AI开发平台ModelArtsAI开发平台ModelArts

计算
弹性云服务器 ECS
云耀云服务器 HECS
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机 CPH
VR云渲游平台 CVR
特惠算力专区
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
内容分发网络 CDN
存储容灾服务 SDRS
弹性文件服务 SFS
云服务器备份 CSBS
云硬盘备份 VBS
数据快递服务 DES
专属企业存储服务
智能边缘
智能边缘云 IEC
EI 企业智能
EI安视服务
AI开发平台ModelArts
数据湖治理中心 DGC
数据仓库服务 GaussDB(DWS)
企业级AI应用开发专业套件 ModelArts Pro
数据湖探索 DLI
华为HiLens
云搜索服务 CSS
数据接入服务 DIS
表格存储服务 CloudTable
数据湖工厂 DLF
图引擎服务 GES
推荐系统 RES
文字识别 OCR
内容审核 Moderation
图像识别 Image
图像搜索 ImageSearch
人脸识别服务 FRS
对话机器人服务 CBS
视频分析服务 VAS
数据可视化 DLV
视频接入服务 VIS
自然语言处理 NLP
语音交互服务 SIS
知识图谱 KG
医疗智能体 EIHealth
可信智能计算服务 TICS
园区智能体 CampusGo
实时流计算服务 CS
人证核身服务 IVS
IoT物联网
设备接入 IoTDA
IoT物联网
全球SIM联接 GSL
设备发放 IoTDP
IoT开发者服务
IoT边缘 IoTEdge
IoT数据分析
路网数字化服务 DRIS
开发与运维
项目管理 ProjectMan
代码托管 CodeHub
流水线 CloudPipeline
代码检查 CodeCheck
编译构建 CloudBuild
部署 CloudDeploy
云测 CloudTest
发布 CloudRelease
移动应用测试 MobileAPPTest
CloudIDE
Classroom
软件开发平台 DevCloud
开源镜像站 Mirrors
视频
媒体处理 MPC
视频点播 VOD
视频直播 Live
实时音视频 SparkRTC
管理与部署
统一身份认证服务 IAM
云监控服务 CES
应用运维管理 AOM
应用性能管理 APM
云审计服务 CTS
云日志服务 LTS
标签管理服务 TMS
资源管理服务 RMS
应用身份管理服务 OneAccess
专属云
专属计算集群 DCC
专属分布式存储服务 DSS
域名与网站
域名注册服务 Domains
云速建站 CloudSite
企业协同
华为云WeLink
会议
ISDP
解决方案
全栈专属服务
高性能计算 HPC
SAP
游戏云
混合云灾备
快视频
华为工业云平台 IMC
价格
价格原则
成本优化最佳实践
昇腾
昇腾MindX SDK (20.3)
其他
管理控制台
消息中心
产品价格详情
系统权限
我的凭证
客户关联华为云合作伙伴须知
公共问题
宽限期保留期
奖励推广计划
活动
容器
云容器引擎 CCE
云容器实例 CCI
容器镜像服务 SWR
应用编排服务 AOS
容器交付流水线 ContainerOps
应用服务网格 ASM
多云容器平台 MCP
基因容器 GCS
容器洞察引擎 CIE
容器批量计算 BCE
云原生服务中心 OSC
网络
虚拟私有云 VPC
弹性公网IP EIP
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
虚拟专用网络 VPN
云连接 CC
VPC终端节点 VPCEP
数据库
云数据库 RDS
文档数据库服务 DDS
分布式数据库中间件 DDM
数据复制服务 DRS
数据管理服务 DAS
云数据库 GaussDB(for MySQL)
云数据库 GaussDB NoSQL
云数据库 GaussDB (for openGauss)
数据库和应用迁移 UGO
大数据
MapReduce服务 MRS
应用中间件
应用管理与运维平台 ServiceStage
分布式缓存服务 DCS
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
消息通知服务 SMN
微服务引擎 CSE
云性能测试服务 CPTS
区块链服务 BCS
API网关 APIG
应用魔方 AppCube
分布式消息服务RocketMQ版
多云高可用服务 MAS
可信跨链数据链接服务 TCDAS
企业应用
云桌面 Workspace
云解析服务 DNS
应用与数据集成平台 ROMA Connect
ROMA资产中心 ROMAExchange
ROMA API
鸿源云道
华为乾坤云服务
安全与合规
Web应用防火墙 WAF
漏洞扫描服务 VSS
企业主机安全 HSS
容器安全服务 CGS
数据加密服务 DEW
数据库安全服务 DBSS
态势感知 SA
云堡垒机 CBH
SSL证书管理 SCM
云证书管理服务 CCM
管理检测与响应 MDR
数据安全中心 DSC
威胁检测服务 MTD
DDoS防护 ADS
云防火墙 CFW
应用信任中心 ATC
安全技术与应用
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
智能协作
IdeaHub
企业网络
云管理网络
SD-WAN 云服务
边缘数据中心管理 EDCM
废弃-华为乾坤安全云服务
云通信
语音通话 VoiceCall
消息&短信 MSGSMS
隐私保护通话 PrivateNumber
开发者工具
SDK开发指南
API签名指南
DevStar
HCloud CLI
Terraform
Ansible
云生态
云市场
鲲鹏
昇腾
合作伙伴中心
华为云学院
用户服务
帐号中心
费用中心
成本中心
资源中心
企业管理
工单管理
客户运营能力
国际站常见问题
网站备案
支持计划
专业服务
合作伙伴支持计划
更新时间:2021/09/24 GMT+08:00
分享

使用TensorFlow实现手写数字识别

本教程适用于旧版训练。旧版训练即将下线,请使用新版训练教程,具体请参见使用自定义算法在ModelArts上构建模型

本文介绍在华为云ModelArts平台如何使用TensorFlow实现MNIST数据集的手写数字图像识别应用。

开始使用如下样例前,请务必按准备工作指导完成必要操作。使用TensorFlow实现手写数字图像识别样例的操作流程如下所示。

  1. 准备数据:获取MNIST数据集,并上传至OBS。
  2. 训练模型:使用TensorFlow框架编写模型训练脚本,并新建训练作业进行模型训练。
  3. 部署模型:训练结束后,将模型导入ModelArts,并将模型部署为在线服务。
  4. 预测结果:发起预测请求获取预测结果。

准备工作

  • 已注册华为云帐号,且在使用ModelArts前检查帐号状态,帐号不能处于欠费或冻结状态。
  • 当前帐号已完成访问授权的配置。如未完成,请参考使用委托授权针对之前使用访问密钥授权的用户,建议清空授权,然后使用委托进行授权。
  • 已在OBS服务中创建桶和文件夹,用于存放样例数据集以及模型。如下示例中,请创建命名为“test-modelarts”的桶,并创建如表1所示的文件夹。
    创建OBS桶和文件夹的操作指导请参见创建桶新建文件夹。请确保您使用的OBS与ModelArts在同一区域。
    表1 文件夹列表

    文件夹名称

    用途

    “dataset-mnist”

    用于存储数据集。

    “mnist-tensorflow-code”

    用于存储训练脚本。

    “mnist-model”

    用于存储训练输出的模型和预测文件。

  • 针对此示例,ModelArts提供了部署上线需使用的训练脚本、推理代码和配置文件。请获取示例文件并上传OBS指定路径,详细请参见表2
    1. 在gitee的ModelArts-Lab工程中,单击“克隆/下载”,然后单击“下载ZIP”,下载工程。
    2. 下载完成后,解压缩“ModelArts-Lab-master.zip”文件,然后在“\ModelArts-Lab-master\official_examples\Using_TensorFlow_to_Create_a_MNIST_Dataset_Recognition_Application\codes”目录中获取到训练脚本“train_mnist_tf.py”、推理代码“customize_service.py”和配置文件“config.json”,并上传至对应OBS路径。上传文件至OBS的操作指导请参见上传文件
    表2 上传示例文件至OBS

    文件名称

    描述

    上传至如下OBS路径中

    “train_mnist_tf.py”

    训练脚本。

    “test-modelarts/mnist-tensorflow-code”

    “customize_service.py”

    推理代码。

    “test-modelarts/mnist-model/model”

    说明:
    • 请在训练作业完成后,再执行上传操作。
    • 如果训练作业运行多次,将生成不同的版本,“mnist-model”目录下将生成多种版本的目录,如“V0001”“V0002”,请基于训练作业的版本,将文件上传至对应版本下的“model”文件夹内。

    “config.json”

    配置文件。

准备数据

ModelArts在公共OBS桶中提供了MNIST数据集,命名为“Mnist-Data-Set”,因此,本文的操作示例使用此数据集进行模型构建。您需要执行如下操作,将数据集上传至您的OBS目录下,即准备工作中您创建的OBS目录“test-modelarts/dataset-mnist”

  1. 单击数据集下载链接,将“Mnist-Data-Set”数据集下载至本地。
  2. 在本地,将“Mnist-Data-Set.zip”压缩包解压。例如,解压至本地“Mnist-Data-Set”文件夹下。
  3. 参考上传文件,使用批量上传方式将“Mnist-Data-Set”文件夹下的所有文件上传至“test-modelarts/dataset-mnist”OBS路径下。

    “Mnist-Data-Set”数据集包含的内容如下所示,其中“.gz”为对应的压缩包。

    • “t10k-images-idx3-ubyte”:验证集,共包含10000个样本。
    • “t10k-images-idx3-ubyte.gz”:验证集的压缩包文件。
    • “t10k-labels-idx1-ubyte”:验证集标签,共包含10000个样本的类别标签。
    • “t10k-labels-idx1-ubyte.gz”:验证集标签的压缩包文件。
    • “train-images-idx3-ubyte”:训练集,共包含60000个样本。
    • “train-images-idx3-ubyte.gz”:训练集的压缩包文件。
    • “train-labels-idx1-ubyte”:训练集标签,共包含60000个样本的类别标签。
    • “train-labels-idx1-ubyte.gz”:训练集标签的压缩包文件。

训练模型

数据准备完成后,您需要使用TensorFlow编写训练脚本代码,ModelArts提供了一个编写好的代码示例“train_mnist_tf.py”,如下操作使用此示例训练模型。

  1. 参考准备工作的操作指导,将“train_mnist_tf.py”文件上传至OBS,例如“test-modelarts/mnist-tensorflow-code”
  2. 在ModelArts管理控制台,进入“训练管理 > 训练作业”页面,单击左上角的“创建”
  3. “创建训练作业”页面,参考图1图2填写相关信息,然后单击“下一步”
    图1 创建训练作业-填写基本信息
    图2 创建训练作业-填写详细参数
  4. “规格确认”页面,确认训练作业的参数信息,确认无误后单击“提交”
  5. 在训练作业管理页面,当训练作业变为“运行成功”时,即完成了模型训练过程。如有问题,可单击作业名称,进入作业详情界面查看训练作业日志信息。

    训练作业需要花费一些时间,预计十几分钟。当训练时间超过一定时间(如1个小时),请及时手动停止,释放资源。否则会导致欠费,尤其对于使用GPU训练的模型项目。

  6. (可选)在模型训练的过程中或者完成后,可以通过创建可视化作业查看一些参数的统计信息。详细操作指导请参见创建可视化作业

    其中,“训练输出位置”请选择步骤训练作业中“训练输出位置”参数中的路径,如“/test-modelarts/mnist-model/”。根据界面提示完成可视化作业创建。

部署模型

模型训练完成后,可以创建预测作业,将模型部署为在线预测服务。在部署模型之前,获取推理代码“customize_service.py”和配置文件“config.json”并上传至OBS中。此推理代码和配置文件为ModelArts为操作样例提供的示例。您也可以基于模型包规范,开发自己所需的推理代码及配置文件。

  1. 在部署模型之前,请参见准备工作,将推理代码和配置文件上传至对应OBS路径下。本示例中模型输出位置的OBS路径为“test-modelarts/mnist-model/model”
  2. 在ModelArts管理控制台,单击左侧导航栏中的模型管理>模型,进入“模型”页面,单击“导入”
  3. “导入模型”页面,参考图3填写相关参数,然后单击“立即创建”

    “元模型来源”中,选择“从对象存储服务(OBS)中选择”页签。然后在“选择元模型”右侧文本框选择训练作业中“训练输出位置”指定的路径。

    图3 导入模型

    “模型列表”页面,当模型状态变为“正常”时,表示模型已导入成功。

  4. 单击模型名称左侧的小三角,打开此模型下的所有版本。在对应版本所在行,单击操作列“部署>在线服务”,将模型部署为在线服务。
    “部署”页面,参考图4填写参数,然后根据界面提示完成在线服务创建。
    图4 部署模型

预测结果

完成模型部署后,等待服务部署完成,当服务状态显示为“运行中”,表示服务已部署成功。

  1. “在线服务”页面,单击在线服务名称,进入服务详情页面。
  2. 单击“预测”页签,在“选择预测图片文件”右侧,单击“上传”按钮选择一张黑底白字的图片,然后单击“预测”

    预测完成后,预测结果显示区域将展示预测结果,根据预测结果内容,可识别出此图片的数字是“1”

    • 由于推理代码和配置文件中已指定图片要求,用于预测的图片,大小必须为“28px*28px”,且图片必须是黑底白字。
    • 建议不要使用数据集中自带的图片,可以使用Windows自带的画图工具绘制一张。
    图5 预测结果展示
  3. 如果不再需要使用此模型及在线服务,建议清除相关资源,避免产生不必要的费用。
    • “在线服务”页面,“停止”“删除”刚创建的在线服务。
    • “模型管理”页面,“删除”刚导入的模型。
    • “训练作业”页面,“删除”运行结束的训练作业。
    • 进入OBS,删除本示例使用的OBS桶及文件夹,以及文件夹的文件。
分享:

    相关文档

    相关产品