解决方案实践

百胜全渠道中台解决方案实践

文档版本 1.0

发布日期 2024-04-28

版权所有 © 华为技术有限公司 2024。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

nuawe和其他华为商标均为华为技术有限公司的商标。 本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或暗示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

安全声明

漏洞处理流程

华为公司对产品漏洞管理的规定以"漏洞处理流程"为准,该流程的详细内容请参见如下网址: https://www.huawei.com/cn/psirt/vul-response-process

如企业客户须获取漏洞信息,请参见如下网址:

https://securitybulletin.huawei.com/enterprise/cn/security-advisory

目录

1 方案概述	1
2 资源和成本规划	
3 操作流程	
4 实施步骤 (手动)	
4.1 手动搭建 BSEIP	
4.2 手动搭建 E3+	
5 实施步骤 (自动)	17
6 附录	20
7.修订记录	2:

1 方案概述

随着电商业务的越来越复杂,公司产品的功能越来越完善,整个中台模块也越来越多,部署实施的复杂度也越来越高,此方案采用微服务+K8S的方式,可以快速实现部署工作。

应用场景:

A集团公司企业中台项目:

A集团有限公司,是集研发设计、生产制造、市场营销、物流配送、电子商务、产业运作等现代企业管理架构为一身的内衣集团公司。公司旗下拥有多家全资和控股子公司,零售规模达到1600余家终端网点,产品基本遍布整个市场。公司连续多年在产值、销售收入、利税、产品市场占有率及品牌管理、生产规范性等综合经济指标排序中列行业前茅。经济效益持续、健康增长,保持了良性的发展趋势。科技日新月异,商业环境和业务模式也在变化和扩展,现有信息化系统及其组合在支撑新零售、品牌商对经销商业务管控等新业务上,代销、返利、对账等业务上遇到了瓶颈。

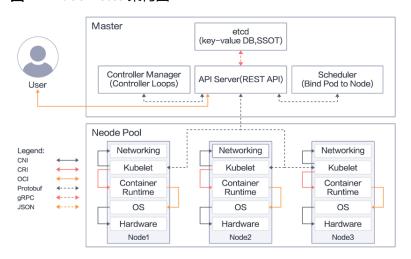
例如: 多套系统带来的数据不能很好归集,系统性能差且不好扩展,系统功能缺乏整体规划导致改动困难,等等。

鉴于上述原因,需要用新的技术和架构,把共性的业务能力进行沉淀,形成共性的商品、订单、库存等能力并输出,让前端业务足够轻便,专注提供差异化服务。本次项目实现分销、零售、电商等现有的基础业务,同时支持未来业务的快速扩展性,形成统一的数据归集,以数据驱动业务,从业务又回归数据,从而形成更适合的业务决策,引导消费体验场景。为此,跟百胜软件达成合作,通过百胜E3+企业中台系统对现有系统进行升级和集成,搭建技术中台、多渠道单一系统统一管控、构建业务中台。

通过E3+企业中台方案可以实现如下目标:

- 构建一套面向未来,高可靠、高性能可扩展的IT技术平台;
- 实现A公司商品数据,店铺数据,分销商数据,供应商数据,结算方式等业务主数据管理;
- 实现A公司分销业务,包含经销,代销,返利,对账业务开展;
- 实现A公司零售门店业务,包含门店收银,促销计算,会员管理,门店进销存,门店店务管理;
- 实现A公司电商业务,包含平台订单对接,订单发货,平台库存同步及围绕订单处理的策略配置及管理;
- 实现A公司相关系统集成,基于分销,零售,电商、会员业务实现业务流和财务流 对接。

方案架构:


基于kubernetes部署E3+中台

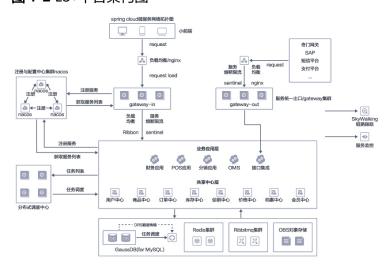
本文着重介绍使用k8s部署E3+中台的实践案例。

kubernetes介绍

kubernetes(简称K8S)是一个轻便的和可扩展的开源平台,用于管理容器化应用和服务。通过Kubernetes能够进行应用的自动化部署和扩缩容。在Kubernetes中,会将组成应用的容器组合成一个逻辑单元以更易管理和发现。Kubernetes经过这几年的快速发展,形成了一个大的生态环境,目前已成为容器编排的事实标准。

图 1-1 kubernetes 架构图

kubernetes有以下几个关键特性:


- a. 自动化装箱:在不牺牲可用性的条件下,基于容器对资源的要求和约束自动部署容器。同时为了提高利用率和节省更多资源,将关键和最佳工作量结合在一起。
- b. 自愈能力: 当容器失败时,会对容器进行重启;当所部署的Node节点有问题时,会对容器进行重新部署和重新调度;当容器未通过监控检查时,会关闭此容器;直到容器正常运行时,才会对外提供服务。
- c. 水平扩容:通过简单的命令、用户界面或基于CPU的使用情况,能够对应用 进行扩容和缩容。
- d. 服务发现和负载均衡:开发者不需要使用额外的服务发现机制,就能够基于 Kubernetes进行服务发现和负载均衡。
- e. 自动发布和回滚: Kubernetes能够程序化的发布应用和相关的配置。如果发布有问题,Kubernetes将能够回归发生的变更。
- f. 保密和配置管理:在不需要重新构建镜像的情况下,可以部署和更新保密和 应用配置。
- g. 存储编排:自动挂接存储系统,这些存储系统可以来自于本地、公共云提供 商、网络存储等等。

● E3+中台介绍

E3+中台是百胜推出的一款拥有门店、分销、会员、业财、仓储等模块,基于互联 网架构,采用微服务思想设计的全渠道大中台系统,是一款积累了百胜软件多件 零售行业知识和经验的基础下设计的全新产品。具有弹性伸缩、线性扩展、分布式部署以及异步解耦、缓存等技术,可满足企业高可用、高并发的大数据处理的需求。

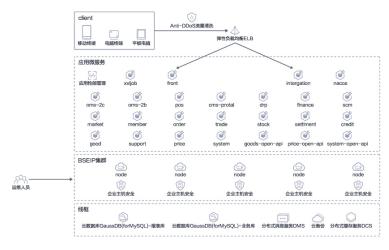

E3+中台基于微服务、中台化架构,把通用的企业服务功能提炼封装为可复用、可扩展、可运营的中台能力,并为中台能力的开发、运营提供一系列的能力支撑服务。包括用户、权限、组织、客户、供应商、物料/商品、价格、促销、库存、信用、流程、报表、打印、电子发票等通用应用能力;提供模版、编码规则、消息、预警、异步任务、日志、多语言/多时区/多格式等能力支撑服务。

图 1-2 E3+中台架构图

微服务化、容器化微服务化、容器化的E3+中台和kubernetes的能力架构完全吻合,在kubernetes上部署E3+,每个微服务都化为一个pod,利用kubernetes的特性,让E3+中台本身具有了快速扩容、自动恢复等特性。下图是完整的部署架构图:

图 1-3 部署架构图

方案优势

节省资源

通过kubernetes对硬件资源的整合,可以大大节省应用运行时所需要的资源。

- 统一编排、统一管理、快速扩展、自动恢复 每个微服务部署成一个POD,由kubernetes统一调度和编排。可以快速扩展,可以自动恢复。
- 方便的发版与回滚 依托kubernetes的能力,可以做到快速的发版与版本回退。
- 统一的日志与监控依托日志收集工具和监控工具,达到可视化运维。

约束与限制

部署实施人员需要具备基本的k8s知识和了解E3+中台业务。

2 资源和成本规划

表 2-1 资源和成本规划

云资源	规格	数量	计费 周期	单台每月费用 (元)
ECS	规格: X86计算 通用计算增强 型 c6.4xlarge.4 16核 64GB	4	1月	¥10521.5
	镜像: CentOS CentOS 7.9 64bit			
	系统盘: 通用型SSD 150GB			
云数据库 GaussDB(for MySQL)-业务库	CPU架构: X86 独享版 16核 64GB 1个只读节点	1	1月	¥10516.00
Wy3QL/-亚另岸	存储空间: 500GB			
分布式消息服务 DMS	RabbitMQ专享C6规格	1	1月	¥1360.00
分布式缓存服务 DCS	主备8GB 2副本(X86版)	1	1月	¥548.00
弹性负载均衡 ELB	实例规格类型: 独享型负载均衡 应用型(HTTP/HTTPS): 40 LCU	1	1小 时	¥2342.16
	应用型(NTTP/NTTP3): 40 CCO IP费用: 1LCU 全动态BGP			
	带宽: 全动态BGP 带宽 10Mbit/s			
云备份	存储库类型: 云服务器备份存储库 1000GB	1	1月	¥200.00
企业主机安全	规格: 企业版	5	1月	¥90.00
Anti-DDoS流量清 洗	防护设置: 默认设置 流量清洗阈值: 120 Mbps	1	1月	¥1.00

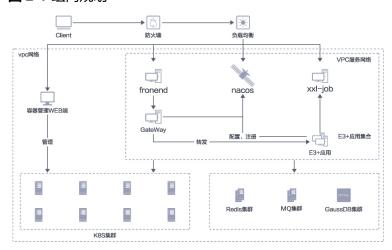

云资源	规格	数量	计费 周期	单台每月费用 (元)
云数据库 GaussDB(for MySQL)-报表库	CPU架构: X86 独享版 4核 16GB 1个只读节点 存储空间: 500GB	1	1月	¥3754.00
应用性能管理 APM	探针型产品按需套餐包, 专业版,100探针	1	1月	¥10000.00
总价格: ¥39332.66元				

表 2-2 某客户基于 k8s 部署 E3+资源规划

类目	应用名	具体产品	部署方式	(压测)建议配置【红色部分是 和生产的建议有变化的】	(压 测)节 点数
地域	/	/	/	1	/
应用 配置	容器服务	BSEIP(推 荐)	/	/	/
	服务器节点	ECS	华为云	ECS: 16核64G 500G 高效磁盘 通用型 g6	12
	分布式数 据库	GaussDB for MySQL	华为云	企业版 32核128G,主从模式, 1T SSD	1
	数据库 (报表 库)	GaussDB for HTAP	华为云	属后付费	1
	缓存	GaussDB for Redis	华为云	16G主从版	3
	消息队列	RabbitMQ	华为云	专业版 TPS: 5000条/秒 Queue 数量: 200	1
	文件存储	OBS	华为云	标准型-按量付费,属于后付费资 源项目	1
	负载均衡	SLB	华为云	属于后付费资源项目	1

类目	应用名	具体产品	部署方式	(压测)建议配置【红色部分是 和生产的建议有变化的】	(压 测)节 点数
后付 费资 源包	SLB、网络, 后附资源包 费		/	属于后付费资源项目	/
运维 监控	应用监控	APM	华为云	按量后付费,属于后付费项目	/
	日志平台	АОМ	华为云	按量后付费,属于后付费项目	/
	VPN	VPN	华为云	后付费,当开发需要在云平台做 开发调试需要	/

图 2-1 组网规划

微服务之间通过内部虚拟的VPC私有网络进行通信和访问,对外服务通过华为云负载均衡ELB暴露服务。

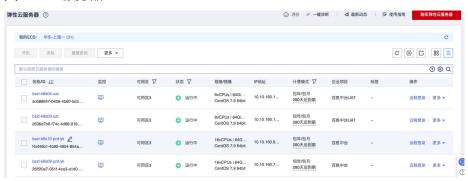
3 操作流程

整个部署流程划分为四大步完成,方案大致的部署步骤流程如下:

图 3-1 操作流程

- **步骤1** 安装底层容器运行平台BSEIP,BSEIP是基于kubernetes的PAAS平台,先安装基础PAAS平台。
- **步骤2** 中间件部分主要是采购华为云的中间件,根据每个客户和项目的需求采购不同规则的产品。提取购买产品中间件的访问信息。
- 步骤3 部署E3+所有应用服务,一键部署整个E3+所有的微服务。
- **步骤4** 应用调试与上线,主要是部署完成后的调试和验证工作。

----结束


4 实施步骤 (手动)

- 4.1 手动搭建BSEIP
- 4.2 手动搭建E3+

4.1 手动搭建 BSEIP

云服务器

图 4-1 云服务器

服务器集群规划

k8s的安装有多种方式,此处不过多介绍,自行安装即可,安装前规划好每个主机的集群角色。如下例信息:

表 4-1 服务器集群规划

主机名	ip	角色
k8s-master1	192.168.145.160	master
k8s-master2	192.168.145.161	master
k8s-master3	192.168.145.162	master

主机名	ip	角色
k8s-node1	192.168.145.164	worker
k8s-node2	192.168.145.165	worker

部署 BSEIP 服务

- 1. 登录k8s集群master节点
- 2. 准备bseip部署模版
- 3. 执行kubectl apply -y bseip-frontend.yaml
- 4. 检查bseip服务状态

图 4-2 检查 bseip 服务状态

5. 打开bseip-dashboard确保环境正常; 主机ip:30443端口

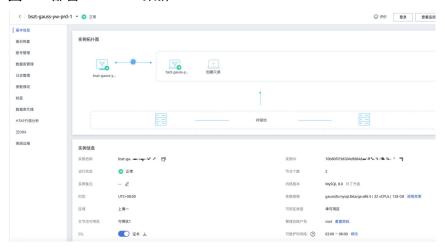
图 4-3 集群列表

4.2 手动搭建 E3+

E3+资源需求

E3+应用需要使用到EVS、ECS、VPC、ELB、DCS、GaussDB、DMS、LTS、SMN、DRS、DWS、OBS等这些华为云产品,某客户的后端资源汇总统计信息:

图 4-4 资源汇总统计信息


部署 GaussDB 集群

通过华为云官网购买GaussDB数据库集群,选择相关的配置,购买完成后给出可以访问的连接信息用于后续的E3+的部署:


图 4-5 部署 GaussDB 集群 1

图 4-6 部署 GaussDB 集群 2

图 4-7 部署 GaussDB 集群 3

部署 redis 集群

通过华为云官网购买分布式缓存服务Redis版,选择相关的配置,购买完成后给出可以访问的连接信息用于后续的E3+的部署:

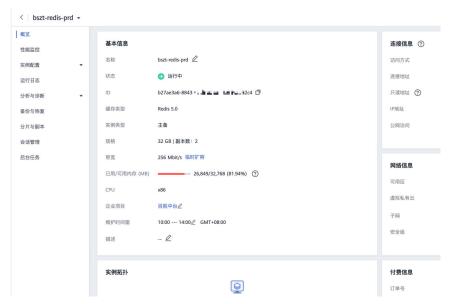
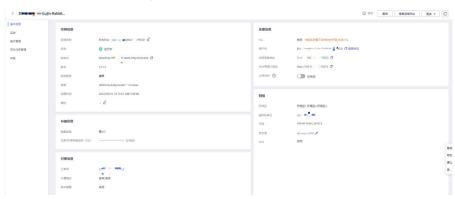

图 4-8 部署 redis 集群 1

图 4-9 部署 redis 集群 2

图 4-10 部署 redis 集群 3


部署 RabbitMQ 集群

通过华为云官网购买分布式消息服务RabbitMQ版,选择相关的配置,购买完成后给出可以访问的连接信息用于后续的E3+的部署:

图 4-11 部署 RabbitMQ 集群 1

图 4-12 部署 RabbitMQ 集群 2

部署 E3+服务

步骤1 创建e3plus的命名空间

kubectl create namespace e3plus

步骤2 确认需要安装的E3+版本信息

从公司内部git拉取对应版本的配置信息及数据库脚本

步骤3 k8s部署nacos(kubectl apply -n e3plus nacos.yaml)

- 上传nacos.yaml文件
- kubectl apply -f nacos.yaml
- 上传nacos配置文件,所有文件在上面第2步复制的e3plus-config文件夹下,此文件夹目录类似如下

```
|-- DEFAULT_GROUP
  |-- application.yaml
  |-- e-erp-app-finance-dev.yaml
  |-- e-erp-app-gateway-dev.yaml
  |-- e-erp-app-integration-dev.yaml
  |-- e-erp-app-oms-dev.yaml
  |-- e-erp-app-pos-dev.yaml
  |-- e-erp-basebiz-credit-dev.yaml
  |-- e-erp-basebiz-goods-dev.yaml
  |-- e-erp-basebiz-order-dev.yaml
  |-- e-erp-basebiz-price-dev.yaml
  -- e-erp-basebiz-system-dev.yaml
  -- e-erp-biz-drp-dev.yaml
  |-- e-erp-biz-market-dev.yaml
  |-- e-erp-biz-member-dev.yaml
  |-- e-erp-biz-monitor
  |-- e-erp-biz-settlement-dev.yaml
  |-- e-erp-biz-stock-dev.yaml
  |-- e-erp-biz-support-dev.yaml
   `-- e-erp-component-gateway-dev.yaml
 - E3PLUS-OMS
  `-- e3plus-oms.json
 - SEATA_GROUP
  |-- store.db.branchTable
  |-- store.db.datasource
  -- store.db.dbType
  |-- store.db.driverClassName
  |-- store.db.globalTable
  -- store.db.lockTable
  |-- store.db.maxConn
  -- store.db.minConn
  |-- store.db.password
  |-- store.db.queryLimit
  |-- store.db.url
  -- store.db.user
-- store.mode
 -- images.yml
```

其中: DEFAULT_GROUP、E3PLUS-OMS、SEATA都是nacos的命名空间下的分组,直接压缩成zip文件后,上传到nacos。

步骤4 部署E3+的引导服务e3plus-guide

kubectl apply -f e3plus-guide.yaml

步骤5 启动引导服务,填写redis, rabbitmq, mysql的配置信息

图 4-13 配置信息

步骤6 检查引导服务状态

图 4-14 检查

步骤7 在bseip集群部署E3+所有应用

- E3+应用的deployment文件:示例
- 修改示例中的yaml文件的镜像以符合自己的需求
- kubectl -f *.yaml

----结束

部署服务负载均衡服务

通过华为云官网购买负载均衡服务

图 4-15 购买

配置主机和端口的监听服务

图 4-16 配置

5 实施步骤 (自动)

自动搭建 BSEIP 集群

步骤1 集群基础环境准备

1. 由客户提供集群主机信息(ip+ssh端口+用户+密码)

系统版本:要求centos7.9 安装目录磁盘至少: 100G

2. YUM命令可用

需正确配置源,保证yum命令可用,并可下载所需的rpm包

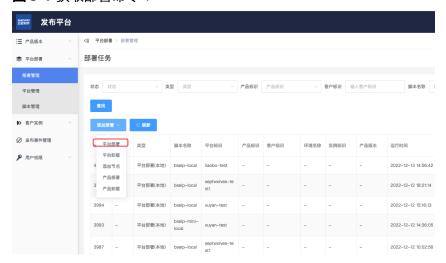
Yum list

3. 确认服务器时间同步

服务器后台时间不同步会对时间敏感的服务带来不可预见的后果。务必在安装前保证时间同步。

检查每台机器当前时间和时区是否一致,如果相互之间差别大于3s(考虑批量执行时的时差),建议校时。

date -R


查看和ntp server的时间差异(需要外网访问,如果内网有ntpd服务器,自行替换域名为该服务的地址)

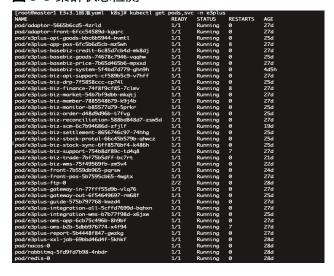
ntpdate -d cn.pool.ntp.org

步骤2 生成自动部署命令

1. 登录发布平台填写客户主机信息,集群角色等,获取部署命令

图 5-1 获取部署命令 1

图 5-2 获取部署命令 2



2. 将获取到的部署命令在部署机上执行即可自动完成BSEIP集群,E3+的安装 bash <(curl -s http://e3api.baison.net/ftp/bseip/playbook/k8s_install.sh) install bseip --token Vgowojk5Zium83BnTttwRyJax

步骤3 集群状态检测

部署完成后登录集群,获取BSEIP和E3+服务状态均为running即部署完成:

图 5-3 集群状态检测

----结束

快速卸载集群

参考 生成自动部署命令 章节生成自动卸载的命令去服务器执行即可

6 附录

背景信息

使用云盘组件RAID磁盘阵列

表 6-1 常见 RAID 磁盘阵列介绍

RAI D级 别	简介	读写性能	安全性能	磁盘使 用率	组建不同RAID阵列所需的最少磁盘数量
RAID 0	RAID0将数据分 条存储在多个磁 盘上,可实现并 行读写,提供最 快的读写速率。	多个磁盘并行读 写获取更高性能	最差 没有冗余能 力,一个磁盘 损坏,整个 RAID阵列数据 都不可用	100%	两块
RAID 1	通过构造数据镜像实现数据冗余,阵列中一半的磁盘容量投入使用,另一半磁盘容量用来做镜像,提供数据备份。	读性能:与单个 磁盘相同 写性能:需要将 数据写入是两个 磁盘,写性能低 于单个磁盘	最高 提供磁盘数据 的完整备份, 当阵列中的一 个磁盘失效 时,系统可以 自动采用镜像 磁盘的数据	50%	两块
RAID 01	结合RAID0和 RAID1两种磁盘 阵列,先将一半 磁盘组建成 RAID0分条存储 数据,再用另一 半磁盘做RAID1 镜像。	读性能:和 RAID0相同 写性能:和 RAID1相同	比RAID10的安全性能低	50%	四块

RAI D级 别	简介	读写性能	安全性能	磁盘使 用率	组建不同RAID 阵列所需的磁盘 少量
RAID 10	结合RAID1和 RAID0两种磁盘 阵列,先将磁盘 两两组建成 RAID1镜像,再 组建RAID0将数 据分条存储。	读性能: RAID0 相同 写性能: RAID1 相同	和RAID1的安全性能相同	50%	四块
RAID 5	RAID5不需要单 独指定数据校验 磁盘,而是将每 块磁盘生成的校 验信息分块存储 至阵列中的每块 磁盘中。	读性能:和 RAID0相同 写性能:由于要 写入奇偶校验信 息,写性能低于 单个磁盘	比RAID10的安全性能低	66.7%	三块

源代码

样例1: DLI Flink SQL脚本

```
CREATE SOURCE STREAM alarm_info (alarm_id STRING, alarm_type INT) WITH (
type = "dis",
region = "cn-east-3",
channel = "dis-alarm-input",
partition_count = "1",
encode = "csv",
offset = "0",
field_delimiter = ","
CREATE SINK STREAM over_alarm (
alarm_over STRING
/* over speed message */
) WITH (
type = "smn",
region = "cn-east-3",
topic_urn = " urn:smn:cn-east-3:0b9553e29c0026f22f3dc007a430e45a:alarm_over ",
message_subject = "alarm",
message_column = "alarm_over"
);
INSERT INTO
over_alarm
SELECT
"your alarm over (" || CAST(alarm_type as CHAR(20)) || ") ."
FROM
alarm_info
WHERE
alarm_type > 8;
CREATE SINK STREAM alarm_info_output (alarm_id STRING, alarm_type INT) WITH (
type = "dis",
region = "cn-east-3",
```

```
channel = "dis-alarm-output",
PARTITION_KEY = "alarm_type",
encode = "csv",
field_delimiter = ","
INSERT INTO
alarm_info_output
SELECT
FROM
alarm_info
WHERE
alarm_type > 0;
附: 测试源数据示例
alarm_id alarm_type
60114 3
60121
      5
60122 6
60123 7
60124 8
60126 0
60127 9
60128 10
60129
```

样例2: 创建数据表alarm_info, alarm_count_info

```
create table alarm_info(
alarm_time string,
alarm_id string,
alarm_type int
) using csv options(path 's3a://obs-alarm-platform/alarm_info') partitioned by(alarm_time);

create table alarm_count_info(
alarm_time string,
alarm_type int,
alarm_count int
) using csv options(path 's3a://obs-alarm-platform/alarm_count_info');
```

样例3: 按告警类别进行统计

```
insert into
alarm_count_info
select
alarm_time,
alarm_type,
count(alarm_type)
from
alarm_info
group by
alarm_time,
alarm_type;
```

了修订记录

表 7-1 修订记录

发布日期	修订记录
2024-04-28	规范词、敏感词专项处理,章节优化
2023-02-15	第一次正式发布。