes... 14
3.2 Liveness Probe.. 18
3.3 Label for Managing Pods... 22
3.4 Namespace for Grouping Resources.. 24

4 Pod Orchestration and Scheduling... 26
4.1 Deployment.. 26
4.2 StatefulSet... 30
4.3 Job and Cron Job... 35
4.4 DaemonSet..37
4.5 Affinity and Anti-Affinity Scheduling... 40

5 Configuration Management... 48
5.1 ConfigMap... 48
5.2 Secret...49

6 Kubernetes Networking...52
6.1 Container Networking... 52
6.2 Service... 53
6.3 Ingress... 62
6.4 Readiness Probe.. 64
6.5 NetworkPolicy.. 68

7 Persistent Storage... 70
7.1 Volume..70
7.2 PersistentVolume, PersistentVolumeClaim, and StorageClass.. 72

8 Authentication and Authorization..78
8.1 ServiceAccount... 78
8.2 RBAC.. 81

Cloud Container Engine
Kubernetes Basics Contents

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. ii

9 Auto Scaling..86

Cloud Container Engine
Kubernetes Basics Contents

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. iii

1 Overview

Kubernetes is an open-source container orchestration system for automating
containerized application deployment, scaling, and management across hosts in
clouds.

For application developers, Kubernetes can be regarded as a cluster operating
system. Kubernetes provides functions such as service discovery, scaling, load
balancing, self-healing, and even leader election, freeing developers from
infrastructure-related configurations.

You can use CCE, a hosted Kubernetes service provided by HUAWEI CLOUD, by
means of the . Before using CCE, you are advised to learn about the following
Kubernetes concepts.

Containers and Kubernetes
● Container
● Kubernetes

Pods, Labels, and Namespaces
● Pod: the Smallest Scheduling Unit in Kubernetes
● Liveness Probe
● Label for Managing Pods
● Namespace for Grouping Resources

Pod Orchestration and Scheduling
● Deployment
● StatefulSet
● Job and Cron Job
● DaemonSet
● Affinity and Anti-Affinity Scheduling

Configuration Management
● ConfigMap

Cloud Container Engine
Kubernetes Basics 1 Overview

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 1

● Secret

Kubernetes Networking
● Container Networking
● Service
● Ingress
● Readiness Probe
● NetworkPolicy

Persistent Storage
● Volume
● PersistentVolume, PersistentVolumeClaim, and StorageClass

Authentication and Authorization
● ServiceAccount
● RBAC

Auto Scaling
● Auto Scaling

Cloud Container Engine
Kubernetes Basics 1 Overview

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 2

2 Container and Kubernetes

2.1 Container

Container and Docker

Container technologies originate from Linux. Containers provide lightweight
virtualization, allow process and resource isolation, and become popular since the
emergence of Docker. Docker is the first system that allows containers to be
portable in different machines. It simplifies both the application packaging and
the application library and dependency packaging. Even the OS file system can be
packaged into a simple portable package, which can be used on any other
machine that runs Docker.

Except for similar resource isolation and allocation modes as VMs, containers
virtualize OSs, making them more portable and efficient.

Figure 2-1 Containers vs VMs

Containers have the following advantages over VMs:

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 3

● Higher system resource utilization
With no overhead for virtualizing hardware and running a complete OS,
containers outperform VMs no matter in application execution speed,
memory loss, and file storage speed. Therefore, with same configurations,
containers can run more applications than VMs.

● Faster startup
Traditional VMs usually take several minutes to start an application. However,
Docker containerized applications run directly on the host kernel with no need
to start the entire OS, so they can start within seconds or even milliseconds,
greatly saving your time in development, testing, and deployment.

● Consistent running environments
One of the biggest problems in development is the inconsistency of
application running environment. Due to inconsistent development, testing,
and production environments, some bugs cannot be discovered prior to
rollout. A Docker container image provides a complete runtime to ensure
consistency in application running environments.

● Easier migration
Docker ensures the consistency in execution environment, so migrating
applications becomes much easier. Docker can run on many platforms, and no
matter on physical machines or virtual ones, its running results remains the
same. Therefore, you can easily migrate an application from one platform to
another without worrying that the environment change will cause the
applications fail to function.

● Easier maintenance and extension
Tiered storage and image technology applied by Docker facilitate the reuse of
applications and simplify application maintenance and update as well as
further image extension based on base images. In addition, Docker
collaborates with open-source project teams to maintain a large number of
high-quality official images. You can directly use them in the production
environment or form new images based on them, greatly reducing the image
production cost of applications.

Typical Process of Using Docker Containers
Before using a Docker container, you should know the core components in Docker.

● Image: A Docker image is a software package that contains everything
needed to run an application, such as the code and the runtime it requires,
file systems, and executable file path of the runtime and other metadata.

● Image repository: A Docker image repository is used to store Docker images,
which can be shared between different users and computers. You can run the
image you compiled on the computer where it is compiled, or upload it to an
image repository and then download it to another computer and run it. Some
repositories are public, allowing everyone to pull images from them. Others
are private, which are accessible only to some users and machines.

● Container: A Docker container is usually a Linux container created from a
Docker image. A running container is a process running on the Docker host.
However, it is isolated from the host and all other processes running on the
host. The process is also resource-limited, meaning that it can access and use
only resources (such as CPU and memory) allocated to it.

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 4

Figure 2-2 shows the typical process of using containers.

Figure 2-2 Typical process of using Docker containers

1. A developer develops an application and creates an image in the development
machine.
Docker runs the commands to create an image and store it on the machine.

2. The developer sends a command to upload the image.
After receiving the command, Docker uploads the local image to the image
repository.

3. The developer sends an image running command to the machine.
After the command is received, Docker pulls the image from the image
repository to the machine, and then runs a container based on the image.

Example

In the following example, Docker packages a container image based on the Nginx
image, runs an application based on the container image, and pushes the image
to the image repository.

Installing Docker

Docker is compatible with almost all operating systems. Select a Docker version
that best suits your needs.

In Linux, you can run the following command to install Docker:

curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh
systemctl restart docker

Packaging a Docker Image

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 5

Docker provides a convenient way to package your application, which is called
Dockerfile.

Use the official Nginx image as the base image.
FROM nginx:alpine

Run a command to modify the content of the nginx image index.html.
RUN echo "hello world" > /usr/share/nginx/html/index.html

Permit external access to port 80 of the container.
EXPOSE 80

Run the docker build command to package the image.

docker build -t hello .

In the preceding command, -t indicates that a tag is added to the image, that is,
the image is named. In this example, the image name is hello. . indicates that the
packaging command is executed in the current directory.

Run the docker images command to view the image. You can see the hello image
has been created successfully. You can also see an Nginx image, which is
downloaded from the image repository and used as the base image of the hello
image.

docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello latest d120ec16dcea 17 minutes ago 158MB
nginx alpine eeb27ee6b893 2 months ago 148MB

Running the Container Image Locally

After obtaining the image, you can run the docker run command on the local
host to run the container image.

 #docker run -p 8080:80 hello

The docker run command will start a container. In the preceding command, -p
indicates that port 8080 of the local host is mapped to port 80 of the container.
That is, the traffic of port 8080 of the local host will be forwarded to port 80 of
the container. When you access http://127.0.0.1:8080 on the local host, you can
access the container. In this case, the content returned by the browser is hello
world.

Pushing the Image to the Image Repository

HUAWEI CLOUD provides SoftWare Repository for Container (SWR). You can also
upload images to SWR. The following describes how to upload images to SWR.
For details, see .

Log in to the . In the navigation pane, choose My Images. On the page that is
displayed, click Upload Through Client. In the dialog box that is displayed, click
Generate a temporary login command. Then, copy the command and run it on
the local host to log in to the SWR image repository.

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 6

Before uploading an image, you need to specify a complete name for the image.

docker tag hello swr.cn-east-3.myhuaweicloud.com/container/hello:v1

In the preceding command, swr.cn-east-3.myhuaweicloud.com indicates the
repository address. The address varies depending on the HUAWEI CLOUD region.
v1 indicates the version number allocated to the hello image.

● swr.cn-east-3.myhuaweicloud.com indicates the repository address. The
address varies with the HUAWEI CLOUD region.

● container is the organization name. Generally, an organization is created in
SWR. If no organization is created, an organization is automatically created
when the image is uploaded for the first time. The organization name is
globally unique in a single region. You need to select a proper organization
name.

● v1 is the version number allocated to the hello image.

Run the docker push command to upload the image to SWR.

docker push swr.cn-east-3.myhuaweicloud.com/container/hello:v1

If you need to use the image, run the docker pull command to pull (download)
the image.

docker pull swr.cn-east-3.myhuaweicloud.com/container/hello:v1

2.2 Kubernetes

What Is Kubernetes?

Kubernetes is a containerized application software system that can be easily
deployed and managed. It facilitates container scheduling and orchestration.

For application developers, Kubernetes can be regarded as a cluster operating
system. Kubernetes provides functions such as service discovery, scaling, load
balancing, self-healing, and even leader election, freeing developers from
infrastructure-related configurations.

When using Kubernetes, it's like you run a large number of servers as one on
which your applications run. Regardless of the number of servers in a Kubernetes
cluster, the method for deploying applications in Kubernetes is always the same.

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 7

https://kubernetes.io/

Figure 2-3 Running applications in a Kubernetes cluster

Kubernetes Cluster Architecture

A Kubernetes cluster consists of master nodes (masters) and worker nodes
(nodes). Applications are deployed on worker nodes, and you can specify the
nodes for deployment.

The following figure shows the architecture of a Kubernetes cluster.

Figure 2-4 Kubernetes cluster architecture

Master node

A master node is the machine where the control plane components run, including
API server, Scheduler, Controller manager, and etcd.

● API server: functions as a transit station for components to communicate with
each other, receives external requests, and writes information to etcd.

● Controller manager: performs cluster-level functions, such as component
replication, node tracing, and node fault fixing.

● Scheduler: schedules containers to nodes based on various conditions (such as
available resources and node affinity).

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 8

● etcd: serves as a distributed data storage component that stores cluster
configuration information.

In the production environment, multiple master nodes are deployed to ensure
cluster high availability. For example, you can deploy three master nodes for your
CCE cluster.

Worker node

A worker node is a compute node in a cluster, that is, a node running
containerized applications. A worker node has the following components:

● kubelet: communicates with the container runtime, interacts with the API
server, and manages containers on the node.

● kube-proxy: serves as an access proxy between application components.
● Container runtime: functions as the software for running containers. You can

download images to build your container runtime, such as Docker.

Kubernetes Scalability
Kubernetes opens the Container Runtime Interface (CRI), Container Network
Interface (CNI), and Container Storage Interface (CSI). These interfaces maximize
Kubernetes scalability and allow Kubernetes to focus on container scheduling.

● Container Runtime Interface (CRI): provides computing resources when a
container is running. It shields differences between container engines and
interacts with each container engine through a unified interface.

● Container Network Interface (CNI): enables Kubernetes to support different
networking implementations. For example, HUAWEI CLOUD CCE has
developed customized CNI plug-ins that allow your Kubernetes clusters to run
in HUAWEI CLOUD Virtual Private Cloud (VPC) networks.

● Container Storage Interface (CSI): enables Kubernetes to support various
classes of storage. For example, HUAWEI CLOUD CCE can easily interconnect
with HUAWEI CLOUD block storage (EVS), file storage (SFS), and object
storage (OBS).

Basic Objects in Kubernetes
The following figure describes the basic objects in Kubernetes and the
relationships between them.

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 9

Figure 2-5 Basic Kubernetes objects

● Pod
A pod is the smallest and simplest unit that you create or deploy in
Kubernetes. A pod encapsulates one or more containers, storage resources, a
unique network IP address, and options that govern how the containers
should run.

● Deployment
A Deployment can be viewed as an application encapsulating pods. It can
contain one or more pods. Each pod has the same role, and the system
automatically distributes requests to the pods of a Deployment.

● StatefulSet
A StatefulSet is used to manage stateful applications. Like Deployments,
StatefulSets manage a group of pods based on an identical container spec.
Where they differ is that StatefulSets maintain a fixed ID for each of their
pods. These pods are created based on the same declaration but cannot
replace each other. Each pod has a permanent ID regardless of how it is
scheduled.

● Job
A job is used to control batch tasks. Jobs are different from long-term servo
tasks (such as Deployments). The former can be started and terminated at
specific time, while the latter runs unceasingly unless it is terminated. Pods
managed by a job will be automatically removed after successfully
completing tasks based on user configurations.

● Cron job
A cron job is a time-based job. Similar to the crontab of the Linux system, it
runs a specified job in a specified time range.

● DaemonSet
A DaemonSet runs a pod on each node in a cluster and ensures that there is
only one pod. This works well for certain system-level applications, such as

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 10

log collection and resource monitoring, since they must run on each node and
need only a few pods. A good example is kube-proxy.

● Service
A Service is used for pod access. With a fixed IP address, a Service forwards
access traffic to pods and performs load balancing for these pods.

● Ingress
Services forward requests based on Layer 4 TCP and UDP protocols. Ingresses
can forward requests based on Layer 7 HTTPS and HTTPS protocols and make
forwarding more targeted by domain names and paths.

● ConfigMap
A ConfigMap stores configuration information in key-value pairs required by
applications. With a ConfigMap, you can easily decouple configurations and
use different configurations in different environments.

● Secret
A secret lets you store and manage sensitive information, such as password,
authentication information, certificates, and private keys. Storing confidential
information in a secret is safer and more flexible than putting it verbatim in a
pod definition or in a container image.

● PersistentVolume (PV)
A PV describes a persistent data storage volume. It defines a directory for
persistent storage on a host machine, for example, a mount directory of a
network file system (NFS).

● PersistentVolumeClaim (PVC)
Kubernetes provides PVCs to apply for persistent storage. With PVCs, you only
need to specify the type and capacity of storage without concerning about
how to create and release underlying storage resources.

Setting Up a Kubernetes Cluster

Kubernetes introduces multiple methods for setting up a Kubernetes cluster, such
as minikube and kubeadm.

If you do not want to set up a Kubernetes cluster from scratch, you can buy one
on the . The following operations will be performed on a purchased cluster.

kubectl

kubectl is a command line tool for Kubernetes clusters. You can install kubectl on
any machine and run kubectl commands to operate your Kubernetes cluster.

For details about how to install kubectl, see . After connection, you can run the
kubectl cluster-info command to view the cluster information, as shown below.

kubectl cluster-info
Kubernetes master is running at https://*.*.*.*:5443
CoreDNS is running at https://*.*.*.*:5443/api/v1/namespaces/kube-system/services/coredns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

Run the kubectl get nodes command to view information about nodes in the
cluster.

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 11

https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

NAME STATUS ROLES AGE VERSION
192.168.0.153 Ready <none> 7m v1.15.6-r1-20.3.0.2.B001-15.30.2
192.168.0.207 Ready <none> 7m v1.15.6-r1-20.3.0.2.B001-15.30.2
192.168.0.221 Ready <none> 7m v1.15.6-r1-20.3.0.2.B001-15.30.2

Description of Kubernetes Objects
Resources in Kubernetes can be described in YAML or JSON format. An object
description can be divided into the following four parts:

● typeMeta: metadata of the object type, specifying the API version and type of
the object.

● objectMeta: metadata about the object, including the object name and used
labels.

● spec: expected status of the object, for example, which image the object uses
and how many replicas the object has.

● status: actual status of the object, which can be viewed only after the object is
created. You do not need to specify the status when creating an object.

Figure 2-6 YAML description file

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 12

Running Applications on Kubernetes
Delete status from the content in Figure 2-6 and save it as the nginx-
deployment.yaml file, as shown below:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:alpine
 resources:
 requests:
 cpu: 100m
 memory: 200Mi
 limits:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Use kubectl to connect to the cluster and run the following command:

kubectl create -f nginx-deployment.yaml
deployment.apps/nginx created

After the command is executed, three pods are created in the Kubernetes cluster.
You can run the following command to query the Deployment and pods:

kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 3/3 3 3 9s

kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-685898579b-qrt4d 1/1 Running 0 15s
nginx-685898579b-t9zd2 1/1 Running 0 15s
nginx-685898579b-w59jn 1/1 Running 0 15s

By now, we have walked you through the Kubernetes basics of containers and
clusters, and provided you an example of how to use kubectl. The following
sections will go deeper into Kubernetes objects, such as how they are used and
related.

Cloud Container Engine
Kubernetes Basics 2 Container and Kubernetes

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 13

3 Pod, Label, and Namespace

3.1 Pod: the Smallest Scheduling Unit in Kubernetes

Pod
A pod is the smallest and simplest unit in the Kubernetes object model that you
create or deploy. A pod encapsulates one or more containers, storage volumes, a
unique network IP address, and options that govern how the containers should
run.

Pods can be used in either of the following ways:

● A container is running in a pod. This is the most common usage of pods in
Kubernetes. You can view the pod as a single encapsulated container, but
Kubernetes directly manages pods instead of containers.

● Multiple containers that need to be coupled and share resources run in a pod.
In this scenario, an application contains a main container and several sidecar
containers, as shown in Figure 3-1. For example, the main container is a web
server that provides file services from a fixed directory, and a sidecar
container periodically downloads files to the directory.

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 14

Figure 3-1 Pod

In Kubernetes, pods are rarely created directly. Instead, controllers such as
Deployments and jobs, are used to manage pods. Controllers can create and
manage multiple pods, and provide replica management, rolling upgrade, and
self-healing capabilities. A controller generally uses a pod template to create
corresponding pods.

Creating a Pod
Kubernetes resources can be described using YAML or JSON files. The following
example describes a pod named nginx. This pod contains a container named
container-0 and uses the nginx:alpine image, 100m CPU, and 200 MiB memory.
apiVersion: v1 # Kubernetes API version
kind: Pod # Kubernetes resource type
metadata:
 name: nginx # Pod name
spec: # Pod specifications
 containers:
 - image: nginx:alpine # The image used is nginx:alpine.
 name: container-0 # Container name
 resources: # Resources required for a container
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets: # Secret used to pull the image, which must be default-secret on CCE
 - name: default-secret

As shown in the annotation of YAML, the YAML description file includes:

● metadata: information such as name, label, and namespace
● spec: pod specification such as image and volume used

If you query a Kubernetes resource, you can see the status field. This field
indicates the status of the Kubernetes resource, and does not need to be set when
the resource is created. This example is a minimum set. Other parameter
definition will be described later.

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 15

After the pod is defined, you can create it using kubectl. Assume that the
preceding YAML file is named nginx.yaml, run the following command to create
the file. -f indicates that it is created in the form of a file.

$ kubectl create -f nginx.yaml
pod/nginx created

After the pod is created, you can run the kubectl get pods command to query the
pod information, as shown below.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 40s

The preceding information indicates that the nginx pod is in the Running state,
indicating that the pod is running. READY is 1/1, indicating that there is one
container in the pod, and the container is in the Ready state.

You can run the kubectl get command to query the configuration information
about a pod. In the following command, -o yaml indicates that the pod is
returned in YAML format. -o json indicates that the pod is returned in JSON
format.

$ kubectl get pod nginx -o yaml

You can also run the kubectl describe command to view the pod details.

$ kubectl describe pod nginx

When a pod is deleted, Kubernetes stops all containers in the pod. Kubernetes
sends the SIGTERM signal to the process and waits for a period (30 seconds by
default) to stop the container. If it is not stopped within the period, Kubernetes
sends a SIGKILL signal to kill the process.

You can stop and delete a pod in multiple methods. For example, you can delete a
pod by name, as shown below.

$ kubectl delete po nginx
pod "nginx" deleted

Delete multiple pods at one time.

$ kubectl delete po pod1 pod2

Delete all pods.

$ kubectl delete po --all
pod "nginx" deleted

Delete pods by labels. For details about labels, see Labels: Managing Pods.

$ kubectl delete po -l app=nginx
pod "nginx" deleted

Environment Variables

Environment variables are set in the container running environment.

Environment variables add flexibility to workload configuration. The environment
variables for which you have assigned values during container creation will take
effect when the container is running. This saves you the trouble of rebuilding the
container image.

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 16

The following shows how to use an environment variable. You only need to
configure the spec.containers.env field.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 env: # Environment variable
 - name: env_key
 value: env_value
 imagePullSecrets:
 - name: default-secret

Run the following command to check the environment variables in the container.
The value of the env_key environment variable is env_value.

$ kubectl exec -it nginx -- env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=nginx
TERM=xterm
env_key=env_value

Environment variables can also reference ConfigMap and secret. For details, see
Referencing a ConfigMap as an Environment Variable and Referencing a
Secret as an Environment Variable.

Setting Container Startup Commands
Starting a container is to start the main process. Some preparations must be made
before the main process is started. For example, you may configure or initialize
MySQL databases before running MySQL servers. You can set ENTRYPOINT or
CMD in the Dockerfile when creating an image. As shown in the following
example, the ENTRYPOINT ["top", "-b"] command is set in the Dockerfile. This
command will be executed during container startup.

FROM ubuntu
ENTRYPOINT ["top", "-b"]

When calling an API, you only need to configure the containers.command field of
the pod. This field is of the list type. The first parameter in the field is the
command to be executed, and the subsequent parameters are the command
arguments.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 17

 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 command: # Startup command
 - top
 - "-b"
 imagePullSecrets:
 - name: default-secret

Container Lifecycle
Kubernetes provides container lifecycle hooks. The hooks enable containers to
run code triggered by events during their management lifecycle. For example, if
you want a container to perform a certain operation before it is stopped, you can
register a hook. The following lifecycle hooks are provided:

● postStart: triggered immediately after the workload is started
● preStop: triggered immediately before the workload is stopped

You only need to set the lifecycle.postStart or lifecycle.preStop parameter of the
pod, as shown in the following:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 lifecycle:
 postStart: # Post-start processing
 exec:
 command:
 - "/postStart.sh"
 preStop: # Pre-stop processing
 exec:
 command:
 - "/preStop.sh"
 imagePullSecrets:
 - name: default-secret

3.2 Liveness Probe

Overview
Kubernetes applications have the self-healing capability, that is, when an
application container crashes, the container can be detected and restarted
automatically. However, this mechanism does not work for deadlocks. Assume that
a Java program is having a memory leak. The program is unable to make any
progress, while the JVM process is running. To address this issue, Kubernetes
introduces liveness probes to check whether containers response normally and
determine whether to restart containers. This is a good health check mechanism.

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 18

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/

It is advised to define the liveness probe for every pod to gain a better
understanding of pods' running statuses.

Supported detection mechanisms are as follows:

● HTTP GET: The kubelet sends an HTTP GET request to the container. Any 2XX
or 3XX code indicates success. Any other code returned indicates failure.

● TCP Socket: The kubelet attempts to open a socket to your container on the
specified port. If it can establish a connection, the container is considered
healthy. If it fails to establish a connection, the container is considered a
failure.

● Exec: kubelet executes a command in the target container. If the command
succeeds, it returns 0, and kubelet considers the container to be alive and
healthy. If the command returns a non-zero value, kubelet kills the container
and restarts it.

In addition to liveness probes, readiness probes are also available for you to detect
pod status. For details, see Readiness Probe.

HTTP GET
HTTP GET is the most common detection method. An HTTP GET request is sent to
a container. Any 2xx or 3xx code returned indicates that the container is healthy.
The following example shows how to define such a request:

apiVersion: v1
kind: Pod
metadata:
 name: liveness-http
spec:
 containers:
 - name: liveness
 image: nginx:alpine
 livenessProbe: # liveness probe
 httpGet: #HTTP GET definition
 path: /
 port: 80
 imagePullSecrets:
 - name: default-secret

Create pod liveness-http.

$ kubectl create -f liveness-http.yaml
pod/liveness-http created

The probe sends an HTTP Get request to port 80 of the container. If the request
fails, Kubernetes restarts the container.

View details of pod liveness-http.

$ kubectl describe po liveness-http
Name: liveness-http
......
Containers:
 liveness:

 State: Running
 Started: Mon, 03 Aug 2020 03:08:55 +0000
 Ready: True
 Restart Count: 0
 Liveness: http-get http://:80/ delay=0s timeout=1s period=10s #success=1 #failure=3
 Environment: <none>
 Mounts:

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 19

 /var/run/secrets/kubernetes.io/serviceaccount from default-token-vssmw (ro)
......

The preceding output reports that the pod is Running with Restart Count being
0, which indicates that the container is normal and no restarts have been
triggered. If the value of Restart Count is not 0, the container has been restarted.

TCP Socket
TCP Socket: The kubelet attempts to open a socket to your container on the
specified port. If it can establish a connection, the container is considered healthy.
If it fails to establish a connection, the container is considered a failure. For
detailed defining method, see the following example.

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-tcp
spec:
 containers:
 - name: liveness
 image: nginx:alpine
 livenessProbe: # liveness probe
 tcpSocket:
 port: 80
 imagePullSecrets:
 - name: default-secret

Exec
kubelet executes a command in the target container. If the command succeeds, it
returns 0, and kubelet considers the container to be alive and healthy. The
following example shows how to define the command.

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-exec
spec:
 containers:
 - name: liveness
 image: nginx:alpine
 args:
 - /bin/sh
 - -c
 - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
 livenessProbe: # liveness probe
 exec: # Exec definition
 command:
 - cat
 - /tmp/healthy
 imagePullSecrets:
 - name: default-secret

In the preceding configuration file, kubelet executes the command cat /tmp/
healthy in the container. If the command succeeds and returns 0, the container is
considered healthy. For the first 30 seconds, there is a /tmp/healthy file. So
during the first 30 seconds, the command cat /tmp/healthy returns a success
code. After 30 seconds, the /tmp/healthy file is deleted. The probe will then
consider the pod to be unhealthy and restart it.

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 20

Advanced Settings of a Liveness Probe
The describe command of liveness-http returns the following information:

Liveness: http-get http://:80/ delay=0s timeout=1s period=10s #success=1 #failure=3

This is the detailed configuration of the liveness probe.

● delay=0s indicates that the probe starts immediately after the container is
started.

● timeout=1 indicates that the container must respond within one second.
Otherwise, the health check is recorded as failed.

● period=10s indicates that the probe checks containers every 10 seconds.
● #success=1 indicates that the operation is recorded as successful if it is

successful for once.
● #failure=3 indicates that a container will be restarted after three consecutive

failures.

The preceding liveness probe indicates that the probe checks containers
immediately after they are started. If a container does not respond within one
second, the check is recorded as failed. The health check is performed every 10
seconds. If the check fails for three consecutive times, the container is restarted.

These are the default configurations when the probe is created. You can customize
them as follows:
apiVersion: v1
kind: Pod
metadata:
 name: liveness-http
spec:
 containers:
 - name: liveness
 image: nginx:alpine
 livenessProbe:
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 10 # Liveness probes are initiated after the container has started for 10s.
 timeoutSeconds: 2 # The container must respond within 2s. Otherwise, it is considered as a
failure.
 periodSeconds: 30 # The probe is performed every 30s.
 successThreshold: 1 # The container is considered healthy as long as the probe succeeds once.
 failureThreshold: 3 # The container is considered unhealthy after three consecutive failures.

Normally, the value of initialDelaySeconds must be greater than 0, because it
takes a while for the application to be ready. The probe often fails if the probe is
initiated before the application is ready.

In addition, you can set the value of failureThreshold to be greater than 1. In this
way, the kubelet checks the container for multiple times in one probe rather than
performing the probe for multiple times.

Configuring a Liveness Probe
● What to check

An effective liveness probe should check all the key parts of an application
and use a dedicated URL, such as /health. When the URL is accessed, the
probe is triggered and a result is returned. Note that no authentication should
be involved. Otherwise, the probe keeps failing and restarting the container.

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 21

In addition, a probe must not check parts that have external dependencies.
For example, if a frontend web server cannot connect to a database, the web
server should not be considered unhealthy for the connection failure.

● To be lightweight
A liveness probe must not occupy too many resources or certain resources for
too long. Otherwise, resource shortage may affect service running. For
example, the HTTP GET method is recommended for a Java application. If the
Exec method is used, the JVM startup process occupies too many resources.

3.3 Label for Managing Pods

Why We Need Labels
As resources increase, managing resources becomes essential. Labels allow you to
easily and efficiently manage almost all the resources in Kubernetes.

A label is a key-value pair. It can be set either during or after resource creation.
You can easily modify it when needed at any time.

The following figures show how labels work. Assume that you have multiple pods
of various kinds. It could be challenging when you manage them.

Figure 3-2 Pods without classification

After we add labels to them. It is much clearer.

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 22

Figure 3-3 Pods classified using labels

Adding a Label

The following example shows how to add labels when you are creating a pod.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels: # Add labels app=nginx and env=prod to the pod.
 app: nginx
 env: prod
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

After you add labels to a pod, you can view the labels by adding --show-labels
when querying the pod.

$ kubectl get pod --show-labels
NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 50s app=nginx,env=prod

You can also use -L to query only certain labels.

$ kubectl get pod -L app,env
NAME READY STATUS RESTARTS AGE APP ENV
nginx 1/1 Running 0 1m nginx prod

For an existing pod, you can run the kubectl label command to add labels.

$ kubectl label pod nginx creation_method=manual
pod/nginx labeled

$ kubectl get pod --show-labels
NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 50s app=nginx, creation_method=manual,env=prod

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 23

Modifying a Label

Add --overwrite to the command to modify a label.

$ kubectl label pod nginx env=debug --overwrite
pod/nginx labeled

$ kubectl get pod --show-labels
NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 50s app=nginx,creation_method=manual,env=debug

3.4 Namespace for Grouping Resources

Why We Need Namespaces

Although labels are simple and efficient, too many labels can cause chaos and
make querying inconvenient. Labels can overlap with each other, which is not
suitable for certain scenarios. This is where namespace comes in. Namespaces
allow you to isolate and manage resources in a more systematic way. Multiple
namespaces can divide systems that contain multiple components into different
non-overlapped groups. Namespaces also enable you to divide cluster resources
between users. In this way, multiple teams can share one cluster.

Resources of the same type can share the same name as long as they are in
different namespaces. Unlike most resources in Kubernetes can be managed by
namespace, global resources do not belong to a specific namespace. Later sections
will discuss this topic in detail.

Run the following command to query namespaces in the current cluster:

$ kubectl get ns
NAME STATUS AGE
default Active 36m
kube-node-realease Active 36m
kube-public Active 36m
kube-system Active 36m

By now, we are performing operations in the default namespace. When kubectl
get is used but no namespace is specified, the default namespace is used by
default.

You can run the following command to view resources in namespace kube-
system.

$ kubectl get po --namespace=kube-system
NAME READY STATUS RESTARTS AGE
coredns-7689f8bdf-295rk 1/1 Running 0 9m11s
coredns-7689f8bdf-h7n68 1/1 Running 0 11m
everest-csi-controller-6d796fb9c5-v22df 2/2 Running 0 9m11s
everest-csi-driver-snzrr 1/1 Running 0 12m
everest-csi-driver-ttj28 1/1 Running 0 12m
everest-csi-driver-wtrk6 1/1 Running 0 12m
icagent-2kz8g 1/1 Running 0 12m
icagent-hjz4h 1/1 Running 0 12m
icagent-m4bbl 1/1 Running 0 12m

You can see that there are many pods in kube-system. coredns is used for service
discovery, everest-csi for connecting with HUAWEI CLOUD storage services, and
icagent for connecting with HUAWEI CLOUD monitoring system.

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 24

These general, must-have applications are put in the kube-system namespace to
isolate them from other pods. They are invisible to and free from being affected
by resources in other namespaces.

Creating a Namespace
Define a namespace.

apiVersion: v1
kind: Namespace
metadata:
 name: custom-namespace

Run the kubectl command to create it.

$ kubectl create -f custom-namespace.yaml
namespace/custom-namespace created

You can also run the kubectl create namespace command to create a
namespace.

$ kubectl create namespace custom-namespace
namespace/custom-namespace created

Create resources in the namespace.

$ kubectl create -f nginx.yaml -n custom-namespace
pod/nginx created

By now, custom-namespace has a pod named nginx.

The Isolation function of Namespaces
Namespaces are used to group resources only for organization purposes. Running
objects in different namespaces are not essentially isolated. For example, if pods in
two namespaces know the IP address of each other and the underlying network
on which Kubernetes depends does not provide network isolation between
namespaces, the two pods can access each other.

Cloud Container Engine
Kubernetes Basics 3 Pod, Label, and Namespace

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 25

4 Pod Orchestration and Scheduling

4.1 Deployment

Deployment
A pod is the smallest and simplest unit that you create or deploy in Kubernetes. It
is designed to be an ephemeral, one-off entity. A pod can be evicted when node
resources are insufficient and disappears along with a cluster node failure.
Kubernetes provides controllers to manage pods. Controllers can create and
manage pods, and provide replica management, rolling upgrade, and self-healing
capabilities. The most commonly used controller is Deployment.

Figure 4-1 Relationship between a Deployment and pods

A Deployment can contain one or more pods. These pods have the same role.
Therefore, the system automatically distributes requests to multiple pods of a
Deployment.

A Deployment integrates a lot of functions, including online deployment, rolling
upgrade, replica creation, and restoration of online jobs. To some extent,
Deployments can be used to realize unattended rollout, which greatly reduces
difficulties and operation risks in the rollout process.

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 26

Creating a Deployment
In the following example, a Deployment named nginx is created, and two pods
are created from the nginx:latest image. Each pod occupies 100m CPU and 200
MiB memory.

apiVersion: apps/v1 # Note the difference with a pod. It is apps/v1 instead of v1 for a Deployment.
kind: Deployment # The resource type is Deployment.
metadata:
 name: nginx # Name of the Deployment
spec:
 replicas: 2 # Number of pods. The Deployment ensures that two pods are running.
 selector: # Label Selector
 matchLabels:
 app: nginx
 template: # Definition of a pod, which is used to create pods. It is also known as pod template.
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

In this definition, the name of the Deployment is nginx, and spec.replicas defines
the number of pods. That is, the Deployment controls two pods. spec.selector is a
label selector, indicating that the Deployment selects the pod whose label is
app=nginx. spec.template is the definition of the pod and is the same as that
defined in Pods.

Save the definition of the Deployment to deployment.yaml and use kubectl to
create the Deployment.

Run kubectl get to view the Deployment and pods. In the following example, the
value of READY is 2/2. The first 2 indicates that two pods are running, and the
second 2 indicates that two pods are expected in this Deployment. The value 2 of
AVAILABLE indicates that two pods are available.

$ kubectl create -f deployment.yaml
deployment.apps/nginx created

$ kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 2/2 2 2 4m5s

How Does the Deployment Control Pods?
Continue to query pods, as shown below.

 $kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-7f98958cdf-tdmqk 1/1 Running 0 13s
nginx-7f98958cdf-txckx 1/1 Running 0 13s

If you delete a pod, a new pod is immediately created, as shown below. As
mentioned above, the Deployment ensures that there are two pods running. If a

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 27

pod is deleted, the Deployment creates a new pod. If a pod becomes faulty, the
Deployment automatically restarts the pod.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-7f98958cdf-tdmqk 1/1 Running 0 21s
nginx-7f98958cdf-tesqr 1/1 Running 0 1s

You see two pods, nginx-7f98958cdf-tdmqk and nginx-7f98958cdf-tesqr. nginx
is the name of the Deployment. -7f98958cdf-tdmqk and -7f98958cdf-tesqr are
the suffixes randomly generated by Kubernetes.

You may notice that the two suffixes share the same content 7f98958cdf in the
first part. This is because the Deployment does not control the pods directly, but
through a controller named ReplicaSet. You can run the following command to
query the ReplicaSet. In the command, rs is the abbreviation of ReplicaSet.
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-7f98958cdf 2 2 2 1m

The ReplicaSet is named nginx-7f98958cdf, in which the suffix -7f98958cdf is
generated randomly.

As shown in Figure 4-2, the Deployment controls the ReplicaSet, which then
controls pods.

Figure 4-2 How does the Deployment control the pod

If you run the kubectl describe command to view the details of the Deployment,
you can see the ReplicaSet (NewReplicaSet: nginx-7f98958cdf (2/2 replicas
created)). In Events, the number of pods of the ReplicaSet is scaled out to 2. In
practice, you may not operate ReplicaSet directly, but understanding that a
Deployment controls a pod by controlling a ReplicaSet helps you locate problems.
$ kubectl describe deploy nginx
Name: nginx

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 28

Namespace: default
CreationTimestamp: Sun, 16 Dec 2018 19:21:58 +0800
Labels: app=nginx

...

NewReplicaSet: nginx-7f98958cdf (2/2 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 5m deployment-controller Scaled up replica set nginx-7f98958cdf to 2

Upgrade
In actual applications, upgrade is a common operation. A Deployment can easily
support application upgrade.

You can set different upgrade policies for a Deployment:

● RollingUpdate: New pods are created gradually and then old pods are
deleted. This is the default policy.

● Recreate: The current pods are deleted and then new pods are created.

The Deployment can be upgraded in a declarative mode. That is, you only need to
modify the YAML definition of the Deployment. For example, you can run the
kubectl edit command to change the Deployment image to nginx:alpine. After
the modification, query the ReplicaSet and pod. The query result shows that a new
ReplicaSet is created and the pod is re-created.
$ kubectl edit deploy nginx

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-6f9f58dffd 2 2 2 1m
nginx-7f98958cdf 0 0 0 48m

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-6f9f58dffd-tdmqk 1/1 Running 0 1m
nginx-6f9f58dffd-tesqr 1/1 Running 0 1m

The Deployment can use the maxSurge and maxUnavailable parameters to
control the proportion of pods to be re-created during the upgrade, which is useful
in many scenarios. The configuration is as follows:
spec:
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0
 type: RollingUpdate

● maxSurge specifies the maximum number of pods that can exist over
spec.replicas in the Deployment. The default value is 25%. For example, if
spec.replicas is set to 4, no more than 5 pods can exist during the upgrade
process, that is, the upgrade step is 1. The absolute number is calculated from
the percentage by rounding up. The value can also be set to an absolute
number.

● maxUnavailable: specifies the maximum number of pods that can be
unavailable during the update process. The default value is 25%. For example,
if spec.replicas is set to 4, at least 3 pods exist during the upgrade process,
that is, the deletion step is 1. The value can also be set to an absolute
number.

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 29

In the preceding example, the value of spec.replicas is 2. If both maxSurge and
maxUnavailable are the default value 25%, maxSurge allows a maximum of
three pods to exist (2 x 1.25 = 2.5, rounded up to 3), and maxUnavailable does
not allow a maximum of two pods to be unavailable (2 x 0.75 = 1.5, rounded up
to 2). That is, during the upgrade process, there will always be two pods running.
Each time a new pod is created, an old pod is deleted, until all pods are new.

Rollback

Rollback is to roll an application back to the earlier version when a fault occurs
during the upgrade. A Deployment can be easily rolled back to the earlier version.

For example, if the upgraded image is faulty, you can run the kubectl rollout
undo command to roll back the Deployment.

$ kubectl rollout undo deployment nginx
deployment.apps/nginx rolled back

A Deployment can be easily rolled back because it uses a ReplicaSet to control a
pod. After the upgrade, the previous ReplicaSet still exists. The Deployment is
rolled back by using the previous ReplicaSet to re-create the pod. The number of
ReplicaSets stored in a Deployment can be restricted by the revisionHistoryLimit
parameter. The default value is 10.

4.2 StatefulSet

StatefulSet

All pods under a Deployment have the same characteristics except for the name
and IP address. If required, a Deployment can use the pod template to create a
new pod. If not required, the Deployment can delete any one of the pods.

However, Deployments cannot meet the requirements in some distributed
scenarios when each pod requires its own status or in a distributed database
where each pod requires independent storage.

With detailed analysis, it is found that each part of distributed stateful
applications plays a different role. For example, the database nodes are deployed
in active/standby mode, and pods are dependent on each other. In this case, you
need to meet the following requirements for the pods:

● A pod can be recognized by other pods. Therefore, a pod must have a fixed
identifier.

● Each pod has an independent storage device. After a pod is deleted and then
restored, the data read from the pod must be the same as the previous one.
Otherwise, the pod status is inconsistent.

To address the preceding requirements, Kubernetes provides StatefulSets.

1. A StatefulSet provides a fixed name for each pod following a fixed number
ranging from 0 to N. After a pod is rescheduled, the pod name and the host
name remain unchanged.

2. A StatefulSet provides a fixed access domain name for each pod through the
headless Service (described in following sections).

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 30

3. The StatefulSet creates PersistentVolumeClaims (PVCs) with fixed identifiers
to ensure that pods can access the same persistent data after being
rescheduled.

The following describes how to create a StatefulSet and experience its features.

Creating a Headless Service

As described above, a headless Service is required for pod access when a
StatefulSet is created. For details about the Service, see Service. The following
describes how to create a headless Service.

Use the following file to describe the headless Service:

● spec.clusterIP: Set it to None, which indicates a headless Service is to be
created.

● spec.ports.port: indicates the number of the port used for communication
between pods.

● spec.ports.name: indicates the name of the port used for communication
between pods.

apiVersion: v1
kind: Service # The object type is Service.
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 ports:
 - name: nginx # Name of the port for communication between pods
 port: 80 # Number of the port for communication between pods
 selector:
 app: nginx # Select the pod whose label is app:nginx.
 clusterIP: None # Set this parameter to None, indicating that a headless Service is to be created.

Run the following command to create a headless Service:

kubectl create -f headless.yaml
service/nginx created

After the Service is created, you can query the Service information.

kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx ClusterIP None <none> 80/TCP 5s

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 31

Creating a StatefulSet

The YAML definition of StatefulSets is basically the same as that of other objects.
The differences are as follows:

● serviceName specifies the headless Service used by the StatefulSet. You need
to specify the name of the headless Service.

● volumeClaimTemplates is used to apply for a PVC. A template named data
is defined, which will create a PVC for each pod. storageClassName specifies
the persistent storage class. For details, see PersistentVolume,
PersistentVolumeClaim, and StorageClass. volumeMounts is used to mount
storage to pods. If no storage is required, you can delete the
volumeClaimTemplates and volumeMounts fields.

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: nginx
spec:
 serviceName: nginx # Name of the headless Service
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: container-0
 image: nginx:alpine
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 volumeMounts: # Storage mounted to the pod
 - name: data
 mountPath: /usr/share/nginx/html # Mount the storage to /usr/share/nginx/html.
 imagePullSecrets:
 - name: default-secret
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: csi-nas # Persistent storage class

Run the following command to create a StatefulSet:

kubectl create -f statefulset.yaml
statefulset.apps/nginx created

After the command is executed, query the StatefulSet and pods. The suffix of the
pod names starts from 0 and increases to 2.

kubectl get statefulset
NAME READY AGE
nginx 3/3 107s

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 32

kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-0 1/1 Running 0 112s
nginx-1 1/1 Running 0 69s
nginx-2 1/1 Running 0 39s

In this case, if you manually delete the nginx-1 pod and query the pods again, you
can see that a pod with the same name is created. According to 5s under AGE, it
is found that the nginx-1 pod is newly created.
kubectl delete pod nginx-1
pod "nginx-1" deleted

kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-0 1/1 Running 0 3m4s
nginx-1 1/1 Running 0 5s
nginx-2 1/1 Running 0 1m10s

Access the container and check its host names. The host names are nginx-0,
nginx-1, and nginx-2.
kubectl exec nginx-0 -- sh -c 'hostname'
nginx-0
kubectl exec nginx-1 -- sh -c 'hostname'
nginx-1
kubectl exec nginx-2 -- sh -c 'hostname'
nginx-2

In addition, you can view the PVCs created by the StatefulSet. These PVCs are
named in the format of PVC name-StatefulSet name-No. and are in the Bound
state.
kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE
data-nginx-0 Bound pvc-f58bc1a9-6a52-4664-a587-a9a1c904ba29 1Gi RWX csi-nas
2m24s
data-nginx-1 Bound pvc-066e3a3a-fd65-4e65-87cd-6c3fd0ae6485 1Gi RWX csi-nas
101s
data-nginx-2 Bound pvc-a18cf1ce-708b-4e94-af83-766007250b0c 1Gi RWX csi-nas 71s

Network Identifier of a StatefulSet
After a StatefulSet is created, you can see that each pod has a fixed name. The
headless Service provides a fixed domain name for pods by using DNS. In this way,
pods can be accessed using the domain name. Even if the IP address of the pod
changes when the pod is re-created, the domain name remains unchanged.

After a headless Service is created, the IP address of each pod corresponds to a
domain name in the following format:

<pod-name>.<svc-name>.<namespace>.svc.cluster.local

For example, the domain names of the three pods are as follows:

● nginx-0.nginx.default.svc.cluster.local
● nginx-1.nginx.default.svc.cluster.local
● nginx-2.nginx.default.svc.cluster.local

In actual access, .<namespace>.svc.cluster.local can be omitted.

Create a pod from the tutum/dnsutils image. Then, access the container of the
pod and run the nslookup command to view the domain name of the pod. The IP

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 33

address of the pod can be parsed. The IP address of the DNS server is 10.247.3.10.
When a CCE cluster is created, the coredns add-on is installed by default to
provide the DNS service. The functions of coredns will be described in Kubernetes
Networking.

$ kubectl run -i --tty --image tutum/dnsutils dnsutils --restart=Never --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # nslookup nginx-0.nginx
Server: 10.247.3.10
Address: 10.247.3.10#53
Name: nginx-0.nginx.default.svc.cluster.local
Address: 172.16.0.31

/ # nslookup nginx-1.nginx
Server: 10.247.3.10
Address: 10.247.3.10#53
Name: nginx-1.nginx.default.svc.cluster.local
Address: 172.16.0.18

/ # nslookup nginx-2.nginx
Server: 10.247.3.10
Address: 10.247.3.10#53
Name: nginx-2.nginx.default.svc.cluster.local
Address: 172.16.0.19

In this case, if you manually delete the two pods, query the IP addresses of the
pods re-created by the StatefulSet, and run the nslookup command to resolve the
domain names of the pods, you can still get nginx-0.nginx and nginx-1.nginx.
This ensures that the network identifier of the StatefulSet remains unchanged.

StatefulSet Storage Status

As mentioned above, StatefulSets can use PVCs for persistent storage to ensure
that the same persistent data can be accessed after pods are rescheduled. When
pods are deleted, PVCs are not deleted.

Figure 4-3 Process for a StatefulSet to re-create a pod

Run the following command to write some data into the /usr/share/nginx/html
directory of nginx-1. For example, change the content of index.html to hello
world.

kubectl exec nginx-1 -- sh -c 'echo hello world > /usr/share/nginx/html/index.html'

After the modification, if you access https://localhost, hello world is returned.

kubectl exec -it nginx-1 -- curl localhost
hello world

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 34

In this case, if you manually delete the nginx-1 pod and query the pods again, you
can see that a pod with the same name is created. According to 4s under AGE, it
is found that the nginx-1 pod is newly created.

kubectl delete pod nginx-1
pod "nginx-1" deleted

kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-0 1/1 Running 0 14m
nginx-1 1/1 Running 0 4s
nginx-2 1/1 Running 0 13m

Access the index.html page of the pod again. hello world is still returned, which
indicates that the same storage medium is accessed.

kubectl exec -it nginx-1 -- curl localhost
hello world

4.3 Job and Cron Job

Job and Cron Job
Jobs and cron jobs allow you to run short lived, one-off tasks in batch. They
ensure the task pods run to completion.

● A job is a resource object used by Kubernetes to control batch tasks. Jobs are
different from long-term servo tasks (such as Deployments and StatefulSets).
The former is started and terminated at specific times, while the latter runs
unceasingly unless being terminated. The pods managed by a job will be
automatically removed after successfully completing tasks based on user
configurations.

● A cron job runs a job periodically on a specified schedule. A cron job object is
similar to a line of a crontab file in Linux.

This run-to-completion feature of jobs is especially suitable for one-off tasks, such
as continuous integration (CI).

Creating a Job
The following is an example job, which calculates π till the 2000th digit and prints
the output. 50 pods need to be run before the job is ended. In this example, print
π calculation results for 50 times, and run five pods concurrently. If a pod fails to
be run, a maximum of five retries are supported.
apiVersion: batch/v1
kind: Job
metadata:
 name: pi-with-timeout
spec:
 completions: 50 # Number of pods that need to run successfully to end the job
 parallelism: 5 # Number of pods that run concurrently. The default value is 1.
 backoffLimit: 5 # Maximum number of retries performed if a pod fails. When the limit is reached,
it will not try again.
 activeDeadlineSeconds: 10 # Timeout interval of pods. Once the time is reached, all pods of the job are
terminated.
 template: # Pod definition
 spec:
 containers:
 - name: pi

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 35

 image: perl
 command:
 - perl
 - "-Mbignum=bpi"
 - "-wle"
 - print bpi(2000)
 restartPolicy: Never

Based on the completions and Parallelism settings, jobs can be classified as
follows:

Table 4-1 Job types

Job Type Description Example

One-off job One pod runs until it is
successfully ends.

Database migration

Jobs with a
fixed
completion
count

One pod runs until the
specified completion count is
reached.

Pod for processing work
queues

Parallel jobs
with a fixed
completion
count

Multiple pods run until the
specified completion count is
reached.

Multiple pods for processing
work queues concurrently

Parallel jobs One or more pods run until
one pod is successfully ended.

Multiple pods for processing
work queues concurrently

Creating a Cron Job

Compared with a job, a cron job is a scheduled job. A cron job runs a job
periodically on a specified schedule, and the job creates pods.

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: cronjob-example
spec:
 schedule: "0,15,30,45 * * * *" # Scheduling configuration
 jobTemplate: # Job definition
 spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - name: main
 image: pi

The format of the cron job is as follows:

● Minute
● Hour
● Day of month
● Month

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 36

● Day of week

For example, in 0,15,30,45 * * * *, commas separate minutes, the first asterisk (*)
indicates the hour, the second asterisk indicates the day of the month, the third
asterisk indicates the month, and the fourth asterisk indicates the day of the week.

If you want to run the job every half an hour on the first day of each month, set
this parameter to 0,30 * 1 * *. If you want to run the job on 3:00 a.m. every
Sunday, set this parameter to 0 3 * * 0.

For details about the cron job format, visit https://en.wikipedia.org/wiki/Cron.

4.4 DaemonSet

DaemonSet
A DaemonSet runs a pod on each node in a cluster and ensures that there is only
one pod. This works well for certain system-level applications, such as log
collection and resource monitoring, since they must run on each node and need
only a few pods. A good example is kube-proxy.

DaemonSets are closely related to nodes. If a node becomes faulty, the
DaemonSet will not create the same pods on other nodes.

Figure 4-4 DaemonSet

Creating a DaemonSet
The following is an example of a DaemonSet:

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: nginx-daemonset

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 37

https://en.wikipedia.org/wiki/Cron

 labels:
 app: nginx-daemonset
spec:
 selector:
 matchLabels:
 app: nginx-daemonset
 template:
 metadata:
 labels:
 app: nginx-daemonset
 spec:
 nodeSelector: #Node selection. A pod is created on a node only when the node meets
daemon=need.
 daemon: need
 containers:
 - name: nginx-daemonset
 image: nginx:alpine
 resources:
 limits:
 cpu: 250m
 memory: 512Mi
 requests:
 cpu: 250m
 memory: 512Mi
 imagePullSecrets:
 - name: default-secret

The replicas parameter used in defining a Deployment or StatefulSet does not
exist in the above configuration for a DaemonSet, because each node has only
one replica. It is fixed.

The nodeSelector in the preceding pod template specifies that a pod is created
only on the nodes that meet daemon=need, as shown in the following figure. If
you want to create a pod on each node, delete the label.

Figure 4-5 DaemonSet creating a pod on nodes with a specified label

Create a DaemonSet.

$ kubectl create -f daemonset.yaml
daemonset.apps/nginx-daemonset created

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 38

Run the following command. The output shows that nginx-daemonset creates no
pods on nodes.

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
nginx-daemonset 0 0 0 0 0 daemon=need 16s

$ kubectl get pods
No resources found in default namespace.

This is because no nodes have the daemon=need label. Run the following
command to query the labels of nodes:

$ kubectl get node --show-labels
NAME STATUS ROLES AGE VERSION LABELS
192.168.0.212 Ready <none> 83m v1.15.6-r1-20.3.0.2.B001-15.30.2 beta.kubernetes.io/arch=amd64 ...
192.168.0.94 Ready <none> 83m v1.15.6-r1-20.3.0.2.B001-15.30.2 beta.kubernetes.io/arch=amd64 ...
192.168.0.97 Ready <none> 83m v1.15.6-r1-20.3.0.2.B001-15.30.2 beta.kubernetes.io/arch=amd64 ...

Add the daemon=need label to node 192.168.0.212, and then query the pods of
nginx-daemonset again. It is found that a pod has been created on node
192.168.0.212.

$ kubectl label node 192.168.0.212 daemon=need
node/192.168.0.212 labeled

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
nginx-daemonset 1 1 0 1 0 daemon=need 116s

$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-daemonset-g9b7j 1/1 Running 0 18s 172.16.3.0 192.168.0.212

Add the daemon=need label to node 192.168.0.94. You can find that a pod is
created on this node as well.

$ kubectl label node 192.168.0.94 daemon=need
node/192.168.0.94 labeled

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
nginx-daemonset 2 2 1 2 1 daemon=need 2m29s

$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-daemonset-6jjxz 0/1 ContainerCreating 0 8s <none> 192.168.0.94
nginx-daemonset-g9b7j 1/1 Running 0 42s 172.16.3.0 192.168.0.212

Modify the daemon=need label of node 192.168.0.94. You can find the
DaemonSet deletes its pod from the node.

$ kubectl label node 192.168.0.94 daemon=no --overwrite
node/192.168.0.94 labeled

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
nginx-daemonset 1 1 1 1 1 daemon=need 4m5s

$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-daemonset-g9b7j 1/1 Running 0 2m23s 172.16.3.0 192.168.0.212

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 39

4.5 Affinity and Anti-Affinity Scheduling
A nodeSelector provides a very simple way to constrain pods to nodes with
particular labels, as mentioned in DaemonSet. The affinity and anti-affinity
feature greatly expands the types of constraints you can express.

Kubernetes supports node-level and pod-level affinity and anti-affinity. You can
configure custom rules to achieve affinity and anti-affinity scheduling. For
example, you can deploy frontend pods and backend pods together, deploy the
same type of applications on a specific node, or deploy different applications on
different nodes.

Node Affinity
Node affinity is conceptually similar to a nodeSelector as it allows you to constrain
which nodes your pod is eligible to be scheduled on, based on labels on the node.
The following output lists the labels of node 192.168.0.212.

$ kubectl describe node 192.168.0.212
Name: 192.168.0.212
Roles: <none>
Labels: beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/os=linux
 failure-domain.beta.kubernetes.io/is-baremetal=false
 failure-domain.beta.kubernetes.io/region=cn-east-3
 failure-domain.beta.kubernetes.io/zone=cn-east-3a
 kubernetes.io/arch=amd64
 kubernetes.io/availablezone=cn-east-3a
 kubernetes.io/eniquota=12
 kubernetes.io/hostname=192.168.0.212
 kubernetes.io/os=linux
 node.kubernetes.io/subnetid=fd43acad-33e7-48b2-a85a-24833f362e0e
 os.architecture=amd64
 os.name=EulerOS_2.0_SP5
 os.version=3.10.0-862.14.1.5.h328.eulerosv2r7.x86_64

These labels are automatically added by CCE during node creation. The following
describes a few that are frequently used during scheduling.

● failure-domain.beta.kubernetes.io/region: region where the node is located.
In the preceding output, the label value is cn-east-3, which indicates that the
node is located in the CN East-Shanghai1 region.

● failure-domain.beta.kubernetes.io/zone: availability zone to which the node
belongs.

● kubernetes.io/hostname: host name of the node.

In addition to these automatically added labels, you can tailor labels to your
service requirements, as introduced in Label for Managing Pods. Generally, large
Kubernetes clusters have various kinds of labels.

When you deploy pods, you can use a nodeSelector, as described in DaemonSet,
to constrain pods to nodes with specific labels. The following example shows how
to use a nodeSelector to deploy pods only on the nodes with the gpu=true label.

apiVersion: v1
kind: Pod
metadata:
 name: nginx

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 40

spec:
 nodeSelector: #Node selection. A pod is deployed on a node only when the node has the
gpu=true label.
 gpu: true
...

Node affinity rules can achieve the same results, as shown in the following
example.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: gpu
 labels:
 app: gpu
spec:
 selector:
 matchLabels:
 app: gpu
 replicas: 3
 template:
 metadata:
 labels:
 app: gpu
 spec:
 containers:
 - image: nginx:alpine
 name: gpu
 resources:
 requests:
 cpu: 100m
 memory: 200Mi
 limits:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: gpu
 operator: In
 values:
 - "true"

Even though the node affinity rule requires more lines, it is more expressive, which
will be further described later.

requiredDuringSchedulingIgnoredDuringExecution seems to be complex, but it
can be easily understood as a combination of two parts.

● requiredDuringScheduling indicates that pods can be scheduled to the node
only when all the defined rules are met (required).

● IgnoredDuringExecution indicates that pods already running on the node do
not need to meet the defined rules. That is, a label on the node is ignored,
and pods that require the node to contain that label will not be re-scheduled.

In addition, the value of operator is In, indicating that the label value must be in
the values list. Other available operator values are as follows:

● NotIn: The label value is not in a list.
● Exists: A specific label exists.
● DoesNotExist: A specific label does not exist.

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 41

● Gt: The label value is greater than a specified value (string comparison).
● Lt: The label value is less than a specified value (string comparison).

Note that there is no such thing as nodeAntiAffinity because operators NotIn and
DoesNotExist provide the same function.

Now, check whether the node affinity rule takes effect. Add the gpu=true tag to
the 192.168.0.212 node.

$ kubectl label node 192.168.0.212 gpu=true
node/192.168.0.212 labeled

$ kubectl get node -L gpu
NAME STATUS ROLES AGE VERSION GPU
192.168.0.212 Ready <none> 13m v1.15.6-r1-20.3.0.2.B001-15.30.2 true
192.168.0.94 Ready <none> 13m v1.15.6-r1-20.3.0.2.B001-15.30.2
192.168.0.97 Ready <none> 13m v1.15.6-r1-20.3.0.2.B001-15.30.2

Create the Deployment. You can find that all pods are deployed on the
192.168.0.212 node.

$ kubectl create -f affinity.yaml
deployment.apps/gpu created

$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
gpu-6df65c44cf-42xw4 1/1 Running 0 15s 172.16.0.37 192.168.0.212
gpu-6df65c44cf-jzjvs 1/1 Running 0 15s 172.16.0.36 192.168.0.212
gpu-6df65c44cf-zv5cl 1/1 Running 0 15s 172.16.0.38 192.168.0.212

Node Preference Rule
The preceding requiredDuringSchedulingIgnoredDuringExecution rule is a hard
selection rule. There is another type of selection rule, that is,
preferredDuringSchedulingIgnoredDuringExecution. It is used to specify which
nodes are preferred during scheduling.

To demonstrate its effect, add a node to the cluster and ensure that the node is
not in the same AZ with other nodes. After the node is created, query the AZ of
the node. As shown in the following output, the newly added node is in cn-
east-3c.

$ kubectl get node -L failure-domain.beta.kubernetes.io/zone,gpu
NAME STATUS ROLES AGE VERSION ZONE GPU
192.168.0.100 Ready <none> 7h23m v1.15.6-r1-20.3.0.2.B001-15.30.2 cn-east-3c
192.168.0.212 Ready <none> 8h v1.15.6-r1-20.3.0.2.B001-15.30.2 cn-east-3a true
192.168.0.94 Ready <none> 8h v1.15.6-r1-20.3.0.2.B001-15.30.2 cn-east-3a
192.168.0.97 Ready <none> 8h v1.15.6-r1-20.3.0.2.B001-15.30.2 cn-east-3a

Define a Deployment. Use the
preferredDuringSchedulingIgnoredDuringExecution rule to set the weight of
nodes in cn-east-3a as 80 and nodes with the gpu=true label as 20. In this way,
pods are preferentially deployed on the node in cn-east-3a.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: gpu
 labels:
 app: gpu
spec:
 selector:
 matchLabels:
 app: gpu

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 42

 replicas: 10
 template:
 metadata:
 labels:
 app: gpu
 spec:
 containers:
 - image: nginx:alpine
 name: gpu
 resources:
 requests:
 cpu: 100m
 memory: 200Mi
 limits:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret
 affinity:
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 80
 preference:
 matchExpressions:
 - key: failure-domain.beta.kubernetes.io/zone
 operator: In
 values:
 - cn-east-3a
 - weight: 20
 preference:
 matchExpressions:
 - key: gpu
 operator: In
 values:
 - "true"

After the deployment, you can find that five pods are deployed on the
192.168.0.212 node, and two pods are deployed on the 192.168.0.100 node.

$ kubectl create -f affinity2.yaml
deployment.apps/gpu created

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
gpu-585455d466-5bmcz 1/1 Running 0 2m29s 172.16.0.44 192.168.0.212
gpu-585455d466-cg2l6 1/1 Running 0 2m29s 172.16.0.63 192.168.0.97
gpu-585455d466-f2bt2 1/1 Running 0 2m29s 172.16.0.79 192.168.0.100
gpu-585455d466-hdb5n 1/1 Running 0 2m29s 172.16.0.42 192.168.0.212
gpu-585455d466-hkgvz 1/1 Running 0 2m29s 172.16.0.43 192.168.0.212
gpu-585455d466-mngvn 1/1 Running 0 2m29s 172.16.0.48 192.168.0.97
gpu-585455d466-s26qs 1/1 Running 0 2m29s 172.16.0.62 192.168.0.97
gpu-585455d466-sxtzm 1/1 Running 0 2m29s 172.16.0.45 192.168.0.212
gpu-585455d466-t56cm 1/1 Running 0 2m29s 172.16.0.64 192.168.0.100
gpu-585455d466-t5w5x 1/1 Running 0 2m29s 172.16.0.41 192.168.0.212

In the preceding example, the node scheduling priority is as follows. Nodes with
both cn-east-3a and gpu=true labels have the highest priority. Nodes with the
cn-east-3a label but no gpu=true label have the second priority (weight: 80).
Nodes with the gpu=true label but no cn-east-3a label have the third priority.
Nodes without any of these two labels have the lowest priority.

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 43

Figure 4-6 Scheduling priority

From the preceding output, you can find that no pods of the Deployment are
scheduled to node 192.168.0.94. This is because the node already has many pods
on it and its resource usage is high. This also indicates that the
preferredDuringSchedulingIgnoredDuringExecution rule defines a preference
rather than a hard requirement.

Pod Affinity
Node affinity rules affect only the affinity between pods and nodes. Kubernetes
also supports configuring inter-pod affinity rules. For example, the frontend and
backend of an application can be deployed together on one node to reduce access
latency. There are also two types of inter-pod affinity rules:
requiredDuringSchedulingIgnoredDuringExecution and
preferredDuringSchedulingIgnoredDuringExecution.

Assume that the backend of an application has been created and has the
app=backend label.

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
backend-658f6cb858-dlrz8 1/1 Running 0 2m36s 172.16.0.67 192.168.0.100

You can configure the following pod affinity rule to deploy the frontend pods of
the application to the same node as the backend pods.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: frontend
 labels:
 app: frontend
spec:
 selector:
 matchLabels:
 app: frontend
 replicas: 3
 template:
 metadata:
 labels:
 app: frontend
 spec:
 containers:
 - image: nginx:alpine
 name: frontend
 resources:
 requests:
 cpu: 100m
 memory: 200Mi
 limits:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 44

 - name: default-secret
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - topologyKey: kubernetes.io/hostname
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - backend

Deploy the frontend and you can find that the frontend is deployed on the same
node as the backend.

$ kubectl create -f affinity3.yaml
deployment.apps/frontend created

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
backend-658f6cb858-dlrz8 1/1 Running 0 5m38s 172.16.0.67 192.168.0.100
frontend-67ff9b7b97-dsqzn 1/1 Running 0 6s 172.16.0.70 192.168.0.100
frontend-67ff9b7b97-hxm5t 1/1 Running 0 6s 172.16.0.71 192.168.0.100
frontend-67ff9b7b97-z8pdb 1/1 Running 0 6s 172.16.0.72 192.168.0.100

The topologyKey field specifies the selection range. The scheduler selects nodes
within the range based on the affinity rule defined. The effect of topologyKey is
not fully demonstrated in the preceding example because all the nodes have the
kubernetes.io/hostname label, that is, all the nodes are within the range.

To see how topologyKey works, assume that the backend of the application has
two pods, which are running on different nodes.

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
backend-658f6cb858-5bpd6 1/1 Running 0 23m 172.16.0.40 192.168.0.97
backend-658f6cb858-dlrz8 1/1 Running 0 2m36s 172.16.0.67 192.168.0.100

Add the prefer=true label to nodes 192.168.0.97 and 192.168.0.94.

$ kubectl label node 192.168.0.97 prefer=true
node/192.168.0.97 labeled
$ kubectl label node 192.168.0.94 prefer=true
node/192.168.0.94 labeled

$ kubectl get node -L prefer
NAME STATUS ROLES AGE VERSION PREFER
192.168.0.100 Ready <none> 44m v1.15.6-r1-20.3.0.2.B001-15.30.2
192.168.0.212 Ready <none> 91m v1.15.6-r1-20.3.0.2.B001-15.30.2
192.168.0.94 Ready <none> 91m v1.15.6-r1-20.3.0.2.B001-15.30.2 true
192.168.0.97 Ready <none> 91m v1.15.6-r1-20.3.0.2.B001-15.30.2 true

Define topologyKey in the podAffinity section as prefer.

 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - topologyKey: prefer
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - backend

The scheduler recognizes the nodes with the prefer label, that is, 192.168.0.97
and 192.168.0.94, and then find the pods with the app=backend label. In this
way, all frontend pods are deployed onto 192.168.0.97.

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 45

$ kubectl create -f affinity3.yaml
deployment.apps/frontend created

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
backend-658f6cb858-5bpd6 1/1 Running 0 26m 172.16.0.40 192.168.0.97
backend-658f6cb858-dlrz8 1/1 Running 0 5m38s 172.16.0.67 192.168.0.100
frontend-67ff9b7b97-dsqzn 1/1 Running 0 6s 172.16.0.70 192.168.0.97
frontend-67ff9b7b97-hxm5t 1/1 Running 0 6s 172.16.0.71 192.168.0.97
frontend-67ff9b7b97-z8pdb 1/1 Running 0 6s 172.16.0.72 192.168.0.97

Pod Anti-affinity
Unlike the scenarios in which pods are preferred to be scheduled onto the same
node, sometimes, it could be the exact opposite. For example, if certain pods are
deployed together, they will affect the performance.

The following example defines an inter-pod anti-affinity rule, which specifies that
pods must not be scheduled to nodes that already have pods with the
app=frontend label, that is, to deploy the pods of the frontend to different nodes
with each node has only one replica.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: frontend
 labels:
 app: frontend
spec:
 selector:
 matchLabels:
 app: frontend
 replicas: 5
 template:
 metadata:
 labels:
 app: frontend
 spec:
 containers:
 - image: nginx:alpine
 name: frontend
 resources:
 requests:
 cpu: 100m
 memory: 200Mi
 limits:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - topologyKey: kubernetes.io/hostname
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - frontend

Deploy the frontend and query the deployment results. You can find that each
node has only one frontend pod and one pod of the Deployment is Pending. This
is because when the scheduler is deploying the fifth pod, all nodes already have
one pod with the app=frontend label on them. There is no available node.
Therefore, the fifth pod will remain in the Pending status.

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 46

$ kubectl create -f affinity4.yaml
deployment.apps/frontend created

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
frontend-6f686d8d87-8dlsc 1/1 Running 0 18s 172.16.0.76 192.168.0.100
frontend-6f686d8d87-d6l8p 0/1 Pending 0 18s <none> <none>
frontend-6f686d8d87-hgcq2 1/1 Running 0 18s 172.16.0.54 192.168.0.97
frontend-6f686d8d87-q7cfq 1/1 Running 0 18s 172.16.0.47 192.168.0.212
frontend-6f686d8d87-xl8hx 1/1 Running 0 18s 172.16.0.23 192.168.0.94

Cloud Container Engine
Kubernetes Basics 4 Pod Orchestration and Scheduling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 47

5 Configuration Management

5.1 ConfigMap
A ConfigMap is a type of resource used to store the configurations required by
applications. It is used to store configuration data or configuration files in key-
value pairs.

A ConfigMap allows you to decouple configurations from your environments, so
that your environments can use different configurations.

Creating a ConfigMap
In the following example, a ConfigMap named configmap-test is created. The
ConfigMap configuration data is defined in the data field.

apiVersion: v1
kind: ConfigMap
metadata:
 name: configmap-test
data: # Configuration data
 property_1: Hello
 property_2: World

Referencing a ConfigMap as an Environment Variable
ConfigMaps are usually referenced as environment variables and in volumes.

In the following example, property_1 of configmap-test is used as the value of
the environment variable EXAMPLE_PROPERTY_1. After the container is started, it
will reference the value of property_1 as the value of EXAMPLE_PROPERTY_1,
that is, Hello.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:

Cloud Container Engine
Kubernetes Basics 5 Configuration Management

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 48

 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 env:
 - name: EXAMPLE_PROPERTY_1
 valueFrom:
 configMapKeyRef: # Reference the ConfigMap.
 name: configmap-test
 key: property_1
 imagePullSecrets:
 - name: default-secret

Referencing a ConfigMap in a Volume
Referencing a ConfigMap in a volume is to fill its data in configuration files in the
volume. Each piece of data is saved in a file. The key is the file name, and the key
value is the file content.

In the following example, create a volume named vol-configmap, reference the
ConfigMap named configmap-test in the volume, and mount the volume to
the /tmp directory of the container. After the pod is created, the two files
property_1 and property_2 are generated in the /tmp directory of the container,
and the values are Hello and World.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 volumeMounts:
 - name: vol-configmap # Mount the volume named vol-configmap.
 mountPath: "/tmp"
 imagePullSecrets:
 - name: default-secret
 volumes:
 - name: vol-configmap
 configMap: # Reference the ConfigMap.
 name: configmap-test

5.2 Secret
A secret is a resource object that is encrypted for storing the authentication
information, certificates, and private keys. The sensitive data will not be exposed
in images or pod definitions, which is safer and more flexible.

Similar to a ConfigMap, a secret stores data in key-value pairs. The difference is
that a secret is encrypted, and is suitable for storing sensitive information.

Cloud Container Engine
Kubernetes Basics 5 Configuration Management

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 49

Base64 Encoding
A secret stores data in key-value pairs, the same form as that of a ConfigMap. The
difference is that the value must be encoded using Base64 when a secret is
created.

To encode a character string using Base64, run the echo -n to-be-encoded
content | base64 command. The following is an example:

root@ubuntu:~# echo -n "3306" | base64
MzMwNg==

Creating a Secret
The secret defined in the following example contains two key-value pairs.

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
data:
 key1: aGVsbG8gd29ybGQ= # hello world, a value encoded using Base64
 key2: MzMwNg== # 3306, a value encoded using Base64

Referencing a Secret as an Environment Variable
Secrets are usually injected into containers as environment variables, as shown in
the following example.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 env:
 - name: key
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: key1
 imagePullSecrets:
 - name: default-secret

Referencing a Secret in a Volume
Referencing a secret in a volume is to fill its data in configuration files in the
volume. Each piece of data is saved in a file. The key is the file name, and the key
value is the file content.

In the following example, create a volume named vol-secret, reference the secret
named mysecret in the volume, and mount the volume to the /tmp directory of
the container. After the pod is created, the two files key1 and key2 are generated
in the /tmp directory of the container.

Cloud Container Engine
Kubernetes Basics 5 Configuration Management

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 50

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 volumeMounts:
 - name: vol-secret # Mount the volume named vol-secret.
 mountPath: "/tmp"
 imagePullSecrets:
 - name: default-secret
 volumes:
 - name: vol-secret
 secret: # Reference the secret.
 secretName: mysecret

In the pod container, you can find the two files key1 and key2 in the /tmp
directory. The values in the files are the values encoded using Base64, which are
hello world and 3306.

Cloud Container Engine
Kubernetes Basics 5 Configuration Management

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 51

6 Kubernetes Networking

6.1 Container Networking
Networking among pods, clusters, and nodes is not implemented by Kubernetes
itself, but by the Container Network Interface (CNI) plug-ins. There are many open
source CNI plug-ins, such as Flannel and Calico. HUAWEI CLOUD CCE also
provides customized CNI plug-ins (Canal and Yangtse) for you to use HUAWEI
CLOUD VPC networks when running Kubernetes.

Kubernetes requires that pods in a cluster can communicate with each other and
the pods must be connected through a non-NAT network. That is, the source IP
address of the received data packet is that of the pod that sends the data packet.
Pods are also required to communicate with nodes through a non-NAT network.
However, when the pod accesses an object outside the cluster, the source IP
address is changed to the node IP address.

A pod is connected to external systems through a virtual Ethernet interface pair
(veth pair). For pods on the same node, they communicate with each other
through a Linux bridge, as shown in the following figure.

Figure 6-1 Communication for pods on the same node

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 52

Bridges between different nodes can be implemented in multiple modes. However,
in a cluster, the pod IP address must be unique. Therefore, cross-node bridges will
use different CIDR blocks to prevent duplicate pod IP addresses.

Figure 6-2 Communication for pods on different nodes

The following sections Service and Ingress will describe how Kubernetes provides
access solutions for users based on the container networking.

6.2 Service

Direct Access to a Pod
After a pod is created, the following problems may occur if you directly access the
pod:

● The pod can be deleted and recreated at any time by a controller such as a
Deployment, and the result of accessing the pod becomes unpredictable.

● The IP address of the pod is allocated only after the pod is started. Before the
pod is started, the IP address of the pod is unknown.

● An application is usually composed of multiple pods that run the same image.
Accessing pods one by one is not efficient.

For example, an application uses Deployments to create the frontend and
backend. The frontend calls the backend for computing, as shown in Figure 6-3.
Three pods are running in the backend, which are independent and replaceable.
When a backend pod is re-created, the new pod is assigned with a new IP address,
of which the frontend pod is unaware.

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 53

Figure 6-3 Inter-pod access

Using Services for Pod Access
Kubernetes Services are used to solve the preceding pod access problems. A
Service has a fixed IP address. (When a CCE cluster is created, a Service CIDR block
is set, which is used to allocate IP addresses to Services.) A Service forwards
requests accessing the Service to pods based on labels, and at the same time,
perform load balancing for these pods.

In the preceding example, a Service is added for the frontend pod to access the
backend pods. In this way, the frontend pod does not need to be aware of the
changes on backend pods, as shown in Figure 6-4.

Figure 6-4 Accessing pods through a Service

Creating Backend Pods
Create a Deployment with three replicas, that is, three pods with label app: nginx.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 54

 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Creating a Service
In the following example, we create a Service named nginx, and use a selector to
select the pod with the label app:nginx. The port of the target pod is port 80
while the exposed port of the Service is port 8080.

The Service can be accessed using Service name:Exposed port. In the example,
nginx:8080 is used. In this case, other pods can access the pod associated with
nginx using nginx:8080.

apiVersion: v1
kind: Service
metadata:
 name: nginx #Service name
spec:
 selector: #Label selector, which selects pods with the label of app=nginx
 app: nginx
 ports:
 - name: service0
 targetPort: 80 #Pod port
 port: 8080 #Service external port
 protocol: TCP #Forwarding protocol type. The value can be TCP or UDP.
 type: ClusterIP #Service type

Save the Service definition to nginx-svc.yaml and use kubectl to create the
Service.

$ kubectl create -f nginx-svc.yaml
service/nginx created

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.247.0.1 <none> 443/TCP 7h19m
nginx ClusterIP 10.247.124.252 <none> 8080/TCP 5h48m

You can see that the Service has a ClusterIP, which is fixed unless the Service is
deleted. You can use this ClusterIP to access the Service inside the cluster.

Create a pod and use the ClusterIP to access the pod. Information similar to the
following is returned.

$ kubectl run -i --tty --image nginx:alpine test --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # curl 10.247.124.252:8080
<!DOCTYPE html>

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 55

<html>
<head>
<title>Welcome to nginx!</title>
...

Using ServiceName to Access a Service
After the DNS resolves the domain name, you can use ServiceName:Port to
access the Service, the most common practice in Kubernetes. When you are
creating a CCE cluster, you are required to install the coredns add-on by default.
You can view the pods of CoreDNS in the kube-system namespace.

$ kubectl get po --namespace=kube-system
NAME READY STATUS RESTARTS AGE
coredns-7689f8bdf-295rk 1/1 Running 0 9m11s
coredns-7689f8bdf-h7n68 1/1 Running 0 11m

After coredns is installed, it becomes a DNS. After the Service is created, coredns
records the Service name and IP address. In this way, the pod can obtain the
Service IP address by querying the Service name from coredns.

nginx.<namespace>.svc.cluster.local is used to access the Service. nginx is the
Service name, <namespace> is the namespace, and svc.cluster.local is the
domain name suffix. In actual use, you can omit <namespace>.svc.cluster.local in
the same namespace and use the ServiceName.

For example, if the Service named nginx is created, you can access the Service
through nginx:8080 and then access backend pods.

An advantage of using ServiceName is that you can write ServiceName into the
program when developing the application. In this way, you do not need to know
the IP address of a specific Service.

Now, create a pod and access the pod. Query the IP address of the nginx Service
domain name, which is 10.247.124.252. Access the domain name of the pod and
information similar to the following is returned.

$ kubectl run -i --tty --image tutum/dnsutils dnsutils --restart=Never --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # nslookup nginx
Server: 10.247.3.10
Address: 10.247.3.10#53

Name: nginx.default.svc.cluster.local
Address: 10.247.124.252

/ # curl nginx:8080
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...

Using Services for Service Discovery
After a Service is deployed, it can discover the pod no matter how the pod
changes.

If you run the kubectl describe command to query the Service, information
similar to the following is displayed:

$ kubectl describe svc nginx
Name: nginx

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 56

......
Endpoints: 172.16.2.132:80,172.16.3.6:80,172.16.3.7:80
......

One Endpoints record is displayed. An endpoint is also a resource object in
Kubernetes. Kubernetes monitors the pod IP addresses through endpoints so that
a Service can discover pods.

$ kubectl get endpoints
NAME ENDPOINTS AGE
nginx 172.16.2.132:80,172.16.3.6:80,172.16.3.7:80 5h48m

In this example, 172.16.2.132:80 is the IP:port of the pod. You can run the
following command to view the IP address of the pod, which is the same as the
preceding IP address.

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-869759589d-dnknn 1/1 Running 0 5h40m 172.16.3.7 192.168.0.212
nginx-869759589d-fcxhh 1/1 Running 0 5h40m 172.16.3.6 192.168.0.212
nginx-869759589d-r69kh 1/1 Running 0 5h40m 172.16.2.132 192.168.0.94

If a pod is deleted, the Deployment re-creates the pod and the IP address of the
new pod changes.

$ kubectl delete po nginx-869759589d-dnknn
pod "nginx-869759589d-dnknn" deleted

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-869759589d-fcxhh 1/1 Running 0 5h41m 172.16.3.6 192.168.0.212
nginx-869759589d-r69kh 1/1 Running 0 5h41m 172.16.2.132 192.168.0.94
nginx-869759589d-w98wg 1/1 Running 0 7s 172.16.3.10 192.168.0.212

Check the endpoints again. You can see that the content under ENDPOINTS
changes with the pod.

$ kubectl get endpoints
NAME ENDPOINTS AGE
kubernetes 192.168.0.127:5444 7h20m
nginx 172.16.2.132:80,172.16.3.10:80,172.16.3.6:80 5h49m

Let's take a closer look at how this happens.

We have introduced kube-proxy on worker nodes in Kubernetes Cluster
Architecture. Actually, all Service-related operations are performed by kube-proxy.
When a Service is created, Kubernetes allocates an IP address to the Service and
notifies kube-proxy on all nodes of the Service creation through the API server.

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 57

After receiving the notification, each kube-proxy records the relationship between
the Service and the IP address/port pair through iptables. In this way, the Service
can be queried on each node.

The following figure shows how a Service is accessed. Pod X accesses the Service
(10.247.124.252:8080). When pod X sends data packets, the destination IP:Port is
replaced with the IP:Port of pod 1 based on the iptables rule. In this way, the real
backend pod can be accessed through the Service.

In addition to recording the relationship between Services and IP address/port
pairs, kube-proxy also monitors the changes of Services and endpoints to ensure
that pods can be accessed through Services after pods are rebuilt.

Figure 6-5 Service access process

Service Types and Application Scenarios

Services of the ClusterIP, NodePort, LoadBalancer, and None types have different
functions.

● ClusterIP: used to make the Service only reachable from within a cluster.

● NodePort: used for access from outside a cluster. A NodePort Service is
accessed through the port on the node. For details, see NodePort Services.

● LoadBalancer: used for access from outside a cluster. It is an extension of
NodePort, to which a load balancer routes, and external systems only need to
access the load balancer. For details, see LoadBalancer Services.

● None: used for mutual discovery between pods. This type of Service is also
called headless Service. For details, see Headless Service.

NodePort Services

A NodePort Service enables each node in a Kubernetes cluster to reserve the same
port. External systems first access the node IP:Port and then the NodePort Service
forwards the requests to the pod corresponding to the Service.

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 58

Figure 6-6 NodePort Service

The following is an example of creating a NodePort Service. After the Service is
created, you can access backend pods through IP:Port of the node.
apiVersion: v1
kind: Service
metadata:
 name: nodeport-service
spec:
 type: NodePort
 ports:
 - port: 8080
 targetPort: 80
 nodePort: 30120
 selector:
 app: nginx

Create and view the Service. The value of PORT for the NodePort Service is
8080:30120/TCP, indicating that port 8080 of the Service is mapped to port 30120
of the node.

$ kubectl create -f nodeport.yaml
service/nodeport-service created

$ kubectl get svc -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
kubernetes ClusterIP 10.247.0.1 <none> 443/TCP 107m <none>
nginx ClusterIP 10.247.124.252 <none> 8080/TCP 16m app=nginx
nodeport-service NodePort 10.247.210.174 <none> 8080:30120/TCP 17s app=nginx

Access the Service by using Node IP:Port number to access the pod.

$ kubectl run -i --tty --image nginx:alpine test --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # curl 192.168.0.212:30120
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
......

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 59

LoadBalancer Services
A Service is exposed externally using a load balancer that forwards requests to the
NodePort of the node.

Load balancers are not a Kubernetes component. Different cloud service providers
have different load balancers. For example, CCE interconnects with HUAWEI
CLOUD Elastic Load Balance (ELB). As a result, there are different implementation
methods of creating a LoadBalancer Service.

Figure 6-7 LoadBalancer Service

The following is an example of creating a LoadBalancer Service. After the
LoadBalancer Service is created, you can access backend pods through IP:Port of
the load balancer.
apiVersion: v1
kind: Service
metadata:
 annotations:
 kubernetes.io/elb.id: 3c7caa5a-a641-4bff-801a-feace27424b6
 labels:
 app: nginx
 name: nginx
spec:
 loadBalancerIP: 10.78.42.242 # IP address of the ELB instance
 ports:
 - name: service0
 port: 80
 protocol: TCP
 targetPort: 80
 nodePort: 30120
 selector:
 app: nginx
 type: LoadBalancer # Service type (LoadBalancer)

The parameters in annotations under metadata are required for CCE
LoadBalancer Services. They specify the ELB instance to which the Service is
bound. CCE also allows you to create an ELB instance when creating a
LoadBalancer Service. For details, see .

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 60

Headless Service
The preceding types of Services allow internal and external pod access, but not the
following scenarios:

● Accessing all pods at the same time
● Pods in a Service accessing each other

This is where headless Service come into service. A headless Service does not
create a cluster IP address, and the DNS records of all pods are returned during
query. In this way, the IP addresses of all pods can be queried. StatefulSets in
StatefulSet use headless Services to support mutual access between pods.

apiVersion: v1
kind: Service # Object type (Service)
metadata:
 name: nginx-headless
 labels:
 app: nginx
spec:
 ports:
 - name: nginx # Name of the port for communication between pods
 port: 80 # Port number for communication between pods
 selector:
 app: nginx # Select the pod whose label is app:nginx.
 clusterIP: None # Set this parameter to None, indicating the headless Service.

Run the following command to create a headless Service:

kubectl create -f headless.yaml
service/nginx-headless created

After the Service is created, you can query the Service.

kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx-headless ClusterIP None <none> 80/TCP 5s

Create a pod to query the DNS. You can view the records of all pods. In this way,
all pods can be accessed.

$ kubectl run -i --tty --image tutum/dnsutils dnsutils --restart=Never --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # nslookup nginx-0.nginx
Server: 10.247.3.10
Address: 10.247.3.10#53
Name: nginx-0.nginx.default.svc.cluster.local
Address: 172.16.0.31

/ # nslookup nginx-1.nginx
Server: 10.247.3.10
Address: 10.247.3.10#53
Name: nginx-1.nginx.default.svc.cluster.local
Address: 172.16.0.18

/ # nslookup nginx-2.nginx
Server: 10.247.3.10
Address: 10.247.3.10#53
Name: nginx-2.nginx.default.svc.cluster.local
Address: 172.16.0.19

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 61

6.3 Ingress

Why We Need Ingresses
Services forward requests using layer-4 TCP and UDP protocols. Ingresses forward
requests using layer-7 HTTP and HTTPS protocols. Domain names and paths can
be used to achieve finer granularities.

Figure 6-8 Ingress and Service

Ingress Working Mechanism
To use ingresses, you must install Ingress Controller on your Kubernetes cluster.
Ingress Controller can be implemented in multiple modes. The most common one
is NGINX Ingress Controller maintained by Kubernetes. In HUAWEI CLOUD, Cloud
Container Engine (CCE) works with Elastic Load Balance (ELB) to implement
layer-7 load balancing (via ingresses).

An external request is first sent to Ingress Controller. Then, Ingress Controller
locates the corresponding Service based on the routing rule of an ingress, queries
the IP address of the pod through the Endpoint, and forwards the request to the
pod.

Figure 6-9 Ingress working mechanism

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 62

https://github.com/kubernetes/ingress-nginx

Creating an Ingress
In the following example, an ingress that uses the HTTP protocol, associates with
backend Service nginx:8080, and uses a load balancer (specified by
metadata.annotations) is created. After the request for accessing http://
192.168.10.155:8080/test is initiated, the traffic is forwarded to Service nginx:
8080, which in turn forwards the traffic to the corresponding pod.
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: test-ingress
 annotations:
 kubernetes.io/ingress.class: cce
 kubernetes.io/elb.port: '8080'
 kubernetes.io/elb.ip: 192.168.10.155
 kubernetes.io/elb.id: aa7cf5ec-7218-4c43-98d4-c36c0744667a
spec:
 rules:
 - host: ''
 http:
 paths:
 - backend:
 serviceName: nginx
 servicePort: 8080
 path: "/test"
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH

You can also set the external domain name in an ingress so that you can access
the load balancer through the domain name and then access backend Services.

NO TE

Domain name-based access depends on domain name resolution. You need to point the
domain name to the IP address of the load balancer. For example, you can use to resolve
domain names.

spec:
 rules:
 - host: www.example.com # Domain name
 http:
 paths:
 - path: /
 backend:
 serviceName: nginx
 servicePort: 80

Accessing Multiple Services
An ingress can access multiple Services at the same time. The configuration is as
follows:

● When you access http://foo.bar.com/foo, the backend Service s1:80 is
accessed.

● When you access http://foo.bar.com/bar, the backend Service s2:80 is
accessed.

spec:
 rules:
 - host: foo.bar.com # Host address
 http:
 paths:
 - path: "/foo"
 backend:
 serviceName: s1

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 63

 servicePort: 80
 - path: "/bar"
 backend:
 serviceName: s2
 servicePort: 80

6.4 Readiness Probe
After a pod is created, the Service can immediately select it and forward requests
to it. However, it takes time to start a pod. If the pod is not ready (it takes time to
load the configuration or data, or a preheating program may need to be
executed), the pod cannot process requests, and the requests will fail.

Kubernetes solves this problem by adding a readiness probe to pods. A pod with
containers reporting that they are not ready does not receive traffic through
Kubernetes Services.

A readiness probe periodically detects a pod and determines whether the pod is
ready based on its response. Similar to Liveness Probe, there are three types of
readiness probes.

● Exec: kubelet executes a command in the target container. If the command
succeeds, it returns 0, and kubelet considers the container to be ready.

● HTTP GET: The probe sends an HTTP GET request to IP:port of the container.
If the probe receives a 2xx or 3xx status code, the container is considered to
be ready.

● TCP Socket: The kubelet attempts to establish a TCP connection with the
container. If it succeeds, the container is considered ready.

How Readiness Probes Work
Endpoints can be used as a readiness probe. When a pod is not ready, the IP:port
of the pod is deleted from the Endpoint and is added to the Endpoint after the
pod is ready, as shown in the following figure.

Figure 6-10 How readiness probes work

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 64

Exec
The Exec mode is the same as the HTTP GET mode. As shown below, the probe
runs the ls /ready command. If the file exists, 0 is returned, indicating that the
pod is ready. Otherwise, a non-zero status code is returned.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 readinessProbe: # Readiness Probe
 exec: # Define the ls /ready command.
 command:
 - ls
 - /ready
 imagePullSecrets:
 - name: default-secret

Save the definition of the Deployment to the deploy-read.yaml file, delete the
previously created Deployment, and use the deploy-read.yaml file to recreate the
Deployment.

kubectl delete deploy nginx
deployment.apps "nginx" deleted

kubectl create -f deploy-read.yaml
deployment.apps/nginx created

The nginx image does not contain the /ready file. Therefore, the container is not
in the Ready status after the creation, as shown below. Note that the values in the
READY column are 0/1, indicating that the containers are not ready.

kubectl get po
NAME READY STATUS RESTARTS AGE
nginx-7955fd7786-686hp 0/1 Running 0 7s
nginx-7955fd7786-9tgwq 0/1 Running 0 7s
nginx-7955fd7786-bqsbj 0/1 Running 0 7s

Create a Service.

apiVersion: v1
kind: Service
metadata:
 name: nginx
spec:
 selector:
 app: nginx
 ports:

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 65

 - name: service0
 targetPort: 80
 port: 8080
 protocol: TCP
 type: ClusterIP

Check the Service. If there are no values in the Endpoints line, no Endpoints are
found.

$ kubectl describe svc nginx
Name: nginx
......
Endpoints:
......

If a /ready file is created in the container to make the readiness probe succeed,
the container is in the Ready status. Check the pod and endpoints. It is found that
the container for which the /ready file is created is ready and an endpoint is
added.

kubectl exec nginx-7955fd7786-686hp -- touch /ready

kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP
nginx-7955fd7786-686hp 1/1 Running 0 10m 192.168.93.169
nginx-7955fd7786-9tgwq 0/1 Running 0 10m 192.168.166.130
nginx-7955fd7786-bqsbj 0/1 Running 0 10m 192.168.252.160

kubectl get endpoints
NAME ENDPOINTS AGE
nginx 192.168.93.169:80 14d

HTTP GET
The configuration of a readiness probe is the same as that of a liveness probe,
which is also in the containers field of the pod description template. As shown
below, the readiness probe sends an HTTP request to the pod. If the probe receives
2xx or 3xx, the pod is ready.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 readinessProbe: # readinessProbe
 httpGet: # HTTP GET definition
 path: /read
 port: 80

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 66

 imagePullSecrets:
 - name: default-secret

TCP Socket
The following example shows how to define a TCP Socket-type probe.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 readinessProbe: # readinessProbe
 tcpSocket: # TCP Socket definition
 port: 80
 imagePullSecrets:
 - name: default-secret

Advanced Settings of a Readiness Probe
Similar to a liveness probe, a readiness probe also has the same advanced
configuration items. The output of the describe command of the nginx pod is as
follows:

Readiness: exec [ls /var/ready] delay=0s timeout=1s period=10s #success=1 #failure=3

This is the detailed configuration information of the readiness probe.

● delay=0s indicates that the probe starts immediately after the container is
started.

● timeout=1s indicates that the container must respond to the probe within 1s.
Otherwise, it is considered as a failure.

● period=10s indicates that the probe is performed every 10s.
● #success=1 indicates that the probe is considered successful as long as the

probe succeeds once.
● #failure=3 indicates that the probe is considered failed if it fails for three

consecutive times.

These are the default configurations when the probe is created. You can customize
them as follows:

 readinessProbe: # Readiness Probe
 exec: # Define the ls /readiness/ready command

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 67

 command:
 - ls
 - /readiness/ready
 initialDelaySeconds: 10 # Readiness probes are initiated after the container has started for 10s.
 timeoutSeconds: 2 # The container must respond within 2s. Otherwise, it is considered as a
failure.
 periodSeconds: 30 # The probe is performed every 30s.
 successThreshold: 1 # The container is considered ready as long as the probe succeeds once.
 failureThreshold: 3 # The probe is considered to be failed after three consecutive failures.

6.5 NetworkPolicy
NetworkPolicy is a Kubernetes object used to restrict pod access. In CCE, by setting
network policies, you can define ingress rules specifying the addresses to access
pods or egress rules specifying the addresses pods can access. This is equivalent to
setting up a firewall at the application layer to further ensure network security.

Network policies depend on the networking add-on of the cluster to which the
policies apply. For example, CCE clusters support only ingress rules.

By default, if a namespace does not have any policy, pods in the namespace
accept traffic from any source and send traffic to any destination.

NetworkPolicy rules are classified into the following types:

● namespaceSelector: This selects particular namespaces for which all pods
should be allowed as ingress sources or egress destinations.

● podSelector: This selects particular pods in the same namespace as the
NetworkPolicy which should be allowed as ingress sources or egress
destinations.

● ipBlock: This selects particular IP CIDR ranges to allow as ingress sources or
egress destinations. (Currently, CCE does not support this mode.)

Using Ingress Rules
● Using podSelector to specify the access scope

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
 namespace: default
spec:
 podSelector: # The rule takes effect for pods with the role=db label.
 matchLabels:
 role: db
ingress: #This is an ingress rule.
 - from:
 - podSelector: #Only traffic from the pods with the role=frontend label is allowed.
 matchLabels:
 role: frontend
ports: #Only TCP can be used to access port 6379.
 - protocol: TCP
 port: 6379

Diagram:

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 68

Figure 6-11 podSelector

● Using namespaceSelector to specify the access scope
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
spec:
 podSelector: # The rule takes effect for pods with the role=db label.
 matchLabels:
 role: db
ingress: #This is an ingress rule.
 - from:
 - namespaceSelector: # Only traffic from the pods in the namespace with the
"project=myproject" label is allowed.
 matchLabels:
 project: myproject
ports: #Only TCP can be used to access port 6379.
 - protocol: TCP
 port: 6379

Figure 6-12 shows how namespaceSelector selects ingress sources.

Figure 6-12 namespaceSelector

Cloud Container Engine
Kubernetes Basics 6 Kubernetes Networking

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 69

7 Persistent Storage

7.1 Volume
On-disk files in a container are ephemeral. When a container crashes and is then
restarted, the files in the container will be lost. When multiple containers run in a
pod, files often need to be shared between these containers. Kubernetes provides
an abstraction to solve these two problems, that is, storage volumes. Volumes, as
part of a pod, cannot be created independently and can only be defined in pods.

All containers in a pod can access its volumes, but the volumes must be attached
and can be attached to any directory in the container.

The following figure shows how a storage volume is used between containers in a
pod.

Cloud Container Engine
Kubernetes Basics 7 Persistent Storage

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 70

A volume will no longer exist if the pod to which it is attached does not exist.
However, files in the volume may outlive the volume, depending on the volume
type.

Volume Types
Kubernetes supports multiple types of volumes. The most commonly used ones
are as follows:

● emptyDir: an empty volume used for temporary storage
● hostPath: a volume that mounts a directory of the host into your pod
● ConfigMap and secret: special volumes that inject or pass information to your

pod. For details about how to mount ConfigMaps and secrets, see ConfigMap
and Secret.

● persistentVolumeClaim: Kubernetes persistent storage class. For details, see
PersistentVolume, PersistentVolumeClaim, and StorageClass.

emptyDir
emptyDir is an empty volume in which your applications can read and write the
same files. The lifetime of an emptyDir volume is the same as that of the pod it
belongs to. After the pod is deleted, data in the volume is also deleted.

Some uses of an emptyDir volume are as follows:

● scratch space, such as for a disk-based merge sort
● checkpointing a long computation for recovery from crashes

Example emptyDir configuration:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: test-container
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir: {}

emptyDir volumes are stored on the disks of the node where the pod is located.
You can also set the storage medium to the node memory, for example, by setting
medium to Memory.

volumes:
 - name: html
 emptyDir:
 medium: Memory

HostPath
hostPath is a persistent storage volume. Data in an emptyDir volume will be
deleted when the pod is deleted, but not the case for a hostPath volume. Data in
a hostPath volume will still be stored in the node path to which the volume was

Cloud Container Engine
Kubernetes Basics 7 Persistent Storage

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 71

mounted. If the pod is re-created and scheduled to the same node, after a new
hostPath volume is mounted, previous data written by the pod can still be read.

Data stored in hostPath volumes is related to the node. Therefore, hostPath is not
suitable for applications such as databases. For example, if the pod in which a
database instance runs is scheduled to another node, the read data will be totally
different.

Therefore, you are not advised to use hostPath to store cross-pod data, because
after the pod is rebuilt, it will be randomly scheduled to a node, which may cause
inconsistency when data is written.

apiVersion: v1
kind: Pod
metadata:
 name: test-hostpath
spec:
 containers:
 - image: nginx:alpine
 name: hostpath-container
 volumeMounts:
 - mountPath: /test-pd
 name: test-volume
 volumes:
 - name: test-volume
 hostPath:
 path: /data

7.2 PersistentVolume, PersistentVolumeClaim, and
StorageClass

hostPath volumes are used for persistent storage. However, hostPath volumes are
node-specific. Writing data into hostPath volumes after a node restart may cause
data inconsistency.

If you want to read the previously written data after a pod is rebuilt and
scheduled again, you can count on network storage. Typically, a cloud vendor
provides at least three classes of network storage: block storage, file storage, and
object storage, such as EVS, SFS, and OBS provided by HUAWEI CLOUD.
Kubernetes decouples how storage is provided from how it is consumed by
introducing two API objects: PersistentVolume (PV) and PersistentVolumeClaim
(PVC). You only need to request the storage resources you want, without being
exposed to the details of how they are implemented.

● A PV describes a persistent data storage volume. It defines a directory for
persistent storage on a host machine, for example, a mount directory of a
network file system (NFS).

● A PVC describes the attributes of the PV that a pod wants to use, such as the
volume capacity and read/write permissions.

To allow a pod to use PVs, a Kubernetes cluster administrator needs to set the
network storage class and provides the corresponding PV descriptors to
Kubernetes. You only need to create a PVC and bind the PVC with the volumes in
the pod so that you can store data. The following figure shows the relationship
between PVs and PVCs.

Cloud Container Engine
Kubernetes Basics 7 Persistent Storage

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 72

Figure 7-1 Binding a PVC to a PV

CSI
Kubernetes Container Storage Interface (CSI) can be used to develop plug-ins to
support specific storage volumes. For example, in the namespace named kube-
system, as shown in Namespace for Grouping Resources, everest-csi-controller-
* and everest-csi-driver-* are the storage controllers and drivers developed by
HUAWEI CLOUD CCE. With these drivers, you can use cloud storage services on
HUAWEI CLOUD, such as EVS, SFS, and OBS.

$ kubectl get po --namespace=kube-system
NAME READY STATUS RESTARTS AGE
everest-csi-controller-6d796fb9c5-v22df 2/2 Running 0 9m11s
everest-csi-driver-snzrr 1/1 Running 0 12m
everest-csi-driver-ttj28 1/1 Running 0 12m
everest-csi-driver-wtrk6 1/1 Running 0 12m

PV
Each PV contains the specification and status of the volume. For example, a file
system is created in HUAWEI CLOUD SFS. The file system ID is 68e4a4fd-
d759-444b-8265-20dc66c8c502, and the mount point is sfs-nas01.cn-
north-4b.myhuaweicloud.com:/share-96314776. If you want to use this file
system in CCE, you need to create a PV to describe the volume. The following is an
example PV.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-example
spec:
 accessModes:
 - ReadWriteMany # Read/write mode
 capacity:
 storage: 10Gi # PV capacity
 csi:
 driver: nas.csi.everest.io # Driver to be used.
 fsType: nfs # File system type
 volumeAttributes:
 everest.io/share-export-location: sfs-nas01.cn-north-4b.myhuaweicloud.com:/share-96314776 # Mount

Cloud Container Engine
Kubernetes Basics 7 Persistent Storage

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 73

point
 volumeHandle: 68e4a4fd-d759-444b-8265-20dc66c8c502 # File system ID

Fields under csi in the example above are exclusively used in HUAWEI CLOUD CCE.

Next, create the PV.

$ kubectl create -f pv.yaml
persistentvolume/pv-example created

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pv-example 10Gi RWX Retain Available 4s

RECLAIM POLICY indicates the PV reclaim policy. The value Retain indicates that
the PV is retained after the PVC is released. If the value of STATUS is Available,
the PV is available.

PVC

A PVC can be bound to a PV. The following is an example:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-example
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi # Storage capacity
 volumeName: pv-example # PV name

Create the PVC.

$ kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-example created

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc-example Bound pv-example 10Gi RWX 9s

The command output shows that the PVC is in Bound state and the value of
VOLUME is pv-example, indicating that the PVC is bound to a PV.

Now check the PV status.

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pv-example 10Gi RWX Retain Bound default/pvc-example 50s

The status of the PVC is also Bound. The value of CLAIM is default/pvc-example,
indicating that the PV is bound to the PVC named pvc-example in the default
namespace.

Note that PVs are cluster-level resources and do not belong to any namespace,
while PVCs are namespace-level resources. PVs can be bound to PVCs of any
namespace. Therefore, the namespace name "default" is displayed under CLAIM.

Cloud Container Engine
Kubernetes Basics 7 Persistent Storage

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 74

Figure 7-2 Relationship between PVs and PVCs

StorageClass
Although PVs and PVCs allow you to consume abstract storage resources, you may
need to configure multiple fields to create PVs and PVCs (such as the csi field
structure in the PV), and PVs/PVCs are generally managed by the cluster
administrator, which can be inconvenient when you need PVs with varying
attributes for different problems.

To solve this problem, Kubernetes supports dynamic PV provisioning to create PVs
automatically. The cluster administrator can deploy a PV provisioner and define
the corresponding StorageClass. In this way, developers can select the storage
class to be created when creating a PVC. The PVC transfers the StorageClass to the
PV provisioner, and the provisioner automatically creates a PV. In CCE, storage
classes such as csi-disk, csi-nas, and csi-obs are supported. After
storageClassName is added to a PVC, PVs can be automatically provisioned and
underlying storage resources can be automatically created.

NO TE

The following describes how to create a file system in CCE clusters of v1.15 and later, which
is different from that for CCE clusters of v1.13 and earlier. For details, see .

Run the following command to query the storage classes that CCE supports. You
can use the CSI plug-ins provided by CCE to customize a storage class, which
functions similarly as the default storage classes in CCE.

kubectl get sc
NAME PROVISIONER AGE
csi-disk everest-csi-provisioner 17d # Storage class for EVS disks
csi-disk-topology everest-csi-provisioner 17d # Storage class for EVS disks with delayed
association
csi-nas everest-csi-provisioner 17d # Storage class for SFS file systems
csi-obs everest-csi-provisioner 17d # Storage class for OBS buckets
csi-sfsturbo everest-csi-provisioner 17d # Storage class for SFS Turbo file systems

Use storageClassName to create a PVC.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

Cloud Container Engine
Kubernetes Basics 7 Persistent Storage

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 75

 name: pvc-sfs-auto-example
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-nas # StorageClass

NO TE

PVCs cannot be directly created by using the storageClassName csi-sfsturbo.

Create a PVC and view the PVC and PV details.

$ kubectl create -f pvc2.yaml
persistentvolumeclaim/pvc-sfs-auto-example created

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
pvc-sfs-auto-example Bound pvc-1f1c1812-f85f-41a6-a3b4-785d21063ff3 10Gi RWX csi-
nas 29s

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
pvc-1f1c1812-f85f-41a6-a3b4-785d21063ff3 10Gi RWO Delete Bound default/pvc-sfs-
auto-example csi-nas 20s

The command output shows that after a StorageClass is used, a PVC and a PV are
created and they are bound to each other.

After a StorageClass is set, PVs can be automatically created and maintained.
Users only need to specify StorageClassName when creating a PVC, which greatly
reduces the workload.

Note that the types of StorageClassName vary among vendors. In this section,
HUAWEI CLOUD SFS is used as an example. For details about other storage
classes, see .

Using a PVC in a Pod
After a PVC is available, you can directly bind the PVC to a volume in the pod
template and then mount the volume to the pod, as shown in the following
example. You can also directly create a PVC in a StatefulSet. For details, see
StatefulSet.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: container-0
 volumeMounts:

Cloud Container Engine
Kubernetes Basics 7 Persistent Storage

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 76

 - mountPath: /tmp # Mount path
 name: pvc-sfs-example
 restartPolicy: Always
 volumes:
 - name: pvc-sfs-example
 persistentVolumeClaim:
 claimName: pvc-example # PVC name

Cloud Container Engine
Kubernetes Basics 7 Persistent Storage

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 77

8 Authentication and Authorization

8.1 ServiceAccount
All access requests to Kubernetes resources are processed by the API Server,
regardless of whether the requests are from an external system. Therefore, the
requests must be authenticated and authorized before they are sent to Kubernetes
resources.

● Authentication: used for user identity authentication. Kubernetes uses
different authentication mechanisms for external and internal service
accounts. For details, see Authentication and ServiceAccounts.

● Authorization: used for controlling users' access to resources. Currently, the
role-based access control (RBAC) mechanism is used to authorize users to
access resources. For details, see RBAC.

Figure 8-1 Authentication and authorization of the API Server

Authentication and ServiceAccounts
Kubernetes users are classified into service accounts (ServiceAccounts) and
common accounts.

● A ServiceAccount is bound to a namespace and associated with a set of
credentials stored in a secret. When a pod is created, the secret is mounted to
the pod so that the pod can be called by the API Server.

● Kubernetes does not have objects that represent common accounts. By
default, these accounts are managed by external services. For example, CCE

Cloud Container Engine
Kubernetes Basics 8 Authentication and Authorization

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 78

users on HUAWEI CLOUD are managed by Identity and Access Management
(IAM).

The following only focuses on ServiceAccounts.

Similar to pods and ConfigMaps, ServiceAccounts are resources in Kubernetes and
apply to independent namespaces. That is, a ServiceAccount named default is
automatically created when a namespace is created.

Run the following command to view ServiceAccounts:

$ kubectl get sa
NAME SECRETS AGE
default 1 30d

In addition, Kubernetes automatically creates a secret for a ServiceAccount. Run
the following command to view the secret:

$ kubectl describe sa default
Name: default
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: default-token-vssmw
Tokens: default-token-vssmw
Events: <none>

In the pod definition file, you can assign a ServiceAccount to a pod by specifying
an account name. If no account name is specified, the default ServiceAccount is
used. When receiving a request with an authentication token, the API Server uses
the token to check whether the ServiceAccount associated with the client that
sends the request allows the request to be executed.

Creating a ServiceAccount
Run the following command to create a ServiceAccount:

$ kubectl create serviceaccount sa-example
serviceaccount/sa-example created

$ kubectl get sa
NAME SECRETS AGE
default 1 30d
sa-example 1 2s

The token associated with the ServiceAccount has been created.

$ kubectl describe sa sa-example
Name: sa-example
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: sa-example-token-c7bqx
Tokens: sa-example-token-c7bqx
Events: <none>

Check the secret content. You can find the ca.crt, namespace, and token data.

$ kubectl describe secret sa-example-token-c7bqx
Name: sa-example-token-c7bqx
...
Data
====
ca.crt: 1082 bytes

Cloud Container Engine
Kubernetes Basics 8 Authentication and Authorization

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 79

namespace: 7 bytes
token: <token content>

Using a ServiceAccount in a Pod
It is convenient to use a ServiceAccount in a pod. You only need to specify the
name of the ServiceAccount.
apiVersion: v1
kind: Pod
metadata:
 name: sa-example
spec:
 serviceAccountName: sa-example
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Create a pod and view its information. You can see that sa-example-token-c7bqx
is mounted to the pod, that is, the token corresponding to the ServiceAccount sa-
example. That is, the pod uses the token for authentication.
$ kubectl create -f sa-pod.yaml
pod/sa-example created

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
sa-example 0/1 running 0 5s

$ kubectl describe pod sa-example
...
Containers:
 sa-example:
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from sa-example-token-c7bqx (ro)

You can also view the corresponding file in the pod.
$ kubectl exec -it sa-example -- /bin/sh
/ # cd /run/secrets/kubernetes.io/serviceaccount
/run/secrets/kubernetes.io/serviceaccount # ls
ca.crt namespace token

As shown above, in a containerized application, ca.crt and token can be used to
access the API Server.

Then check whether the authentication takes effect. In a Kubernetes cluster, a
Service named kubernetes is created for the API Server by default. The API Server
can be accessed through this service.
$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.247.0.1 <none> 443/TCP 34

Go to the pod and run the curl command. If the following information is
displayed, you do not have the permission.
$ kubectl exec -it sa-example -- /bin/sh
/ # curl https://kubernetes

Cloud Container Engine
Kubernetes Basics 8 Authentication and Authorization

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 80

curl: (60) SSL certificate problem: unable to get local issuer certificate
More details here: https://curl.haxx.se/docs/sslcerts.html

curl failed to verify the legitimacy of the server and therefore could not
establish a secure connection to it. To learn more about this situation and
how to fix it, please visit the web page mentioned above.

Use ca.crt and token for authentication. The specific procedure is as follows: Place
ca.crt in the environment variable CURL_CA_BUNDLE, and run the curl command
to specify the certificate using CURL_CA_BUNDLE. Place the token content in
TOKEN and use the token to access the API Server.

export CURL_CA_BUNDLE=/var/run/secrets/kubernetes.io/serviceaccount/ca.crt
TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)
curl -H "Authorization: Bearer $TOKEN" https://kubernetes
{
 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {

 },
 "status": "Failure",
 "message": "forbidden: User \"system:serviceaccount:default:sa-example\" cannot get path \"/\"",
 "reason": "Forbidden",
 "details": {

 },
 "code": 403
}

As shown above, the authentication is successful, but the API Server returns
cannot get path \"/\"", indicating that the API Server can be accessed only after
being authorized. For details about the authorization mechanism, see RBAC.

8.2 RBAC

RBAC Resources
In Kubernetes, the RBAC mechanism is used for authorization. RBAC authorization
uses four types of resources for configuration.

● Role: defines a set of rules for accessing Kubernetes resources in a namespace.
● RoleBinding: defines the relationship between users and roles.
● ClusterRole: defines a set of rules for accessing Kubernetes resources in a

cluster (including all namespaces).
● ClusterRoleBinding: defines the relationship between users and cluster roles.

Role and ClusterRole specify actions that can be performed on specific resources.
RoleBinding and ClusterRoleBinding bind roles to specific users, user groups, or
ServiceAccounts. See the following figure.

Cloud Container Engine
Kubernetes Basics 8 Authentication and Authorization

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 81

Figure 8-2 Role binding

Creating a Role
The procedure for creating a Role is very simple. To be specific, specify a
namespace and then define rules. The rules in the following example are to allow
GET and LIST operations on pods in the default namespace.

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: default # Namespace
 name: role-example
rules:
- apiGroups: [""]
 resources: ["pods"] # The pod can be accessed.
 verbs: ["get", "list"] # The GET and LIST operations can be performed.

Creating a RoleBinding
After creating a Role, you can bind the Role to a specific user, which is called
RoleBinding. The following is an example.

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: rolebinding-example
 namespace: default
subjects: # Specified user
- kind: User # Common user
 name: user-example
 apiGroup: rbac.authorization.k8s.io
- kind: ServiceAccount # ServiceAccount
 name: sa-example
 namespace: default
roleRef: # Specified Role
 kind: Role
 name: role-example
 apiGroup: rbac.authorization.k8s.io

The subjects is used to bind the Role to a user. The user can be an external
common user or a ServiceAccount. For details about the two user types, see
ServiceAccount. The following figure shows the binding relationship.

Cloud Container Engine
Kubernetes Basics 8 Authentication and Authorization

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 82

Figure 8-3 A RoleBinding binds the Role to the user.

Then check whether the authorization takes effect.

In Using a ServiceAccount, a pod is created and the ServiceAccount sa-example
is used. The Role role-example is bound to sa-example. Access the pod and run
the curl command to access resources through the API Server to check whether
the permission takes effect.

Use ca.crt and token corresponding to sa-example for authentication and query
all pod resources (LIST in Creating a Role) in the default namespace.

$ kubectl exec -it sa-example -- /bin/sh
export CURL_CA_BUNDLE=/var/run/secrets/kubernetes.io/serviceaccount/ca.crt
TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)
curl -H "Authorization: Bearer $TOKEN" https://kubernetes/api/v1/namespaces/default/pods
{
 "kind": "PodList",
 "apiVersion": "v1",
 "metadata": {
 "selfLink": "/api/v1/namespaces/default/pods",
 "resourceVersion": "10377013"
 },
 "items": [
 {
 "metadata": {
 "name": "sa-example",
 "namespace": "default",
 "selfLink": "/api/v1/namespaces/default/pods/sa-example",
 "uid": "c969fb72-ad72-4111-a9f1-0a8b148e4a3f",
 "resourceVersion": "10362903",
 "creationTimestamp": "2020-07-15T06:19:26Z"
 },
 "spec": {
...

If the returned result is normal, sa-example has permission to list pods. Query the
Deployment again. If the following information is displayed, you do not have the
permission to access the Deployment.

curl -H "Authorization: Bearer $TOKEN" https://kubernetes/api/v1/namespaces/default/deployments
...
 "status": "Failure",
 "message": "deployments is forbidden: User \"system:serviceaccount:default:sa-example\" cannot list
resource \"deployments\" in API group \"\" in the namespace \"default\"",
...

Role and RoleBinding apply to namespaces and can isolate permissions to some
extent. As shown in the following figure, role-example defined above cannot
access resources in the kube-system namespace.

Cloud Container Engine
Kubernetes Basics 8 Authentication and Authorization

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 83

Figure 8-4 Role and RoleBinding applied to namespaces

Continue to access the pod. If the following information is displayed, you do not
have the permission.

curl -H "Authorization: Bearer $TOKEN" https://kubernetes/api/v1/namespaces/kube-system/pods
...
 "status": "Failure",
 "message": "pods is forbidden: User \"system:serviceaccount:default:sa-example\" cannot list resource
\"pods\" in API group \"\" in the namespace \"kube-system\"",
 "reason": "Forbidden",
...

In RoleBinding, you can also bind the ServiceAccounts of other namespaces by
adding them under the subjects field.

subjects: # Specified user
- kind: ServiceAccount # ServiceAccount
 name: kube-sa-example
 namespace: kube-system

Then the ServiceAccount kube-sa-example in kube-system can perform GET and
LIST operations on pods in the default namespace, as shown in the following
figure.

Figure 8-5 Cross-namespace access

ClusterRole and ClusterRoleBinding
Compared with Role and RoleBinding, ClusterRole and ClusterRoleBinding have
the following differences:

● ClusterRole and ClusterRoleBinding do not need to define the namespace
field.

Cloud Container Engine
Kubernetes Basics 8 Authentication and Authorization

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 84

● ClusterRole can define cluster-level resources.

You can see that ClusterRole and ClusterRoleBinding control cluster-level
permissions.

In Kubernetes, many ClusterRoles and ClusterRoleBindings are defined by default.

$ kubectl get clusterroles
NAME AGE
admin 30d
cceaddon-prometheus-kube-state-metrics 6d3h
cluster-admin 30d
coredns 30d
custom-metrics-resource-reader 6d3h
custom-metrics-server-resources 6d3h
edit 30d
prometheus 6d3h
system:aggregate-customedhorizontalpodautoscalers-admin 6d2h
system:aggregate-customedhorizontalpodautoscalers-edit 6d2h
system:aggregate-customedhorizontalpodautoscalers-view 6d2h
....
view 30d

$ kubectl get clusterrolebindings
NAME AGE
authenticated-access-network 30d
authenticated-packageversion 30d
auto-approve-csrs-for-group 30d
auto-approve-renewals-for-nodes 30d
auto-approve-renewals-for-nodes-server 30d
cceaddon-prometheus-kube-state-metrics 6d3h
cluster-admin 30d
cluster-creator 30d
coredns 30d
csrs-for-bootstrapping 30d
system:basic-user 30d
system:ccehpa-rolebinding 6d2h
system:cluster-autoscaler 6d1h
...

The most important and commonly used ClusterRoles are as follows:

● view: has the permission to view namespace resources.
● edit: has the permission to modify namespace resources.
● admin: has all permissions on the namespace.
● cluster-admin: has all permissions on the cluster.

Run the kubectl describe clusterrole command to view the permissions of each
rule.

Generally, the four ClusterRoles are bound to users to isolate permissions. Note
that Roles (rules and permissions) are separated from users. You can flexibly
control permissions by combining the two through RoleBinding.

Cloud Container Engine
Kubernetes Basics 8 Authentication and Authorization

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 85

9 Auto Scaling

In Pod Orchestration and Scheduling, we introduce controllers such as
Deployment to control the number of pod replicas. You can adjust the number of
replicas to manually scale your applications. However, manual scaling is
sometimes complex and fails to cope with unexpected traffic spikes.

Kubernetes supports auto scaling of pods and cluster nodes. You can set rules to
trigger auto scaling when certain metrics (such as CPU usage) reach the
configured threshold.

Prometheus and Metrics Server
A prerequisite for auto scaling is that your container running data can be
collected, such as number of cluster nodes/pods, and CPU and memory usage of
containers. Kubernetes does not provide such monitoring capabilities itself. You
can use extensions to monitor and collect your data.

● Prometheus is an open source monitoring and alarming framework that can
collect multiple types of metrics. Prometheus has been a standard monitoring
solution of Kubernetes.

● Metrics Server is a cluster-wide aggregator of resource utilization data.
Metrics Server collects metrics from the Summary API exposed by kubelet.
These metrics are set for core Kubernetes resources, such as pods, nodes,
containers, and Services. Metrics Server provides a set of standard APIs for
external systems to collect these metrics.

Horizontal Pod Autoscaler (HPA) can work with Metrics Server to implement auto
scaling based on the CPU and memory usage. It can also work with Prometheus to
implement auto scaling based on custom monitoring metrics.

How HPA Works
HPA is a controller that controls horizontal pod scaling. HPA periodically checks
the pod metrics, calculates the number of replicas required to meet the target
values configured for HPA resources, and then adjusts the value of the replicas
field in the target resource object (such as a Deployment).

Cloud Container Engine
Kubernetes Basics 9 Auto Scaling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 86

https://prometheus.io/
https://github.com/kubernetes-sigs/metrics-server

Figure 9-1 HPA working mechanism

You can configure one or more metrics for the HPA. When configuring a single
metric, you only need to sum up the current pod metrics, divide the sum by the
expected target value, and then round up the result to obtain the expected
number of replicas. For example, if a Deployment controls three pods, the CPU
usage of each pod is 70%, 50%, and 90%, and the expected CPU usage configured
in the HPA is 50%, the expected number of replicas is calculated as follows: (70
+ 50 + 90)/50 = 4.2. The result is rounded up to 5. That is, the expected number of
replicas is 5.

If multiple metrics are configured, the expected number of replicas of each metric
is calculated and the maximum value will be used.

Using the HPA
The following example demonstrates how to use the HPA. First, use the Nginx
image to create a Deployment with four replicas.

$ kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 4/4 4 4 77s

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-deployment-7cc6fd654c-5xzlt 1/1 Running 0 82s
nginx-deployment-7cc6fd654c-cwjzg 1/1 Running 0 82s
nginx-deployment-7cc6fd654c-dffkp 1/1 Running 0 82s
nginx-deployment-7cc6fd654c-j7mp8 1/1 Running 0 82s

Create an HPA. The expected CPU usage is 70% and the number of replicas ranges
from 1 to 10.

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:

Cloud Container Engine
Kubernetes Basics 9 Auto Scaling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 87

 name: scale
 namespace: default
spec:
 maxReplicas: 10 # Maximum number of replicas of the target resource
 minReplicas: 1 # Minimum number of replicas of the target resource
 metrics: # Metric. The expected CPU usage is 70%.
 - resource:
 name: cpu
 targetAverageUtilization: 70
 type: Resource
 scaleTargetRef: # Target resource
 apiVersion: apps/v1
 kind: Deployment
 name: nginx-deployment

Query the created HPA.
$ kubectl create -f hpa.yaml
horizontalpodautoscaler.autoscaling/celue created

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
scale Deployment/nginx-deployment 0%/70% 1 10 4 18s

In the command output, the expected value of TARGETS is 70%, but the actual
value is 0%. This means that the HPA will perform scale-in. The expected number
of replicas can be calculated as follows: (0 + 0 + 0 + 0)/70 = 0. However, the
minimum number of replicas has been set to 1. Therefore, the number of pods is
changed to 1. After a while, the number of pods changes to 1.
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-deployment-7cc6fd654c-5xzlt 1/1 Running 0 7m41s

Query the HPA again and a record similar to the following is displayed under
Events. In this example, the record indicates that the HPA successfully performed
a scale-in 21 seconds ago and the number of pods is changed to 1, and the scale-
in is triggered because the values of all metrics are lower than the target values.
$ kubectl describe hpa scale
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulRescale 21s horizontal-pod-autoscaler New size: 1; reason: All metrics below target

If you want to query the Deployment details, you can check the records similar to
the following under Events. In this example, the second record indicates that the
number of replicas of the Deployment is set to 1, which is the same as that in the
HPA.
$ kubectl describe deploy nginx-deployment
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 7m deployment-controller Scaled up replica set nginx-
deployment-7cc6fd654c to 4
 Normal ScalingReplicaSet 1m deployment-controller Scaled down replica set nginx-
deployment-7cc6fd654c to 1

Cluster AutoScaler
The HPA is designed for pods. However, if the cluster resources are insufficient,
you can only add nodes. Scaling of cluster nodes could be laborious. Now with
clouds, you can add or delete nodes by simply calling APIs.

Cloud Container Engine
Kubernetes Basics 9 Auto Scaling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 88

Cluster Autoscaler is a component provided by Kubernetes for auto scaling of
cluster nodes based on the pod scheduling status and resource usage. You can
refer to the API documentation of your cloud service provider to implement auto
scaling.

For details about the implementation on HUAWEI CLOUD CCE, see .

Cloud Container Engine
Kubernetes Basics 9 Auto Scaling

Issue 01 (2022-09-08) Copyright © Huawei Technologies Co., Ltd. 89

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

	Contents
	1 Overview
	2 Container and Kubernetes
	2.1 Container
	2.2 Kubernetes

	3 Pod, Label, and Namespace
	3.1 Pod: the Smallest Scheduling Unit in Kubernetes
	3.2 Liveness Probe
	3.3 Label for Managing Pods
	3.4 Namespace for Grouping Resources

	4 Pod Orchestration and Scheduling
	4.1 Deployment
	4.2 StatefulSet
	4.3 Job and Cron Job
	4.4 DaemonSet
	4.5 Affinity and Anti-Affinity Scheduling

	5 Configuration Management
	5.1 ConfigMap
	5.2 Secret

	6 Kubernetes Networking
	6.1 Container Networking
	6.2 Service
	6.3 Ingress
	6.4 Readiness Probe
	6.5 NetworkPolicy

	7 Persistent Storage
	7.1 Volume
	7.2 PersistentVolume, PersistentVolumeClaim, and StorageClass

	8 Authentication and Authorization
	8.1 ServiceAccount
	8.2 RBAC

	9 Auto Scaling

