AI开发平台ModelArtsAI开发平台ModelArts

计算
弹性云服务器 ECS
裸金属服务器 BMS
云手机 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器 HECS
VR云渲游平台 CVR
特惠算力专区
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属企业存储服务
云存储网关 CSG
专属分布式存储服务 DSS
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘小站 IES
智能边缘平台 IEF
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
园区智能体 CampusGo
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
视频分析服务 VAS
语音交互服务 SIS
知识图谱 KG
人证核身服务 IVS
IoT物联网
设备接入 IoTDA
设备管理 IoTDM(联通用户专用)
全球SIM联接 GSL
IoT开发者服务
IoT数据分析
车联网服务 IoV
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
开发与运维
软件开发平台 DevCloud
项目管理 ProjectMan
代码托管 CodeHub
流水线 CloudPipeline
代码检查 CodeCheck
编译构建 CloudBuild
部署 CloudDeploy
云测 CloudTest
发布 CloudRelease
移动应用测试 MobileAPPTest
CloudIDE
Classroom
开源镜像站 Mirrors
应用魔方 AppCube
云性能测试服务 CPTS
应用管理与运维平台 ServiceStage
云应用引擎 CAE
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
资源管理服务 RMS
应用身份管理服务 OneAccess
区块链
区块链服务 BCS
可信跨链服务 TCS
智能协作
IdeaHub
开发者工具
SDK开发指南
API签名指南
DevStar
HCloud CLI
Terraform
Ansible
API问题定位指导
云生态
云市场
合作伙伴中心
华为云培训中心
其他
管理控制台
消息中心
产品价格详情
系统权限
我的凭证
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
应用编排服务 AOS
多云容器平台 MCP
基因容器 GCS
容器洞察引擎 CIE
云原生服务中心 OSC
容器批量计算 BCE
容器交付流水线 ContainerOps
应用服务网格 ASM
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB (for openGauss)
云数据库 GaussDB(for MySQL)
云数据库 GaussDB NoSQL
数据管理服务 DAS
数据库和应用迁移 UGO
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据湖治理中心 DGC
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
API网关 APIG
分布式缓存服务 DCS
分布式消息服务RocketMQ版
企业应用
域名注册服务 Domains
云解析服务 DNS
云速建站 CloudSite
网站备案
华为云WeLink
会议
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMAExchange
API全生命周期管理 ROMA API
安全与合规
安全技术与应用
DDoS防护 ADS
Web应用防火墙 WAF
云防火墙 CFW
应用信任中心 ATC
企业主机安全 HSS
容器安全服务 CGS
云堡垒机 CBH
数据库安全服务 DBSS
数据加密服务 DEW
数据安全中心 DSC
云证书管理服务 CCM
SSL证书管理 SCM
漏洞扫描服务 VSS
态势感知 SA
威胁检测服务 MTD
管理检测与响应 MDR
安全治理云图 Compass
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
专属云
专属计算集群 DCC
解决方案
高性能计算 HPC
SAP
游戏云
混合云灾备
华为工业云平台 IMC
价格
成本优化最佳实践
专属云商业逻辑
用户服务
帐号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
更新时间:2021-08-06 GMT+08:00
分享

利用模型评估功能进行数据增强

场景描述

数据集是训练中最重要的一个环节,modelarts平台虽然给出了每类5张图片就能训练的限制,但是这种限制对一个工业级的应用场景往往是远远不够的。这里介绍其中一种带标签扩充数据集的方法。

原理说明

数据集情况

首先,这是一个分类的问题,需要检测出工业零件表面的瑕疵,判断是否为残次品,如下是样例图片。

图1 样例图片

这是两块太阳能电板的表面,左侧是正常的,右侧是有残缺和残次现象的,需要用一个模型来区分这两类的图片,帮助定位哪些太阳能电板存在问题。左侧的正常样本754张,右侧的残次样本358张,验证集同样,正常样本754张,残次样本357张。总样本在2000张左右,对于一般工业要求的95%以上准确率模型而言属于一个非常小的样本。先直接拿这个数据集用Pytorch加载imagenet的resnet50模型训练,整体精度ACC在86.06%左右,召回率正常类为97.3%,但非正常类为62.9%,还不能达到用户预期。

小样本学习few-shot fewshot learning (FSFSL)的常见方法,基本都是从两个方向入手。一是数据本身,二是从模型训练本身,也就是对图像提取的特征做文章。这里从数据本身入手,首先观察数据集,都是300*300的灰度图像,而且都已太阳能电板表面的正面俯视为整张图片。这属于预先处理的很好的图片。那么针对这种图片,翻转镜像对图片整体结构影响不大,所以我们首先可以做的就是flip操作,增加数据的多样性。flip效果如下。

图2 flip效果

这样数据集就从1100张扩增到了2200张,还是不是很多,但是直接观察数据集已经没什么太好的扩充办法了。这时想使用Modelarts模型评估功能来评估模型对数据的泛化能力。这里调用了提供的模型评估接口,deep_moxing.model_analysis下面的analyse接口。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
pred_list = []
target_list = []
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)

# compute output
output = model(images)
loss = criterion(output, target)
# 获取logits输出结果pred和实际目标的结果target
pred_list += output.cpu().numpy()[:, :2].tolist()
target_list += target.cpu().numpy().tolist()
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5), i=i)
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))

# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()

if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
# 获取图片的存储路径name
name_list = val_loader.dataset.samples
for idx in range(len(name_list)):
name_list[idx] = name_list[idx][0]
analyse(task_type='image_classification', save_path='/home/image_labeled/',
pred_list=pred_list, label_list=target_list, name_list=name_list)
return top1.avg

上段代码大部分都是Pytorch训练ImageNet中的验证部分代码,需要获取三个list,模型pred直接结果logits、图片实际类别target和图片存储路径name。然后按如上的调用方法调用analyse接口,会在save_path的目录下生成一个json文件,放到Modelarts训练输出目录里,就能在评估结果里看到对模型的分析结果。这里是线下生成的json文件再上传到线上看可视化结果。关于敏感度分析结果如表1表2所示。

表1 图像亮度敏感度分析

特征值分布

0

1

0% - 20%

0.7273

0.8864

20% - 40%

0.8446

0.6892

40% - 60%

0.9077

0.4615

60% - 80%

0.9496

0.5116

80% - 100%

0.966

0.5625

标准差

0.0864

0.1516

表2 图像亮度敏感度分析

特征值分布

0

1

0% - 20%

0.7556

0.8333

20% - 40%

0.8489

0.6466

40% - 60%

0.9239

0.6316

60% - 80%

0.9492

0.8

80% - 100%

0.9631

0.5946

标准差

0.0771

0.0963

上述两个表的意思是,不同的特征值范围图片分别测试的精度是多少。比如亮度敏感度分析的第一项0%-20%,可以理解为,在图片亮度较低的场景下对与0类和其他亮度条件的图片相比,精度要低很多。整体来看,主要是为了检测1类,1类在图片的亮度和清晰度两项上显得都很敏感,也就是模型不能很好地处理图片的这两项特征变化的图片。那这不就是我要扩增数据集的方向吗?

同时,ModelArts平台还提供了使用“数据处理>数据扩增”功能,可以直接扩充数据集。

那么我们就得到一个正常类2210张,瑕疵类1174张图片的数据集,用同样的策略扔进pytorch中训练,得到的结果。

表3 数据扩增后的结果

方法

accuracy

recall norm类

recall abnorm类

原版

86.06%

97.3%

62.9%

从1100张扩增到2940张

86.31%

97.6%

62.5%

从上述结果中,发现精度并没有明显提升。重新分析一下数据集,这种工业类的数据集往往都存在一个样本不均匀的问题,这里虽然接近2:1,但是检测的要求针对有瑕疵的类别的比较高,应该让模型倾向于有瑕疵类去学习,而且看到1类的也就是有瑕疵类的结果比较敏感,所以其实还是存在样本不均衡的情况。由此后面的这两种增强方法只针对了1类也就是有问题的破损类做,最终得到3000张左右,1508张正常类图片,1432张有瑕疵类图片,这样样本就相对平衡了。用同样的策略扔进resnet50中训练。最终得到的精度信息。

表4 修改扩增数据后的结果

方法

accuracy

recall norm类

recall abnorm类

原版

86.06%

97.3%

62.9%

从1100张扩增到2940张

89.13%

97.2%

71.3%

总结

可以看到,同样在验证集,正常样本754张,残次样本357张的样本上,Acc1的精度整体提升了接近3%,重要指标残次类的recall提升了8.4%。所以直接扩充数据集的方法很有效,而且结合模型评估能让您参考哪些扩增的方法是有意义的。当然还有很重要的一点,要排除原始数据集存在的问题,比如这里存在的样本不均衡问题,具体情况具体分析,这个扩增的方法就会变得简单实用。

之后基于这个实验的结果和数据集。帮助用户改了一些训练策略,换了个更厉害的网络,就达到了用户的要求,当然这都是定制化分析的结果,这里不详细展开说明了。

数据集引自:

Buerhop-Lutz, C.; Deitsch, S.; Maier, A.; Gallwitz, F.; Berger, S.; Doll, B.; Hauch, J.; Camus, C. & Brabec, C. J. A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery. European PV Solar Energy Conference and Exhibition (EU PVSEC), 2018. DOI: 10.4229/35thEUPVSEC20182018-5CV.3.15

Deitsch, S.; Buerhop-Lutz, C.; Maier, A. K.; Gallwitz, F. & Riess, C. Segmentation of Photovoltaic Module Cells in Electroluminescence Images. CoRR, 2018, abs/1806.06530

Deitsch, S.; Christlein, V.; Berger, S.; Buerhop-Lutz, C.; Maier, A.; Gallwitz, F. & Riess, C. Automatic classification of defective photovoltaic module cells in electroluminescence images. Solar Energy, Elsevier BV, 2019, 185, 455-468. DOI: 10.1016/j.solener.2019.02.067

分享:

    相关文档

    相关产品

关闭导读