AI开发平台ModelArtsAI开发平台ModelArts

计算
弹性云服务器 ECS
裸金属服务器 BMS
云手机 CPH
专属主机 DeH
弹性伸缩 AS
镜像服务 IMS
函数工作流 FunctionGraph
云耀云服务器 HECS
VR云渲游平台 CVR
特惠算力专区
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
弹性文件服务 SFS
存储容灾服务 SDRS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属企业存储服务
云存储网关 CSG
专属分布式存储服务 DSS
CDN与智能边缘
内容分发网络 CDN
智能边缘云 IEC
智能边缘小站 IES
智能边缘平台 IEF
人工智能
AI开发平台ModelArts
华为HiLens
图引擎服务 GES
图像识别 Image
文字识别 OCR
自然语言处理 NLP
内容审核 Moderation
图像搜索 ImageSearch
医疗智能体 EIHealth
园区智能体 CampusGo
企业级AI应用开发专业套件 ModelArts Pro
人脸识别服务 FRS
对话机器人服务 CBS
视频分析服务 VAS
语音交互服务 SIS
知识图谱 KG
人证核身服务 IVS
IoT物联网
设备接入 IoTDA
设备管理 IoTDM(联通用户专用)
全球SIM联接 GSL
IoT开发者服务
IoT数据分析
车联网服务 IoV
路网数字化服务 DRIS
IoT边缘 IoTEdge
设备发放 IoTDP
开发与运维
软件开发平台 DevCloud
项目管理 ProjectMan
代码托管 CodeHub
流水线 CloudPipeline
代码检查 CodeCheck
编译构建 CloudBuild
部署 CloudDeploy
云测 CloudTest
发布 CloudRelease
移动应用测试 MobileAPPTest
CloudIDE
Classroom
开源镜像站 Mirrors
应用魔方 AppCube
云性能测试服务 CPTS
应用管理与运维平台 ServiceStage
云应用引擎 CAE
视频
实时音视频 SparkRTC
视频直播 Live
视频点播 VOD
媒体处理 MPC
视频接入服务 VIS
管理与监管
统一身份认证服务 IAM
消息通知服务 SMN
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云日志服务 LTS
云审计服务 CTS
标签管理服务 TMS
资源管理服务 RMS
应用身份管理服务 OneAccess
区块链
区块链服务 BCS
可信跨链服务 TCS
智能协作
IdeaHub
开发者工具
SDK开发指南
API签名指南
DevStar
HCloud CLI
Terraform
Ansible
API问题定位指导
云生态
云市场
合作伙伴中心
华为云培训中心
其他
管理控制台
消息中心
产品价格详情
系统权限
我的凭证
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
应用编排服务 AOS
多云容器平台 MCP
基因容器 GCS
容器洞察引擎 CIE
云原生服务中心 OSC
容器批量计算 BCE
容器交付流水线 ContainerOps
应用服务网格 ASM
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
数据库
云数据库 RDS
数据复制服务 DRS
文档数据库服务 DDS
分布式数据库中间件 DDM
云数据库 GaussDB (for openGauss)
云数据库 GaussDB(for MySQL)
云数据库 GaussDB NoSQL
数据管理服务 DAS
数据库和应用迁移 UGO
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
可信智能计算服务 TICS
推荐系统 RES
云搜索服务 CSS
数据可视化 DLV
数据湖治理中心 DGC
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
应用中间件
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
API网关 APIG
分布式缓存服务 DCS
分布式消息服务RocketMQ版
企业应用
域名注册服务 Domains
云解析服务 DNS
云速建站 CloudSite
网站备案
华为云WeLink
会议
隐私保护通话 PrivateNumber
语音通话 VoiceCall
消息&短信 MSGSMS
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
云桌面 Workspace
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMAExchange
API全生命周期管理 ROMA API
安全与合规
安全技术与应用
DDoS防护 ADS
Web应用防火墙 WAF
云防火墙 CFW
应用信任中心 ATC
企业主机安全 HSS
容器安全服务 CGS
云堡垒机 CBH
数据库安全服务 DBSS
数据加密服务 DEW
数据安全中心 DSC
云证书管理服务 CCM
SSL证书管理 SCM
漏洞扫描服务 VSS
态势感知 SA
威胁检测服务 MTD
管理检测与响应 MDR
安全治理云图 Compass
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
专属云
专属计算集群 DCC
解决方案
高性能计算 HPC
SAP
游戏云
混合云灾备
华为工业云平台 IMC
价格
成本优化最佳实践
专属云商业逻辑
用户服务
帐号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
支持计划
专业服务
合作伙伴支持计划
文档首页> AI开发平台ModelArts> 模型开发> 评估和诊断模型> 模型评估的优化建议> 物体检测模型的目标框清晰度敏感度分析以及相关的解决方法
更新时间:2021-11-25 GMT+08:00
分享

物体检测模型的目标框清晰度敏感度分析以及相关的解决方法

问题描述

在目标检测任务中,不同数据集的目标框的清晰度可能会有差异,目标框清晰度的敏感度就是衡量这个差异的变量,而不同的目标框清晰度的数值对模型训练以及推理都会有影响。

左图是原始图,右图是其中一个目标框的清晰度发生了变化。

图1 目标框清晰度举例

解决方法

在深度学习任务中,Dropout是一种被广泛使用的正则化技术,这种技术存在的缺点就是随机的丢弃掉特征层的某一个单元,使得相邻特征单元共享的语义信息也会一起丢弃掉,DropBlock改进了上述问题,即可以按照特征块来进行丢弃,对深度学习网络进行正则化处理。DropBlock 是类似dropout 的简单方法。二者的主要区别在于DropBlock丢弃层特征图的相邻区域,而不是丢弃单独的随机单元。详细介绍参见DropBlock论文

DropBlock模块主要有2个参数:block_size、γ

  • block_size:表示dropout的方块的大小(长,宽),当block_size=1,DropBlock退化为传统的dropout,正常可以取3、5、7。
  • γ:表示drop过程中的概率,也就是伯努利函数的概率。

Dropout和Dropblock的对比。其中,b图表示Dropout,c图表示DropBlock。

图2 Dropout和Dropblock原理对比图

TensorFlow版的官方实现方式如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
class Dropblock(object):
  """DropBlock: a regularization method for convolutional neural networks.
    DropBlock is a form of structured dropout, where units in a contiguous
    region of a feature map are dropped together. DropBlock works better than
    dropout on convolutional layers due to the fact that activation units in
    convolutional layers are spatially correlated.
    See https://arxiv.org/pdf/1810.12890.pdf for details.
  """

  def __init__(self,
               dropblock_keep_prob=None,
               dropblock_size=None,
               data_format='channels_last'):
    self._dropblock_keep_prob = dropblock_keep_prob
    self._dropblock_size = dropblock_size
    self._data_format = data_format

  def __call__(self, net, is_training=False):
    """Builds Dropblock layer.
    Args:
      net: `Tensor` input tensor.
      is_training: `bool` if True, the model is in training mode.
    Returns:
      A version of input tensor with DropBlock applied.
    """
    if (not is_training or self._dropblock_keep_prob is None or
        self._dropblock_keep_prob == 1.0):
      return net

    logging.info('Applying DropBlock: dropblock_size %d,'
                 'net.shape %s', self._dropblock_size, net.shape)

    if self._data_format == 'channels_last':
      _, height, width, _ = net.get_shape().as_list()
    else:
      _, _, height, width = net.get_shape().as_list()

    total_size = width * height
    dropblock_size = min(self._dropblock_size, min(width, height))
    # Seed_drop_rate is the gamma parameter of DropBlcok.
    seed_drop_rate = (
        1.0 - self._dropblock_keep_prob) * total_size / dropblock_size**2 / (
            (width - self._dropblock_size + 1) *
            (height - self._dropblock_size + 1))

    # Forces the block to be inside the feature map.
    w_i, h_i = tf.meshgrid(tf.range(width), tf.range(height))
    valid_block = tf.logical_and(
        tf.logical_and(w_i >= int(dropblock_size // 2),
                       w_i < width - (dropblock_size - 1) // 2),
        tf.logical_and(h_i >= int(dropblock_size // 2),
                       h_i < width - (dropblock_size - 1) // 2))

    if self._data_format == 'channels_last':
      valid_block = tf.reshape(valid_block, [1, height, width, 1])
    else:
      valid_block = tf.reshape(valid_block, [1, 1, height, width])

    randnoise = tf.random_uniform(net.shape, dtype=tf.float32)
    valid_block = tf.cast(valid_block, dtype=tf.float32)
    seed_keep_rate = tf.cast(1 - seed_drop_rate, dtype=tf.float32)
    block_pattern = (1 - valid_block + seed_keep_rate + randnoise) >= 1
    block_pattern = tf.cast(block_pattern, dtype=tf.float32)

    if self._data_format == 'channels_last':
      ksize = [1, self._dropblock_size, self._dropblock_size, 1]
    else:
      ksize = [1, 1, self._dropblock_size, self._dropblock_size]
    block_pattern = -tf.nn.max_pool(
        -block_pattern,
        ksize=ksize,
        strides=[1, 1, 1, 1],
        padding='SAME',
        data_format='NHWC' if self._data_format == 'channels_last' else 'NCHW')

    percent_ones = tf.cast(tf.reduce_sum(block_pattern), tf.float32) / tf.cast(
        tf.size(block_pattern), tf.float32)

    net = net / tf.cast(percent_ones, net.dtype) * tf.cast(
        block_pattern, net.dtype)
    return net

实验验证

在开源数据集Canine Coccidiosis Parasite上面进行实验,该数据集只有一个类别,使用DropBlock之前,对目标框的清晰度敏感度分析如表1所示。

表1 目标框清晰度敏感度分析

特征值分布

coccidia

0% - 20%

0.9355

20% - 40%

0.9355

40% - 60%

0.9355

60% - 80%

0.7742

80% - 100%

0.8065

标准差

0.0718

使用DropBlock之后,对目标框的清晰度敏感度进行分析,如表2所示,可以看到,目标框清晰度敏感度从原来的0.0718降低到0.0204。

可以看到,使用DropBlock之后,目标框的清晰度敏感度得到了比较大的改善。

表2 目标框清晰度敏感度分析

特征值分布

coccidia

0% - 20%

1

20% - 40%

0.9677

40% - 60%

0.9677

60% - 80%

0.9677

80% - 100%

0.9355

标准差

0.0204

用户建议

在模型推理结果中,如果检测出来的类别对于目标框清晰度的敏感程度比较大,推荐在训练的时候,使用DropBlock进行模型优化和加强。

分享:

    相关文档

    相关产品

关闭导读